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Abstract

We consider an age replacement problem using nonparametric predictive inference (NPI)
for the lifetime of a future unit. Based on n observed failure times, NPI provides lower
and upper bounds for the survival function for a future lifetime X,, 11, which are lower and
upper survival functions in the theory of interval probability, and which lead to upper and
lower cost functions, respectively, for age replacement based on the renewal reward theorem.
Optimal age replacement times for X, ; follow by minimising these cost functions.

Although the renewal reward theorem implicitly assumes that the corresponding optimal
strategy will be used for a long period, we study the effect on this strategy when the observed
value for X,,41, which is either an observed failure time or a right-censored observation,
becomes available. This is possible due to the fully adaptive nature of our nonparametric
approach, and the next optimal strategy will be for X,,;2. We compare the optimal strategies
for X, 11 and X,,42 both analytically and via simulation studies.

Our NPI-based approach is fully adaptive to the data, to which it adds only few structural
assumptions. We discuss the possible use of this approach, and indeed the wider importance
of the conclusions of this study to situations where one wishes to combine the statistical
aspects of estimating a lifetime distribution with the more traditional Operational Research
approach of determining optimal replacement strategies for lifetime distributions which are

assumed to be known.
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Introduction

Age replacement strategies, where a unit is replaced upon failure or on reaching a predetermined

age, whichever occurs first, provide simple and intuitively attractive replacement guidelines



for technical units. Within theory of stochastic processes, the optimal preventive replacement
age, in the sense of leading to minimal expected costs per unit of time when the strategy is
used for a sequence of similar units over a long period of time, is derived by application of
the renewal reward theorem, see e.g. Barlow and Proschan [1]. In practice, this procedure is
also used even though one realises that the resulting optimal strategy may only be used for a
few such cycles, for example because the unit would normally undergo some technical updates
within reasonable period of time, or one wishes to keep the option open to change the policy in
light of new information that may occur during the process. Attention to age replacement has
predominantly been based on a classical Operational Research perspective, where the probability
distribution for the lifetime of the unit is assumed to be known. Recently, age replacement
has been considered from Bayesian perspective [2], allowing the assumed parametric lifetime
distribution to be updated, within the Bayesian framework, when new data from the process
become available. Such procedures can be called ‘adaptive’, in the sense that the optimal
preventive replacement time may change over time. To counter the fact that such changing
optimal preventive replacement times are in conflict with the assumption of long-term use of the
same strategy, on which the renewal reward theorem is based, Mazzuchi and Soyer [2] replaced
the renewal reward criterion by minimisation of expected costs per unit of time over a single
cycle. The use of Bayesian statistics for such replacement problems has been advocated by
several authors, not only because of the opportunity to update the prior distribution for the
parameters of the lifetime distribution, within the assumed parametric family of distributions,
but also because of the subjective probabilistic underpinnings for Bayesian statistics. To deal
with scarce information, as may regularly be the case in practice, one could attempt to entirely
base replacement decisions on expert judgements, via elicitation of a lifetime distribution for
the unit [3, 4].

As an alternative to these approaches, we combine the OR-based decision making aspects for
age replacement with nonparametric predictive inference for the lifetime distribution, making
rather minimal structural assumptions for this distribution, which enables study of the way that
resulting optimal replacement strategies adapt to available data. Indeed, this approach implicitly
assumes the presence of failure data, which we assume throughout the paper and briefly discuss
in the concluding section. We still base the optimisation criterion for the preventive replacement
time on the renewal reward theorem. While we do not suppose that the same policy will be
used in the long run, and thus cannot appeal to the renewal reward theorem to justify the use of
the long run cost per unit time as the decision criterion, there is no doubt that, intuitively, the
expected cost of a cycle over the expected cycle length is a reasonable decision criterion. Using

it has the advantage that it allows study of the manner in which optimal replacement times



according to this criterion adapt to data, and indeed to new process data once the procedure is
in place, when no distributional assumptions are added to the data. This work further develops
the work in Coolen-Schrijner and Coolen [5], where the basic results for such age replacement
based on nonparametric predictive inference (NPI) were presented. There, on the basis of n
failure times, NPI was used to derive probabilities for X, 1, the random lifetime of the next
unit to be used in the process, and for which the age replacement strategy is going to be adopted.
In this paper, we study how the optimal age replacement strategy changes depending on the
observation of X, 1 under the applied optimal age replacement rule, so we focus on X, 2, using
the information of the first n failure times and the information from unit n + 1, which can be
either a failure before, or a right-censored observation at, the optimal age replacement time. We
derive analytical results for the optimal age replacement time for this unit n + 2, and analyse it
further via simulations.

Coolen and Newby [6] first used NPI for replacement problems, focussing on corrective
replacement. This work was followed by Coolen and Coolen-Schrijner [7], who used NPI for
preventive replacement decisions in case of continuous condition monitoring, with deterioration
of a unit modelled via a known number of states for its condition. Recently, next to a variety of
statistical applications of NPI, its use has also been suggested for problems in reliability [8] and
queueing [9]. Further progress on adaptive replacement strategies based on NPI is now possible
due to recent development of NPI for data sets including right-censored observations [10], which
is also essential for the work in this paper.

The outline of this paper is as follows. First, we briefly provide the necessary details of NPI,
referring to the literature for justifications and further discussions. Then, we briefly summarize
the main results from Coolen-Schrijner and Coolen [5], which we also use in this paper. In the
main part of this paper, we present theoretical results on the optimal age replacement time for
Xn+o, focussing on the way it adapts with regard to information on X, 11 as coming from the
process, and further insights are provided by simulation studies. Finally, we briefly comment
on the main conclusions of this work, and its relevance beyond NPI when one wishes to com-
bine statistical methods for learning from data directly with Operational Research methods for
decision making, and we point out some topics for future research. The proofs of the analytical

results are presented in an appendix.

Nonparametric predictive inference

Nonparametric predictive inference (NPI) is based on Hill’s assumption A,), which is suitable

for probabilistic predictions in case one wishes to add very little extra information to observed



data. Denoting n ordered observed lifetimes by z(1) < z(9) < ... < Z(n), A(n) [11, 12] specifies
direct probabilities [13] for a future lifetime, X, 11, by

1
P(Xpt1 € (z(j),2(j41)) = merE
for j =0,...,n, where, for ease of notation, zgy = 0 and z(, 1) = 00, or Z(p41) = 7 if we can

safely assume a finite upper bound r for the support of X, 11 (note that the latter is not an
observed value of X;,1). A, is a post-data assumption related to exchangeability [14]. For a
further discussion of A(,) and an overview of related work, see Hill [15]. A(n)-based inference is
predictive and nonparametric, and suitable if there is hardly any knowledge about the random
quantities of interest, other than the n observations, or if one explicitly does not want to use such
information, e.g. if one wants to study the effects of assumptions underlying statistical models.
Clearly, A(;) does not provide precise probabilities for all possible events of interest, as it only
partially defines a probability distribution for X, ;. However, it does provide optimal bounds for
all probabilities of interest involving X, 11, by application of De Finetti’s ‘fundamental theorem
of probability’ [14]. Such bounds are lower and upper probabilities within the theory of interval
probability [16, 17, 18], Augustin and Coolen [12] prove strong consistency properties of NPI
within this theory, which justifies its use from statistical perspective.

To enable study of adaptive behaviour based on process data in this paper, we also need a
generalized version of A(,) which allows right-censored data. The general theory for this has
recently been developed by Coolen and Yan [10], to which paper we refer for technical details
and justification. The generalization is called ‘right-censoring A(,’, denoted by rc-A(,, for the
purpose of this paper we only need two special cases. Suppose that we have the n observed
failure times, denoted as before. Now assume that we also have an observation of X, 1, but
a right-censoring at a previously observed z(), for a k € {1,...,n}, so the only information
about unit n + 1 is X, 41 > % (). Then the assumption re-A;, 1) provides the following partial
specification of a probability distribution for X, 2, the random lifetime of the next unit to be

used:

1 .
P(Xny2 € (3(5), 3(j4+1))) = nr 2 for 0 <j <k,

n+2—k
n+2)(n+1—k)’

P(Xn_|_2 € (.’L‘(j),.’l?(j+1))) = ( for k <j<n.

