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Constrained Willmore Surfaces

Definition
A conformal immersion f : M → S4 = R4 ∪ {∞} of a Riemann
surface M is constrained Willmore if it is a critical point of the
Willmore functional W =

∫
|̊II|2dA under conformal variations.

(Willmore surfaces “=” critical pts. of W under all variations.)

Functional and constraint are conformally invariant
 Möbius geometric treatment, e.g. in framework of

quaternionic model of conformal 4–sphere S4 = HP1

Examples

CMC in 3D space–forms  constrained Willmore

Minimal in 4D space–forms  Willmore

Hamiltonian Stationary Lagrangian in R4  constr. Willmore
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Prototype for Main Result: Harmonic Tori in S2

Theorem
A harmonic map f : T 2 → S2 = CP1 is either

holomorphic or

of finite type.

More precisely:

If deg(f ) 6= 0, then f is (anti–)holomorphic (Eells/Wood)
If deg(f ) = 0, then f is of finite type (Pinkall/Sterling)

Finite type “=”

attached to f is a Riemann surface Σ of finite genus called
the spectral curve and

the map f is obtained by “algebraic geometric” or “finite gap”
integration
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The Main Result: Constrained Willmore Tori in S4

Theorem
A constrained Willmore immersion f : T 2 → S4 = HP1 is either

“holomorphic” (i.e., super–conformal or Euclidean minimal) or

of finite type.

Where:

super–conformal “=” f is obtained by Twistor projection
CP3 → HP1 from holomorphic curve in CP3

Euclidean minimal “=” there is a point ∞ ∈ S4 such that
f : T 2\{p1, ..., pn} → R4 = S4\{∞} is an Euclidean minimal
surface with planar ends p1,...,pn.
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Holomorphic Case versus Finite Type Case

Theorem implies that all constrained Willmore tori admit explicit
parametrization by methods of complex algebraic geometry.

Holomorphic case (e.g. twistor case):

CP3

twistor
��

T 2

hol .
==

f // HP1

Finite type case:

Ĵac(Σ)
hol . // CP3

twistor

��
T 2

linear

OO

f // HP1
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Previous Results

CMC tori are of finite type (Pinkall,Sterling; 1989)
(CMC ⇔ Gauss map N : T 2 → S2 harmonic)

1.) Burstall, Ferus, Hitchin, Pedit, Pinkall, Sterling (≈ 90)
S2–result generalizes to various symmetric target spaces

2.) Willmore ⇔ conformal Gauss map harmonic

1.)+2.)  Conjecture: Willmore tori in S3 are of finite type

Schmidt 2002: constrained Willmore in S3 are of finite type

Willmore tori in S4 with non–trivial normal bundle are of
“holomorphic” type (Leschke, Pedit, Pinkall; 2003)
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Strategy: Adopt Hitchin Approach to Harmonic Tori in S2

0.) Formulate as zero–curvature equation with spectral parameter
 associated family ∇µ of flat connections depending on
spectral parameter µ ∈ C∗

Harmonic maps to S2 = CP1: complex rank 2 bundle
constrained Willmore in S4 = HP1: complex rank 4 bundle

1.) Which holonomy representations Hµ : Γ→ SL2(C) or SL4(C)
can occur for ∇µ if underlying surface is torus T 2 = C/Γ ?

2.) Non–trivial holonomy
=⇒ existence of polynomial Killing field
=⇒ finite type

3.) Trivial holonomy ∼= “holomorphic” case

Implementation of these ideas in constrained Willmore Case needs
results from quaternionic holomorphic geometry.
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The Quaternionic Model of Surface Theory in S4

Immersion f : M → S4 = HP1 ←→ line subbundle L ⊂ H2

Mean curvature sphere congruence ←→
complex structure S ∈ Γ(End(H2)) with S2 = − Id

2–sphere at p ∈ M ←→ eigenlines of Sp in HP1

S induced decomposition of trivial connection d

d = ∂ + ∂̄︸ ︷︷ ︸
S commuting

+ A + Q︸ ︷︷ ︸
S anti–comm.

∂ and A are of type K , i.e., complex str. on M acts by ∗ω = Sω
∂̄ and Q are of type K̄ , i.e., complex str. on M acts by ∗ω = −Sω

Christoph Bohle Constrained Willmore Tori in the 4–Sphere



Introduction
Sketch of Proof
Main Theorem

0.) Associated Family of Flat Connections
1.) The Possible Holonomy Representations
2.) Non–trivial Holonomy, Polynomial Killing Field
3.) The Case of Trivial Holonomy

The Hopf Fields of a Conformal Immersion

A and Q are tensor fields called the Hopf fields of f .

the Hopf fields measure the local change of S along immersion

Willmore functional measures “global change of S”

W =

∫
M

A ∧ ∗A =

∫
M

Q ∧ ∗Q

Euler–Lagrange Equation of constrained Willmore surfaces
(for compact M) is

d(2∗A+η) = 0 for
η ∈ Ω1(End(H2))

ker(η) = im(η) = L

Lagrange–multiplier η “is” holomorphic quadratic differential
Willmore surface ←→ η = 0
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The Associated Family of Constrained Willmore Surfaces

The associated family of a constrained Willmore immersion is the
family of flat complex connections on the trivial complex rank 4
bundle C4 = (H2, i)

∇µ = d + (µ− 1)A
(1,0)
◦ + (µ−1 − 1)A

(0,1)
◦ µ ∈ C∗

where

A◦ is defined by 2 ∗ A◦ = 2 ∗ A + η and where

(1, 0) and (0, 1) denote the decomposition into forms
satisfying ∗ω = ωi and ∗ω = −ωi.
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Eigenlines of the Holonomy of ∇µ on Torus

Flat connections on torus  study holonomy and its eigenlines

AIM: if possible, define eigenline spectral curve Σhol

“=” unique Riemann surface Σhol
µ→ C∗ parametrizing non–trivial

eigenlines of Hµ(γ)

Eigenvalue of holonomy Hµ(γ) for one γ ∈ Γ
Γabelian−→ simultaneous eigenline of Hµ(γ) for all γ ∈ Γ

−→ section ψ ∈ Γ(H̃2) on universal cover C of torus with
∇µψ = 0 and
γ∗ψ = ψhγ for all γ ∈ Γ and some h ∈ Hom(Γ,C∗)

Be definition, such solution to ∇µψ = 0 satisfies

dψ = (1− µ)A
(1,0)
◦ + (1− µ−1)A

(0,1)
◦ ∈ Ω1(L̃)
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Link to Quaternionic Holomorphic Geometry

Immersion f  quaternionic holomorphic structure on H2/L
(operator D whose kernel contains projections of all v ∈ H2