As this is the form of rc-A(,) most used in this paper, we have presented it explicitly. We do,
however, prove some results on situations where several further lifetimes are all right-censored
at the same value z(;). For that special situation, we use the following generalization of the

above specification. Suppose that units n+1 to n+m, with m > 1, have all been right-censored



at the same previously observed z(;). Then the assumption rc-A;,.,) provides the following

partial specification of a probability distribution for X, my1:

1 .
P(Xnim+1 € (25, T(j+1)) = e for 0 <j <k,
n+m+1—k .
P(Xnim+1 € (2(j), 2(j+1))) = ( for k <j<mn.

n+m+1)(n+1—k)’
In this paper, these specifications will be used to provide lower and upper predictive survival
functions when we study the adaptive nature of our optimal age replacement strategies from
NPI perspective. We also study the case where the observation for unit n 4+ 1 is actually a
failure time, which occurs if that unit fails before the predetermined age replacement time. For
such situations, a partially specified probability distribution for X, o follows directly from the
assumption A, 1) with all n + 1 observed failure times.

The general form of rc-A(,, as presented by Coolen and Yan [10] allows generalization of our
method for any data set consisting of failure times and right-censored observations. However,
general analytical results are harder to achieve, and difference between lower and upper cost
functions can become large in case of many censored observations. Other types of censoring are
difficult to deal with given the current state of development of the statistical theory of NPI.
Coolen and Yan [10] briefly indicate how NPI can deal with left-censored data, but that method
can only be used if there are no right-censored data available.

There is an intuitive link between NPI and nonparametric likelihood estimation, for example
one can consider rc-A,), used explicitly for probabilistic prediction for a future observation, as
a predictive alternative to the well-known Product-Limit estimator by Kaplan and Meier [19],
this is explained in detail by Coolen and Yan [10].

We should briefly mention here that, although the above forms of A,y and rc-A,) appear
not to allow ties between the n observed failure times, such situations can be dealt with rather
straightforwardly [10], namely by regarding tied observations as if they are very close but dif-
ferent, and then letting the difference decrease to zero. In practice this is of little relevance, as

long as the data are recorded in sufficient detail to make tied observations very unlikely.

Optimal age replacement for X,

In this section, we formulate the basic age replacement problem studied in this paper, and
summarize the key results from Coolen-Schrijner and Coolen [5] which form the basis for the
study reported in this paper.

We consider an age replacement problem in which an item is replaced upon failure (’corrective

replacement’) at cost ¢ > 0, or upon reaching the age T (’preventive replacement’) at cost



c1 > 0, whichever occurs first. We restrict attention to ¢; < co, a logical requirement to
make preventive replacement possibly worthwhile. In the classical setting, a unit’s lifetime is
represented by a random quantity, say X, assumed to belong to a population of independent
and identically distributed random quantities. For this case, we denote the survival function for
X by S(z) = P(X > z).

The aim is to determine the optimal preventive replacement age T'. One possible method is
to base the criterion function on renewal reward theory (see e.g. Barlow and Proschan [1]), in
which case the optimal replacement age follows from minimising the long-run average costs per
unit time, which, by applying the renewal reward theorem, are equal to the expected costs per
cycle divided by the expected length of a cycle, where a cycle is the time between two consecutive

replacements. This leads to long-run average costs per unit time, C'(T"), given by

C(T) _ Cy — S(T)(02 — Cl)

T : (1)
OfS(:B)d:v

Coolen-Schrijner and Coolen [5] do not assume a known survival function S(z), and not
even restrict to a parametric family of underlying distributions [2], but use NPI to derive lower
and upper survival functions for X,, 1, on the basis of n observed failure times, and study the
optimal replacement ages according to these lower and upper survival functions. An attrac-
tive feature of this approach is that the replacement problem is directly formulated in terms of
the lifetime random quantity of the next unit. In addition, using a nonparametric statistical
approach reduces to almost minimal the influence of modelling assumptions, which are often
hidden, for example via assumed parametric families of distributions. In this paper, we will
build on the previous work [5] by studying how the optimal replacement ages adapt when the
process moves on to the next stage, that is when information from unit n + 1 becomes available,
assuming that the optimal NPI replacement strategy had indeed been used for this unit. In
order to present the results of this study in the next section, we first summarize the key results

from the previous paper [5].

The assumption A, assigns probability masses for X;, 11, the lifetime of the next unit to be
used, to the open intervals (z(;), z(j1+1)), § =0,...,n, created by n observed failure times, but it
does not put any further restrictions on the distributions of the probability masses within each
such interval. This immediately leads to precise values for the corresponding survival function
of Xp 41 at the points z(;), namely

n+1l—j )
SXn+1($(j)) = a1l for 5 =0,....n+1,



but it does not provide precise values for the survival function at other times without adding
further assumptions. However, optimal lower and upper bounds for this survival function,
consistent with the probability assessment according to A,), are easily derived. The maximum
lower bound, S(z), is obtained by shifting the probability mass in the interval in which z lies to
the left end-point of the interval, while the minimum upper bound, S(z), is obtained by shifting
the probability mass in the interval in which z lies to the right end-point of the interval. These
bounds for the survival function of X, are

n—7j

ﬁXvH—l (.T) = SXn+1 (.’E(j+1)) = ] for z € (.T(j),$(j+1)), 7=0,...,n, (2)
— n+1l—-j .
SXn+1 (CU) = SXn+1(.’L'(J)) = TH fOI' T € (37(]),"5(]-1-1)), ] = 0,. ey T (3)

We call S(-) and S(-) lower and upper survival functions, respectively [8], they indeed provide
lower and upper probabilities within the theory of interval probability [16, 17, 18].

The cost function C(T'), as given by (1), is decreasing as function of S(-), in the sense that
C(T) decreases if S(z) increases for x € (0,7]. This implies that the above lower and upper A,,-
based survival functions straightforwardly lead to bounds for this cost function, corresponding
to all such cost functions for possible survival functions between S(-) and S(-). The maximum
lower bound for C(T'), which we call the lower cost function for X, 11 and denote by Cx, . (7),
is derived for the upper survival function S, ., (z) for z € (0,T], whereas the minimum upper
bound, called the upper cost function for X,+1 and denoted by Cx,_,(T), is derived for the

lower survival function S . () for z € (0,7]. These lower and upper cost functions are [5]

jeo+(n+1-—j)c .
Cx, () = 327 et (4)

J
(n+1-— j).’E(]) + l; Z(1)

jeo+(n+1—75)ecr
J
(n+ 1 —j)T—I— IZ:ILL'([)

jeo+(n+1—7j)c
j—1
(n+1—j)z) + l; ()

_ j+ 1+ (n—j)c .
CXn+1(T) = ( ) 2 ( j J) 1, for T € (:L'(j),iL‘(j_H)), ] :O,...,n. (7)
(n —3)T + z; ()

QXn+1 (T) = , forT € (x(j),w(jH)), 7=0,...,n, (5)

6Xn+1 (:L'(J)) = ) .] = ]-a Y s 1’ (6)

Because Sx,  (T) =0 for T > z(,), Cx,,.,(+) is constant beyond T(n)- Moreover, Cx,..(T)
> Cx, 1 (2(m)) for T > z(,). Hence, when determining the optimal age replacement time in
the sense of minimising the upper cost function, we do not have to consider replacement times

larger than z(,).



We should emphasize that there is no simple relation between the optimum replacement
times corresponding to the lower and upper cost functions, for the same data set, nor indeed
are there general relations when also considering optimum replacement times corresponding to
survival functions between the lower and upper survival functions.

In case we do not replace preventively, we have

_ c (&
Cxppr (Tnt1)) = 1 s and  Cyx, ., ((m41)) = n—|2—1 '
T 250 T PR

where the denominator of the lower cost function is only finite if we assume a known upper
bound z(,, ;1) = r for the support of Xy, ;. This is a minor complication when determining the
optimal age replacement time in the sense of minimising the lower cost function for X, 11, to
prevent complications we mostly restrict attention to T € (O,x(n)], but return briefly to this
issue later.

Throughout this paper, notation like :z;(;

) is to be interpreted as ’just before z(;)’, such that

7)
the adherent probability mass [14] to the left of z(;) is considered to be to the right of () in the
extreme situation related to the location of the probability masses corresponding to Sx,, ., (-)-
In [5] it was shown that Cx,,,, (-) and Cx, .1 (+) are both discontinuous at the observed failure
times z(;), but in between these failure times they are continuous and strictly decreasing. It
followed that the global minimum of 6Xn+1 (-) is assumed in one of the points zGy, J=1,...,m,
and the minimum of C'x . (-) on (0,z(,] is assumed in one of the Zjy J =1,...,n. The values
of Cx,,,(7(;) are given in (6), while the values of QXRH(:I:(_].)) are given by
Oy (o) = G Vet (42 i .
(n+2—j)zy) + l; ()

If we assume a known upper bound r for the support of X1, Cx, ., (-) is also strictly
decreasing on (z(),7), so we must also consider Cx,  (r~) for finding the global minimum
on (0,7]. If this minimum is attained in r—, then it is better not to replace preventively.
Alternatively, we can calculate a critical value r* such that if you think that an upper bound for
the support of X, 11 is smaller than r*, then the optimal age replacement time for C'y (-) over
the interval (0, 7] is the optimal T' that was derived when attention was restricted to T' € (0, z(,)].
But if you think that an upper bound for the support of X1 is larger than r*, then it is better
not to replace unit n 4+ 1 preventively. Before we present the new results on the adaptive nature
of our NPI-based age replacement procedure in the next section, we illustrate NPI-based age

replacement for unit 7 + 1 in a small example, which we will also use later in this paper.



Example 1 Suppose we have 8 lifetimes: 1, 2, 5, 7, 8, 9, 12, 20. Each preventive replacement
costs ¢ = 1, while each corrective replacement costs co = 10. We would like to find the optimal
age replacement times Ty for Xy in the sense of minimising the upper and lower cost functions,
using the renewal argument, Ay and these data. The upper cost function needs only to be

computed for T' = z;:

T T TE) T TE) TE) T EE)
12 5 7 8 9 12 20
Cxo(z) | 9/4 27/15 12/11 45/43 54/47 63/50 9/7 81/64

so the optimal age replacement time 7§ for Xy in the sense of minimising the upper cost function
is 7, with corresponding upper costs 45/43. The lower cost function needs only to be computed

for T = ac(_j):

Ta)y %o e Ty Te Te)  Ta T
- 2= 5 7 8 9= 12— 20
Cx(zg) | 1 18/17 27/38 18/25 9/11 54/59 63/68 6/7

so the optimal age replacement time Tg for X9 over the interval (0, 20] in the sense of minimising
the lower cost function is 5, with corresponding lower costs 27/38. The critical value of r* is

50. Figure 1 is a plot of these upper and lower cost functions.

Coolen-Schrijner and Coolen [5] performed simulation studies to see how well this procedure
performed. These showed that there was no clear relation between the optima resulting from
minimising the lower and upper cost functions for the same data set, as these were frequently
the same, but also differed with no fixed order. A further conclusion was that already for fairly
small data sets (n = 10) the NPI-based optima were reasonably close to theoretical optima
as related to chosen distributions for simulation. Although there was quite some variation in
the NPI-based optima over different data sets, this approach often performed better than when
using the classical approach with wrongly assumed lifetime distributions. Of course, the larger
the data set, the better the NPI-based method performs. This was reason to also study the
way that this NPI-based age replacement method adapts to the process information on unit
n + 1, assuming that the optimal NPI-based replacement age according to the criterion chosen,
i.e. minimal upper or lower cost function, has been applied for this unit. The analytical results
of this study are presented in the next section, thereafter further insights are provided via a

simulation study.
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Figure 1: Lower and upper cost functions for Example 1

Adaptive age replacement strategy

As minimisation of the upper and lower cost functions with regard to age replacement of unit
n + 1, using NPI and renewal reward theory, may lead to two different optimal replacement

times, we denote these optima by T, ., and T} 7 .,

respectively. Early in this section, we
present some general theory for which it is not relevant to make the distinction, in which case
we use T, as generic notation for an optimal age replacement time that was used for unit
n+ 1. We now consider the effect of using such an optimal policy, and the resulting information
about the lifetime X, 1 of unit n+ 1, on the optimal NPI-based age replacement policy for unit
n + 2, with random lifetime X,,1o. Although our cost functions are based on the renewal reward
theorem, which implicitly assumes that an age replacement strategy, once determined, is used for
a long period (i.e. many cycles), we do think it is interesting to study how optimal replacement
times would actually adapt to new data from the process, because the assumption of a constant
replacement time seems more defendable from classical OR perspective, where a known lifetime
distribution is assumed, than when one attempts to use the process information to infer such a
lifetime distribution. If, however, our study would reveal that the optimal strategy is unlikely

to change much on the basis of the new observation, this would suggest that the use of this

criterion is not unreasonable even when one wishes to use an adaptive method like ours.
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Under the optimal age replacement strategy, the observation for X, is either a failure time
less than 777, in which case the unit was replaced correctively, or a right-censored observation
at T, 1, in which case the unit was replaced preventively. We present our study for these two
cases separately, where the first is reasonably straightforward but the second case requires a lot

more attention and leads to particularly interesting results.

L Unit n+ 1 fails before Ty, ;.

If unit n + 1 fails before 7)), ,, we can directly apply the results presented in the previous
section [5] on the n + 1 failure times, with A, replaced by A(, 1), to obtain the optimal age
replacement time for unit n + 2. Here, it seems not only natural to use the same cost function,
upper or lower, to determine the consecutive optimum replacement times, but this also allows
us to study the effect of such a new observation on the NPI-based optimum replacement times.
In the next section we study this effect via simulations, we first briefly illustrate this procedure

via an example.

Example 1 (continued) Suppose that, using the optimal replacement time for unit n + 1
according to the upper cost function, which was equal to 7, unit 9 fails at time 4. This adds an
observed failure time to the data set, and theory presented in the previous section now implies
that the optimum replacement time for unit 10 is found by taking the minimal value of this cost

function at the observed failure times, these values are given below.

T T TE) T T TE T TE) T()
1 2 4 5 7 8 9 12 20
Cixyo(zy) | 19/9 28/17 37/31 46/37 55/47 64/51 73/54 82/60 91/68

Hence, the optimal age replacement time T}, 1o for Xy, is still equal to 7, so has not changed
in this case. Simulations will later show that it is not always the case that this optimum does

not change, and that it can change in both directions if a failure time has been observed.

II. Unit n + 1 is preventively replaced at T, ;.

The case where unit n + 1 is preventively replaced at 7}, is of more interest, first of all
because in practical situations where age replacement with a finite replacement time is cost
effective, one tends to have relatively many preventive replacements, so this situation tends
to occur more frequently than corrective replacements. Secondly, the mathematical study of

the effect of such information on the optimal replacement age for unit n + 2 leads to some
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interesting results, and uses recently developed statistical methods for NPI with right-censored
data, as reviewed earlier in this paper.

Throughout this section, let us assume that unit n + 1 was preventively replaced at T}, =
T(k), for some k € {1,...,n}, the optimum NPI-based age replacement time for that unit
according to the cost function used (lower or upper). As a technical detail, we should point out

that the lower cost function would actually have had its optimum in an :1:( but in practice

k)’
there would be no noticeable difference between a replacement at w(k) or :it T(k), hence we
assume throughout that the replacement actually took place at an z (), also when the lower cost
function had been used.

When considering age replacement of the unit n + 2 in this process, the relevant data set
now consists of the n original failure times, z(;) < ... < z(,), together with a right censored
observation at z(). For NPI based on such data, the assumption rc-A, 1) [10] can be applied,
leading to the probabilities for X, as presented before in the introductory section on NPI.

These predictive probabilities lead to lower and upper survival functions for the random lifetime

Xn+2, which coincide at the observed failure times z(;), j =1,...,n,

= n+2—j3

SXn+2( (])) = SXn+2(£L‘(j)) = n7—|—2 for 0 <5<k, (g)
= n+2—-k)(n+1—j .

Sx,12(TG) = Sxppn(T() = ( ) 7) for k< j<mn+1. (10)

(n+2)(n+1—k)
At all other times these functions are again the optimal bounds that are consistent with the

rc-A(,41)-based probability specification, and are

n+1-— )
§Xn+2(x) = §Xn+2(x(j+1)) f; for x € ($(j),$(j+1)), 0<j<k, (11)
n+2—k)(n—7 .
Sx,.,(®) = Sx,..(T¢) = En e -)l—(l — g for z € (z(j),7(j31)), k <j<n, (12)
_ n+2— .
Sx,2(®) = Sxp(zg) = "2 s (s T(),Ta), 0<j <k, (13)

n+2
— — n+2-k)(n+1-j
Sxu2(2) = Sx,0.(2(4) = ( (:+ 2)(,,)L(+—1F_ k)J)

for x € (z(;), T(j+1)), k <j < n.(14)

These upper and lower survival functions are constant between event times. The upper
survival function decreases at ;) by the value P(X,12 € (2(j—1),%(;))), while the lower survival
function decreases at ;) by the value P(X,12 € (7(j),7(j4+1))). The effect of a right-censoring
at z(;) is increased difference between upper and lower survival function beyond z(4).

The upper cost function for X, is given in the following lemma, and is derived by substi-
tuting the lower survival function for X, into the cost function (1), the detailed proof is given

in the appendix.
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Lemma 1 The upper cost function for X, ;o is given by

jee+(n+2—75a

Cxpin (7)) = o for0<j <k, (15)
(n+2=j)og + 2 2w
=1
— nj+2j —jk—k)ca+(n+2—-k)(n+1-7)c
Cxppn(T(5) = (kzl ] Jez j(_l I jer (16)
(n+1-k) Y zpy+n+2-k) Y zg)+(n+2—k)(n+1-j)zy
I=1 I=k

fork<j<n+1,
(J+Deet(n+1-ja
J
(n+1—j)T—|—lz:1:B(l)
(n+2—2k+nj+2j —kj)ea+ (n+2—k)(n—j)e
k—1 j

(n+1—k) ;lx(l)+(n—|—2—k)l§x(l)+(n+2—k)(n—j)T

6Xn+2 (T) =

for T € ($(j),x(j+1)), 0<7<Ek, (17)

6Xn+2 (T) =

o~

for T € (x(j),w(j+1)), k<j<n.

The lower cost function for X, ;s is given in the following lemma, and is obtained by sub-
stituting the upper survival function in the cost function (1). We omit the proof of the next

lemma, as it is similar to the proof of Lemma 1.

Lemma 2 The lower cost function for X, s is given by

Cxtyialy) = —22 Tnt2- 3301 for 0 < j <k, (19)

(n + 2 — j)x(J) + Z {17(1)

(nj+2j—jk—k)ea+(n+2—K)(n+1-jc

Cxpis (z()) = & j—1 (20)
(n+1-k) Y rxp+m+2-Fk) > zg+(n+2-Fk)(n+2-j)xg
=1 I=k+1

fork<j<n+1,
jeo+(n+2—j)c

QXn+2 (T) = 7 for T € (.’Ii(j),.T(j_H)), 0<j5 <k, (21)

(n +2-— ])T + l; Z()

(nj+2j—kj—k)ea+(n+2-k)(n+1—j)c
J

k
(n+1-k) Y zp+m+2-k) > zg+n+2-Fk@m+1-4)T
I=1 I=k+1

for T € (x(j),x(j+1)), k<j<n.

Cx,.,(T) = (22)

Analogous to the situation for X, 1, as discussed in the previous section, the lower survival
function for Xp 12 has no probability mass beyond the largest observation, that is, S, ., (7) =0

for T > (), and consequently the upper cost function for X, is constant beyond z(,). From

13



Lemma 1 we get that Cx, ,(T") > Cx, ., ()) for T > 2(,), so to determine the corresponding
optimal age replacement time for unit n+2, which we denote by T}, . | 5, we can restrict attention
to the interval (0,z(,)]. As was the case with the lower cost function for unit n + 1, we must
either restrict attention to T' € (0,z(,)] when considering C'y +»(T), or assume a finite upper
bound r for the support of X,,+2. We deal with this in the same way as for X1, that is,
we determine the optimal age replacement time for the lower cost function for X,, ;2 over the
interval (0, z(,)], which we denote by T),7 , \». If Cx, (T}, o) is greater than Cx ,(r7),

then it is better not to replace at all, otherwise the optimal age replacement time for unit n + 2,

— %

ow 2" Alternatively, we can again calculate a critical value r*.

according to this criterion, is T,
The following lemma, (proof in the appendix) presents some mathematical properties of these
upper and lower cost functions for age replacement of unit n + 2, which then immediately imply

Theorem 1, which again makes optimisation of these cost functions computationally straightfor-

ward.
Lemma 3
a. Cx,,,(+) is continuous and strictly decreasing in T' € (2, z(j11)) for j = 0,...,n — 1.
Moreover, Cx,,,,(-) is continuous from the left in z(j) for j = 1,...,n and every z(;) is a

local minimum.

b. Cx, ., (-) is continuous and strictly decreasing in T' € (z(;), z(j41)) for j = 0,...,n. More-
over, QXn+2(-) is continuous from the right in z(;) for j = 1,...,n and every x(_j) is a local
minimum.

Theorem 1

a. The minimum of Cx,_,(-) is assumed in one of the points Ty, j=1...,m.

b. The minimum of C'yx, ,(-) over (0,z(,] is assumed in one of the points () j=1,...,n.

The values of Cx,,,,((;)) are given in (15) and (16) while the values of Cx,.» (x(;)) are given
by
_ (j—Dea+(n+3—j)a

QXn+2('T(j))_ - for1<j<k+1, (23)
(n + 3 — ])I(]) + lz: :I,‘(l)
=1
_ nj—n+2j—2—-kjlee+(n+2—-k)(n+2—j)c
QXn+2('/L‘(j)) — ( - ) 2j_1( )( ) 1 (24)
(n+1_k)l231$(l)+("+2_k)l%:lx(l)+(”+2_k)(“+2_j)$(j)
= =k+

fork+2<j<mn.
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We illustrate this procedure via an example.

Example 2 Suppose we have 10 lifetimes 1, 2,...,9,10. A preventive replacement costs ¢1 = 1,
while corrective replacement costs co = 10. Applying the results from the previous section, the
optimal age replacement time for unit 11, in the sense of minimising the lower cost function, is

equal to T »

w1l = 27 with corresponding lower costs C'x, (x(;)) = 0.952. Now suppose unit

11 is still functioning at time 27, so it is preventively replaced at time 2, leading to a right-
censored observation. Theorem 1b can now be applied, and leads to optimal age replacement

time T}, 1o = 37 for Xy, with corresponding lower costs C, ,, (a:(_:,))) = 0.909.

In this example, the right-censored observation for unit 11 leads to an increase of the NPI-
based optimal age replacement time, where minimisation of the lower cost function is used as
criterion. It may be intuitively attractive that a preventive replacement leads to an increase
of the optimal age replacement time. The following two theorems imply that, in this setting,
a preventive replacement cannot lead to a smaller optimal age replacement time, which holds
both for the lower and for the upper cost function. For the upper cost function, a preventive
replacement also does not lead to a larger optimal replacement time, so the minimum of the
upper cost function remains unchanged in case of a new observation in the form of a unit
preventively replaced at its optimal replacement time according to the same criterion. These
two theorems are actually formulated as stronger results, namely considering any number m > 1
units which are all preventively replaced at the optimal z) or x(_k), following the n units that
provide the observed failure times z(;) < ... < z(,). For this setting, the next unit considered is
unit n +m + 1, and the required assumption rc-A(;, ) has been discussed in the introductory
section on NPI, where also the relevant corresponding probabilities were specified. The proofs

of Theorems 2 and 3 are given in the Appendix.

Theorem 2 If 7,/ . = x(_k) minimises Cx,_ ,(-), and units n+1 to n+m, for m > 1, are all
preventively replaced at Ty then Cy . (-) is minimised at Tl;;“),n my1 With Tl;:)’n gl 2
T—*

low,n+1"

Theorem 3 If T;, .| = z(;) minimises Cx,,(-), and units n 4 1 to n + m, for m > 1, are
all preventively replaced at z), then CX, 1 (") is minimised at Topntms1 With Ty 1 =

3
Tup,n—|—1 -

These two theorems provide general relations between optimal age replacement times which

are in accordance with intuition, except for the fact that we have T =T

up,n+m+1 up,n+1 m
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Theorem 3, instead of just an inequality. As the upper cost function is attained for the lower
survival function, this might be explained from the fact that in the case of m > 1 right-censored
observations at z), the lower survival function for unit n+m+1 has a point mass immediately
after z(;) that has increased as a result of each such right-censoring, and hence may form a
barrier for moving the optimal replacement time to the right. This point mass is not placed at
the same position for the upper survival function for unit n + m + 1, explaining the inequality

in Theorem 2 for the corresponding result.

A simulation study of adaptive age replacement strategies

In this section we present results from simulation studies to illustrate our method and discuss
several of its features. All simulations are performed with the statistical package R [20]. The
lifetimes are simulated from a known distribution, enabling us to compare the optimal replace-
ment times corresponding to our lower and upper cost functions with the theoretical optimal
replacement time, which is the result of minimising (1) for the distribution used in the simula-
tion. We have restricted attention to Weibull distributions with scale parameter 1, but differing
shape parameters «a (denoted by W(w,1)). Without loss of generality, we use ¢; = 1 in all
simulations, as only the cost ratio ca/c; is relevant for the location of the minimum of C(-).
Table 1 gives the theoretical optimal replacement times 7™ and the corresponding minimal
costs C(T™) for lifetime distributions W(2,1), W(3,1) and W (1.2,1). We have also included
the limiting values of these cost functions for 7' — oo, denoted by C(o0), which relate to no
preventive replacement being carried out. As these Weibull distributions have shape parameter
greater than 1, they all model wearout, so indeed finite replacement strategies may be optimal.
We also include A(oo) = (C(o00)—C(T™))/C(T*), which we will use for comparison of our method
with the theoretical results in case these distributions are known. The values of A(oo) indicate
the loss, relative to the optimal costs, if no preventive replacements were carried out. For such
age replacement, effectiveness of preventive replacement depends largely on the variance of the
underlying lifetime distribution, where increasing variance reduces the cost savings that can be
achieved by preventive replacements. This is illustrated here by the large value of A(oco) for
W(3,1), which has the smallest variance of these three distributions, and the small value for
W(1.2,1), which has the largest variance. This latter value indicates that the cost function

corresponding to W (1.2,1) is very flat beyond the optimal replacement time.
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W(2,1) W(3,1) wW(1.2,1)
c2=10|co=50|ca=10|ca =50 | co =10 | co =50
T* 0.3365 | 0.1431 | 0.3825 | 0.2170 | 0.6861 | 0.1522
C(T*) | 6.0561 | 14.0239 | 3.9494 | 6.9215 | 10.0161 | 40.3527
C(oo) | 11.2838 | 56.4190 | 11.1985 | 55.9923 | 10.6309 | 53.1544
A(oo) | 0.863 3.023 1.835 7.090 | 0.0614 | 0.317

Table 1: Summary of theoretical results for age replacement with known lifetime distributions

As before, let T; ;. =argminCy . (T), which denotes that 7; ; ., is the optimum re-

placement time corresponding to minimisationof Cy,  (T'), andlet T) 7 ., = argminCy, (7T,

= argminCYx,, ., (T) and T = argminCY,, ,(T), and for comparisons we will use

up,n—+2
MAown+1 = (C( l;:;,m—l) - (1)) /C(T"), Aown+2 = (C( 1;:;,714.2) = C(T7))/C(T"), Aupns1 =

(C(Topnt1) — C(T7))/C(T*) and Aupnt2 = (C(Ty, 1) — C(T*))/C(T™). These A’s indicate

%
Tup,n+1

how good our optimum replacement times are compared to the theoretical optimum, judged by
comparing the loss in long-run average costs per unit of time that would be incurred by using
our optimum instead of the theoretical optimum, as fraction of the long-run average costs per
unit of time in the theoretical optimum. Effectiveness of our method can be studied by com-
paring these A’s to the corresponding A(oo)-values in Table 1. Finally, n denotes the number
of initially observed lifetimes, and throughout we use A, for our inference leading to Tl;:;,n 41
and Ty 11, and A, 41y or re-A(, 41y leading to 7)., and Tpy, . 1o, depending on whether the
observation involving unit n + 1 is a failure time or a preventive replacement. In each case we

have simulated 10000 times. Tables 2, 3 and 4 present the simulation results for the cases that

the lifetimes are simulated from a W (2,1), W(3,1) and W (1.2,1) distribution, respectively.

;From the tables we see that the means of T} * T Tr

*
ow,n+1° ~low,n+2° ~up,n+l and Tup,n+2 are all

larger than the corresponding theoretical T*’s. However, as the distributions of the values of

Tf* T** T*

low,n+1 Liown+22 and T, ,, .o, from these simulations, are all skewed to the right, the

up,n+1 up
medians may be better indications of performance of our method. We also see that for all
three distributions the mean, median and standard deviation of T} 7 . ., and T}, . are larger

than the mean, median and standard deviation of T} * . 4o and T, respectively, except for

p,n+2°
the standard deviation of W (1.2,1) with n = 100 and ¢z = 10. The differences between these
corresponding values are the smallest for W (3,1) and the largest for W(1.2,1), which agrees
with the fact that the variance of W (3,1) and W (1.2, 1) are 0.0098 and 0.5639, respectively (the

variance of W (2,1) equals 0.1138).
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Tl;:;,nﬂ Atown+1 Tl;:;,n+2 Now,n+2 T;p,n-l—l Aupnta Tgp,n+2 Aupni2
CASE 1-1 W(2,1),co = 10,n = 10
mean 0.4369  0.0966  0.4242  0.0905 0.5456 0.1370 0.5166 0.1200
median 0.3967  0.0472  0.3880  0.0439 0.5022 0.0808 0.4769 0.0669
sd 0.2011  0.1236  0.1921  0.1189 0.2313 0.1535 0.2175  0.1409
CASE 1-2 W(2,1),ce = 10,n = 100
mean 0.3553  0.0313  0.3529  0.0310 0.3694 0.0315 0.3673 0.0312
median 0.3453  0.0152  0.3433  0.0151 0.3588 0.0157 0.3564 0.0155
sd 0.0926  0.0414  0.0917  0.0409 0.0948 0.0412 0.0941 0.0409
CASE 1-3 W(2,1),co = 50,n = 100
mean 0.1652  0.0720  0.1647  0.0717 0.1944 0.0897 0.1938 0.0889
median 0.1557  0.0358  0.1551  0.0354 0.1850 0.0460 0.1845 0.0457
sd 0.0614  0.0935 0.0612 0.0935 0.0665 0.1131 0.0662 0.1119

Table 2: Simulation results for W (2, 1)

The tables show further that, in most cases sd(Z, * ) is the smallest for W (3,1), and

low,n+1
the largest for W(1.2,1), except for CASEs 1-3 and 2-3, and the same ordering (with a few
exceptions) also tends to hold for sd(7,, ...,), sd(Ty, 1) and sd(T;;, ,, ). For individual cases

(not shown) T;, 1 and T vy (T, o @nd Ty, 49, Tespectively) are often at the same z;),

—%

ownt1s DUt the reverse also occurs. For W (2,1) and

or else Ty, ., tends to be larger than T;

W (3,1) we see that the mean, median and standard deviation of T; 7 ., (T}, ,.o) are smaller

than the mean, median and standard deviation, respectively, of T}, ., 14 (T ), but this does

up,n—+2
not hold in general for W (1.2,1).
If we increase the number of observed lifetimes (n) from 10 to 100, the means and medians of
ﬂ;;,n—}-l’ ﬂ;;,n—i—w TJp,n-H and TJp
of corrective replacement (c) from 10 to 50 tends to lead to earlier replacement. The differences

n+2 all get closer to the theoretical T*’s. Increasing the cost

- —x% —%
between the means and the medians of T} ., and T}/ .o,
T*

up,n+2°
For W(2,1) and W (3,1) we see that the mean, median and standard deviation of Ay i1

as well as those for T*

up,n+1 and

become smaller as n or ¢y increases.

is larger than the mean, median and standard deviation of Ay 42, but for W(1.2,1) the
opposite holds. The mean, median and standard deviation of A,y 41 are also larger than those
of Aypnto for W(2,1) and W (3,1), but for W(1.2,1) there does not seem to be a clear trend.
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Tl;:;,nﬂ Atown+1 Tl;:;,n+2 Now,n+2 T;p,n-l—l Aupnta Tgp,n+2 Aupni2
CASE 2-1 W(3,1),co = 10,n = 10
mean 0.4821  0.1437 04727  0.1326 0.5471 0.2031 0.5303 0.1795
median 0.4688  0.0725  0.4609  0.0675 0.5329 0.1209 0.5164 0.1021
sd 0.1473  0.1798  0.1421  0.1663 0.1509 0.2279 0.1449 0.2078
CASE 2-2 W(3,1),ce = 10,n = 100
mean 0.3983  0.0317  0.3972  0.0313 0.4096 0.0334 0.4083 0.0331
median 0.3936  0.0152  0.3928  0.0150 0.4054 0.0159 0.4041 0.0157
sd 0.0705  0.0427  0.0700  0.0419 0.0712 0.0454 0.0710 0.0448
CASE 2-3 W(3,1),co = 50,n = 100
mean 0.2501  0.0935 0.2494  0.0926  0.2762 0.1262 0.2753 0.1242
median 0.2448  0.0446  0.2441  0.0439 0.2704 0.0631 0.2696 0.0619
sd 0.0657  0.1233  0.06565  0.1224 0.0673 0.1613 0.0670 0.1589

Table 3: Simulation results for W (3, 1)

If we increase the number of observed lifetimes from 10 to 100 then the means, medians and
standard deviations of Ajgy nt1, Aow,n+2> Aupnt1 and Ayp 42 all become smaller. Moreover,
the differences between the means and the medians of the Ay, n41 and Aygy ni2, as well as those
for Aypn+1 and Ayppni2, become smaller for all three distributions.

If we increase the cost of corrective replacement from 10 to 50, then the means, medians
and standard deviations of Ajgy nt1, Ajow,n+2, Aupnt1 and Ayp o all become larger. However,
if we compare the relative values of these A’s, as fractions of the corresponding A(oo)-values,
then they tend to be pretty similar on increasing the cost from 10 to 50 for both W (2,1) and
W(3,1), yet for W(1.2,1) the effects are again different. These simulations show that, for this
latter case, our method has much more variation due both to the more varying data simulated,
and the fact that the corresponding theoretical cost function is rather flat, which together lead
to much more variation in the optimal replacement times suggested by our method, where in

particular very early preventive replacement is bad in terms of costs.

In our simulation study we have also recorded the number of times that the optimal age
replacement time is decreasing or increasing after the information on unit n + 1, i.e. either an

observed failure time or a right-censoring time, becomes available, see Table 5. Here the number
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Towpr1 Downtt Ty s Downte Topnir Aupmir Tapniz Aupmi2
CASE 3-1 W(1.2,1),¢ = 10,n = 10
mean 0.9583  0.0714  0.9237  0.0748 1.1129 0.0340 1.0424 0.0367
median 0.5294  0.0384  0.5041  0.0392 0.7782 0.0194 0.7196 0.0196
sd 1.0405  0.1043  1.0192  0.1089  0.9699 0.0493 0.9331  0.0551
CASE 3-2 W(1.2,1),co = 10,n = 100
mean 0.8969  0.0311  0.8912 0.0316 0.8132 0.0256 0.8022 0.0259
median 0.6050  0.0143  0.5988  0.0145 0.6345 0.0118 0.6264 0.0117
sd 0.9578  0.0454  0.9634  0.0461 0.6380 0.0385 0.6259 0.0392
CASE 3-3 W(1.2,1), ¢ = 50,n = 100
mean 0.1763  0.0733  0.1745  0.0737 0.2352 0.0467 0.2324  0.0464
median 0.1168  0.0339  0.1160 0.0342 0.1681 0.0240 0.1665 0.0237
sd 0.2328  0.0998  0.2301  0.1005 0.2321 0.0583 0.2259  0.0581

Table 4: Simulation results for W (1.2, 1)

between brackets in the second row is the number of times that an increase corresponds with
a situation where we had a right-censored observation. For the other rows, Theorems 2 and 3
imply that these cases cannot occur in case of a right-censored observation. See Table 6 for the
total number of right-censored observed lifetimes in the simulations.

We see that in the vast majority of the simulations, T}, .1 = Tjpp nyo and Typ iy =

—%

*
T ow,n+1 <

up,n+27
T

as the number of times that T} Tl;:)’n 4o Plus the number of times that T}

*
ow,n+1 >
=T

equals 10000 minus the number of times that 7, and of course the

—% * —%
ow,n+2 ow,n+1 ow,n+2?

same is true for T); .

i(From Table 6 we see that there are more right-censored observations for the lower cost
function than for the upper cost function. This is because most of the time we have that
Topn+1 = Tl;:;,n 41> which implies that a right-censored observation for the lower cost func-
tion need not be a right-censored observation for the upper cost function. Also, the smaller
the variance of the distribution used for the simulations, the more right-censorings (preventive
replacements) occur. This can be explained from the fact that a larger variance, and hence
more spread of the lifetimes, will give a higher chance of small values which imply corrective
replacement, making age replacement strategies less successful than for smaller variance.

Table 5 shows that in some simulations with an observed failure time for unit n 4 1, hence a

> Ty

wpnt1> SO for the next unit it would be

corrective replacement of this unit, we have Ty, o
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CASE 1-1 CASE 1-2 CASE 1-3 | CASE 21 CASE 2-2 CASE 2-3
T nv2 < Tiom nid 1241 319 162 1088 215 146
Tiomnvz > Tiomnsr | 335(238)  119(38)  77(47) | 221(196)  74(48)  35(28)
T2 < Topmin 1578 323 177 1223 228 151
T2 > Do 184 86 49 51 34 11
CASE 3-1 CASE 3-2 CASE 3-3
Tl;J),n—H < 71l;;),n-f—l 1600 518 315
Tiom o> Tiowmsn | T87(117)  277(20)  174(24)
Ttmse < Tipmst 1723 548 364
Ttmse > Tipnst 495 275 186

Table 5: Number of times optimal age replacement time is increasing or decreasing

CASE 1-1 CASE 1-2 CASE 1-3 | CASE 2-1 CASE 2-2 CASE 2-3
Lower cost function 8114 8748 9699 8683 9365 9808
Upper cost function 7241 8644 9600 8253 9306 9759
CASE 3-1 CASE 3-2 CASE 3-3
Lower cost function 5376 5322 8895
Upper cost function 4445 5255 8476

Table 6: Number of right-censored observed lifetimes in 10000 simulations

optimal to replace preventively later. Such a situation is illustrated in more detail in Example
3 below. This may be counter intuitive, but one way to get a feeling for this result might be by
considering that early replacements tend to be better if the new unit will be quite reliable early
on. The new observation makes us doubt such early reliability more, hence it may be better to
leave a unit in operation longer. This is combined, however, with higher expected costs, as also

illustrated in Example 3. This same effect also occurs for the lower cost function.

Example 3 The 10 ordered observed lifetimes: 0.2571, 0.2885, 0.4716, 0.5038, 0.7454, 0.7799,
1.0055, 1.2370, 1.4912 and 1.5504, lead to qup,n = 0.2571, with corresponding upper costs
of 7.7780. Suppose that the observed lifetime for Xi; is 0.1555, then T, ,, = 0.4716, with
corresponding upper costs of 10.7280. Hence, the optimal replacement time has increased after

observing an early failure time, and the corresponding expected costs have also increased.

To summarize the results of this simulation study, we note that our method tends to work
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reasonably well for data sets as small as n = 10, and particularly well for n = 100, and, that
the information on unit n + 1 has more effect for n = 10 than for n = 100. Our method is,
however, less successful if data are drawn from distributions with larger variance. Of course,
these conclusions agree fully with intuition, where the latter point made agrees with the general
fact that age replacement is less effective if the variance of the lifetimes is larger, yet this effect is
stronger in our method as it not only has to deal with a relatively flat theoretical cost function,
but also with more variation in the data sets. Further important insights are provided in the
cases where unit n + 1 is correctively replaced after an early failure, as our study indicates that

this quite frequently leads to a larger replacement time for the next unit.

Conclusions

In this paper, we have studied the adaptive nature of our NPI-based age replacement strategies,
in particular how optimal replacement times adapt to information from the first unit to which
our optimal strategies are actually applied. If this unit n + 1 is preventively replaced, then we
derived theoretical results on the change in optimal replacement time, most importantly that
this would never become smaller, while in case of corrective replacement our simulation study
showed that the optimal replacement time could actually move in any direction.

Our NPI-based method requires available failure data, which one may criticize from practical
perspective. However, our study via simulations based on assumed theoretical distributions
highlighted some features which may have been surprising, and provided some more valuable
insights. One should be careful that, if one wishes to infer underlying distributions from process
data and combine this with the standard age replacement approach with an assumed known
distribution, then the outcomes may vary substantially depending on the data. However, in
many cases it would still seem to give reasonably good replacement times, which is a pleasing
conclusion. We should point out that one may reasonably doubt the use of NPI, as one would
expect underlying distributions to be somewhat smooth. However, our conclusions are useful
beyond NPI, in the sense that the larger and more flexible an assumed parametric family of
probability distributions would be, the closer a best-fitting member of such a family to given
process data will be to the empirical distribution, and hence, from predictive perspective, the
closer the behaviour of corresponding optimal age replacement times would be to our NPI-based
optimal replacement times. In particular, this implies that one can expect that, on the basis
of about 10 observed failures, one can reasonably well determine good age replacement times
in many situations, and that early corrective replacements of a unit may lead to movement of

the optimal replacement time in both directions. Finally, if available failure data indicate large
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variation, we should be more sceptical about effective age replacement than if there seems to be
less variation.

Although this study has given valuable insights into adaptiveness of age replacement strate-
gies with regard to available data, it could be argued that the cost function should not be based
on the renewal reward theorem if indeed one wishes to allow changing replacement times per
cycle. In future research, we will study the effect of using a one-cycle cost function instead,
and we will compare that with the approach and conclusions from this paper. It will also be
interesting to compare our method with alternative adaptive methods, where parametrical life-
time distributions are assumed, and where data can be used to estimate the relevant parameters
[2]. As we explicitly aimed at studying the effect the data have on optimal age replacement
strategies without adding further modelling assumptions for the lifetime distributions, and due
to considerations with regard to the length of this paper, we have not included such comparisons

here.

Appendix
Proof of Lemma 1

Proof. For the situation that 0 < j < k and T' = z(;, we have

T j—1T@+1) j—1 Z(+1) j—1 Z@+1) (n 41— l)
[8x,..(x)dz= % [ Sx, ,(@)dz=3% [ Sx, ,(zqr)dz= ) Thya @
0 =0 z() =0 =z =0 x
Idn+1-1 1 j j=1
= _ — = 2—1 — 1-1
e 0 = iy | Bl 2~ B 41t
n+2—j 1 =

= Ttz TOT LAt
Substituting this into the cost function (1) yields (15). The formulas (16), (17) and (18) can be

derived in the same way using

T k—1 TU+1) J=1%a+1) .
i Sxois (z) dx:lz% Ik Sxois (513(l+1)) d:z:—l—lz;c i Sxis ($(l+1)) dz, for T=x(;), k<j<n+1,
0 =0 z@) =k zq
T j—1 w(l-li-l) T l '
{ﬁXn+z (z) dw:lz:() f §Xn+2 (33(l+1)) d:l:+f §Xn+2($(j+1)) dz, for Te(m(j), m(j+1)), 0<j<k,
=V T Z(5)
T k—1 T(+1) ;'—1 Z(1+1) T
[8x,.,(@)dz=% [ Sx, ., (zqi))dzt+ Y, [ Sx, ., (x4 de+ [Sx, ,(xG+1)dz,
0 1=0 z I=k zq) Z@)
for TE(.’L‘(J-), ‘T(j-l—l))’ k< j<mn,
respectively. O
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Proof of Lemma 8

Proof. Cx, () and Cx,,(-) are continuous as Sy, .. (-) and S X, (+), Tespectively, are con-
tinuous in T' € (z(;), T(j+1)), for j = 0,...,n. From (17) and (18) it follows immediately that,
for j =0,...,n —1, Cx,,,(-) is strictly decreasing in T € (z(j),%(j+1)) (Cx,,() is constant
for T € (%(n), T(n41)))- From (21) and (22) it follows that, for j =0,...,n, Cx, ,(-) is strictly
decreasing in T' € (z(;), %(j4+1))- Cx,,,(-) is continuous from the left in z;) for j = 1,...,7n as,
for1<j<k-1l,forj=Fkandfork+1<j<n,

lgjg@XMz (x(j) —€) = 6Xn+2 (x(j)) < leif(r)laanLZ ("E(j) +e).

Cx,,(-) is continuous from the right in z(;) for j =1,...,nas, for 1 < j <k, for j = k+1 and
fork+2<j5<mn,

limCx, .y, () + €) = Cx, ., (2(5) > lmCx, (z(j) — o)

Proof of Theorem 2

Proof. If, for T} < T5, the long-run average cost per unit time C(T') (see (1)) satisfies C(T}) >
C(T%), then this is equivalent to

S(Ty) [ S(z)ds — S(Ty) [ S(z)ds
L 0 < - C_QC . (A1)
[ S(z)dz 2
Ty

Take Ty to be equal to z;), Ty to be equal to z, and substitute Sx,.. (") for S(-) (as S(-)
yields C(-)), then we know that, if Ty < T (A.1) holds for X,, ;1. We want to prove that
this implies that (A.1) also holds for X, {11, m > 1. In this setting, condition (A.1) for X, 1

equals
_ T _ TG
SXn+1 (:K(j)) f SXn+1 (.’II)d.’B - SXn+1 ("E(k)) f SXn+1 (-'E)dx
0 0 C2
- < (A.2)
z(k)_ Co —C1
[ Sx,.i(2)d
()
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where

_ n+2—-3 = _n+2-k

an+1 (x(j)) = ntl ' SXn+1(‘T(_]C)) ntl (A.3)
z(_k) k—2 T(141) T(k)—€
Sxea@do =Y [ Bx@dotlm [ Sx..()s
0 =0 T(k-1)
_ kif Ll_l( — ) +1i nt2-k (T — € — )
= 2t 1 e+ T T elfon nt1 Lk) — €~ T(k-1)
k—1 k—1
n+1-—1 1
= Z TH(JJ(H_U - .’L‘(l)):n n 1{2 .l‘(l) + (n + 2 — k:)x(k)} ; (A4)
1=0 =1
) j—1 j—1
_ n+1-1 1 .
/ Sxpiq(z)dr = Z T_i_l(w(l—f—l) - 35(1)):” n 1{ oy +(n+2-— J)iv(j)} , (A5)
{0 k—1
_ n+1-—1
/ SXpy (2)dz = 12—; ﬁ(w(m) — 7))
()
1 k-1
= 1 Z z(g) + (n+2— k)x(k) —(n+1- .7)37(]) . (A.6)
I=j+1

Here, (A.5) and (A.6) can be derived in a similar way as (A.4). The expressions to the right of
the second equality sign in (A.4), (A.5) and (A.6) are only mentioned as they provide an easy
way to calculate the corresponding integrals.

2 (> 1) and substitute (A.3)-(A.6) into (A.2), then condition (A.2) becomes

€2 —C1
equivalent to

Let g =

j—1
+1-1 -
l;o(n )(@ar1) — Z@)) gn+1)—(n+2—3j)
=0 < P . (A.7)
ZZ_ (n+1-0D(@@4) —z0)
=J

So we know that if a:(_j) < x(_k)

implies that (A.1) holds for X, ,,4+1, m > 1, that is, we want to prove that

then (A.7) holds for X,,+1. Now, we want to prove that this

Ty T

— — )
SXn+m+1 (x(_])) bf SXn+m+1 ("'E)dx - SXn+m+1 (‘(B(_]c)) bf SXn+m+1 (:L‘)dx

- <q. (A.8)
(k) __
f SXn+m+1 (-'E)dx

ZG)
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Here

— . o n+m+2-j5 .y _nt+tm+2-k
SXn+m+1 (:L.(J)) - m, SXn+m+1 (iL' k:)) = m, (Ag)
(k) _
= X 1n-l—m+1—l
SXnymia (T)dz = Z m(w(lﬂ) —z(p))
0 =0
1 k-1
:7n—|—m+1 {lz_%$(l)+(n+m+2—k)x(k)}, (A.lO)
:c(_,) -
. = n+m+1-—1
SXpimer (@)dT = m(x(m) — ()
0 =0
1 -1
:n+m+1{§x<l>+("+m+2—j)%)}a (A.11)
(k) ,
" ()ds Zln+m+1—z(w o)
Xn+m+1 = T o 1 W) T ()
J 1 n+m+1
T)
k—1
1 .
=l {lzjx(l) +(n+m+2—k)zy (n+m+2])a:(j)}. (A.12)

Substituting (A.9)-(A.12) into (A.8) yields that we have to prove the following statement:

j—1

+m+1-1 -
ZZ:O(TL m )(-’E(l+1) CC(Z)) - q(n+m+1) —(n+m+2—j)
k—1 kE—3j )
Z (’I’L +m4+1- l)($(l+1) — :L'(l))

=y
As g > 1 we have that g(n+m+1) — (n+m+2—7) > g(n+1) — (n+2— j) so that the RHS
of (A.7) is less than the RHS of (A.13). Hence, it is sufficient to prove that the LHS of (A.7) is
greater than the LHS of (A.13) for (A.13) to hold. So we have to prove that

(A.13)

j—1 Jj—1
I_ZO(’)’L +1-— l)(I(H-l) — x(l)) l;)(n +m+1- l)(I(H—l) — x(l))
) > = : (A.14)
ZZ' (n+1-1) (l'(l—|—1) — x(l)) ZZ (n+m+1-1) (l'(l—|—1) — :E(l))
=J =J
But (A.14) is equivalent to

j—1k-1

ZZ(.’L‘(H_I) _l‘(l))(x(s—l—l) —.’L‘(s)) [(n +1- l)(n +m+1- S) — (n +1- s)(n +m+1- l)] >0
=0 s=j

(A.15)
and (A.15) istrueas (n+1—I)(n+m+1—-8)—(n+1—s)(n+m+1—-1)=m(s—1)>0. O
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Proof of Theorem 3

Proof. The proof consists of two parts. In the first part we prove that T, . .4 £ Topnt1

and in the second part we prove that Ty, i1 7 Topni-

. * *
Part 1: T nimy1 £ Toupntt

iFrom the proof of Theorem 2 we know that for 77 < 75, the long-run average cost per

unit time C(T') satisfies (A.1). Now taking T to be equal to z(;), T> to be equal to z() and
substituting Sy, (-) for S(-) (as S(-) yields C(:)), we know that, if z(;y < z(), (A.1) holds also
for X, +1. We want to prove that this implies that (A.1) also holds for X, 1.

Condition (A.1) for X, 1 equals

Tk -
Slo9) | S 00do - S, ow) [ Sxohde
T < p— (A.16)
) (J]" | Sx,4. (2)dz
where
S o0) = T S o) = T (A17)
Flky =1 =
/ §Xn+1($)d$ = Z —— (x(H_l) - x(l)) = i 1{2 z() + (n+1-— k)x(k)} , (A.18)
0 1=0 1=0
b i I
/ S, (@)dn =3 (5 = )= I{Zac(l) +(n+1- j)x(j)} ., (A19)
0 1=0 1=0
(k) 1o
§Xn+1($)dx = Z n+l (x(l+1) - 55(1))
() =i
=
= lzx(l) +(n+1-kzg —(n+1-j)zg) - (A.20)
=J
Let again g = (> 1) and substitute (A.17)-(A.20) into (A.16), then condition (A.16)

Cy — C1
becomes equivalent to

j—1
lgo(” — D(@a+1) — ) B gin+1) = (n+1—7)
k1 k—3j '
> (n =Dz — 2@) !

=y
So we know that if z(;) < z() then (A.21) holds for X, 1. Now, we want to prove that this

(A.21)

implies that (A.1) holds for X, 1,41, m > 1, that is, we want to prove that
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Z(k) Z(j)

ﬁXn+m+1(I(j)) OfﬁXn+m+1(m)dm_§Xn+m+1(x(k)) Of §Xn+m+1($)d$

) <q. (A.22)
f §Xn+m+1 (.’E)d.’,C
(j)
Here
n+m+1—j n+m+1—k
S TG = =T Sk BW) = (A.23)
(k) .
n+m—1
Sxp i (@)dT = Z m(ﬂc(zﬂ) —z0)), (A.24)
Z(j) j—1
n+m—1
Sxp i (T)dT = Z m($(l+l) —z@)), (A.25)
0 =
k) k—1
n+m—1
() =

Substituting (A.23)-(A.26) into (A.22) yields that we have to prove the following statement:

j—1

+m—1 -
l;)(n m )(x(H—l) w(l)) q(n+m+1) — (n+m+1 —])
= - — , (A.27)
lZ_ (n+m —1)(zgp1) —zq)
=]

Asagaingiln+m+1) —(n+m+1—j) >qg(n+1) — (n+2—j), so that the RHS of (A.21)
is less than the RHS of (A.27), we are ready if the LHS of (A.21) is greater than the LHS of
(A.27). So we have to prove that

j—1 j—1

l;) (n— l)(x(l-i—l) — :K(l)) l;) (n+m—1) (-77(14—1) — -'E(l))

1 > = . (A.28)
lz:. (n—1) (-77(14—1) — a:(l)) lz: (n+m— l)(-'E(l-i—l) — -T(l))

=J =J

But (A.28) is equivalent to

j—1k-1

SN (@ — @) (@) — T [(R=Dn+m—s) = (n—s)(n+m—0)] >0  (A.29)
1—0 s—j

and (A.29) istrueas (n—I)(n+m—s)—(n—s)(n+m—1)=m(s—1) > 0.

28



. * *
Part 2: To, nim+1 # Lapnt1

First we prove that condition (A.32) must hold as z( yields minimum of Cx,, (). Choose

T(ky, T(j) with j > k. As z() gives minimal Cx,,,, (-), we know that Cx, ., (2(j)) > Cx, . (Z))

for £ < j, which is equivalent to

Z(5) Z(k)
ﬁqu (‘T(k)) f ﬁX'rH»l (.’II)d.’I,' - ﬁXn+1 ('T(J)) f §Xn+1 (il?)d:l? c
0 — 0 > 2 (A.30)
() C2—C
f §Xn+1 (.’L')diL'
Z(k)
Z(k) (@)

where Sy . (7()), Sx,.,(@w): | Sx,,,(®)dzand [ Sx . (x)dz are given in (A.17)-(A.19)
0 0

and
Z(j) j—1 "ol
/ §Xn+1(w)dx = Z (n n 1) (w(l+1) — x(l)). (A.31)
=k
T (k)

Substituting (A.17)-(A.19) and (A.31) into (A.30) gives

k-1

l;)(n — D@41 — 2) N gn+1)—(n+1-— k)

-1 J—k

l;g(n —D(z@s1) — z())

(A.32)

So we know that if z() < z(;) then (A.32) holds for X, 1. We now prove that if there exists
a j > k such that z;) gives minimal Cx,, ., (), then condition (A.38) must hold. As ;) gives

minimal Cx, ..., () we have Cx, ..., (Z(x)) > Cx, i1 (2(j)), which is equivalent to

@) (k)
ﬁXn+m+1 (‘/L‘(k)) f §X7H— +1 (x)d‘T ﬁXn+m+1 (‘T(])) f 2 Xntmt1 (x)d‘T
0 2 A.33)
.’1?(]) < C2 — Cl ( )
f 2 Xnt+m+1 (:c)dx
(k)
where
n+m+1-—k n+m+1—-k n+l1—3j
Sxpmss (B0) = T S B0 = o (B39
k) ol ;
n+m—
/ Sxp i ()dT = lE; mrmal (T4 — Z@)), (A.35)
2 =
Z(5) k—1
n+m—1
SxXp i (T)dT = zz—; T m T (Tas1) — 7))
0 =
jiln—l—m—{—l—k n—1
> nrmtl ntl—k G0 T Io) (A.36)
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and

Z(4)

j—1
n+m+1—-k n—1
§Xn+m+1 (.’L')d.’L' = lE; n+m+1 - ntl— A (-T(l_|_1) — .’L'(l)) (A37)

Z(k)

Substituting (A.34)-(A.37) into (A.33) yields

k—1
-1 —
l;)(n—km )(m(l+1) l‘(l)) gn+m+1)—(n+m+1-k)
B < Tk . (A.38)
;k(n — D@y — @)

We will now prove that condition (A.32) and (A.38) can never occur simultaneously, that
is, we will prove that, in this setting, it is never possible that T{:p,n tmtl = T(kyi) for 1 =

1,2,...,n — k, given that Ty, , ., = (). Substituting j =k + 14 into (A.32) yields

k
Z'l;) z() + i(n — k‘).’E(k)

k+i—1

> (n =Dz — 7))
i=k

>qgn+1)—(n+1—k) (A.39)

whereas substituting j = k + ¢ into (A.38) yields

k
iy, zq) +i(n+m—k)zg
=0

P <gn+m+1)—(n+m+1-k). (A.40)

> (n=D(zam) —zq)
1=k

Combining (A.39) and (A.40) gives the following inequality

k k
iy, Ty +iln+m—K)zg i > Ty +i(n — k)T
gln+m+1)—(n+m+1-k) > l:Ok -k+il_:10
’il; Z(1) + Z(’)’L - k):L‘(k) lz;c (?’L - l)(x(l-i—l) - -Z'(l))
k = =
iy, xg +iln+m—k)zg
> l:()k [gln+1)— (n+1—k)]
il;) z() + i(n — k):L‘(k)
which turns out to be equal to
k—1
a0
kz(e) — 2. 7
=0



C2
co—Cl

But this gives a contradiction as ¢ = > 1. Hence, Ty, 1 imv1 # Tupnti-

Combining part 1 and part 2 of the proof yields that Ty, 411 = Ty g1, m 2> 1.
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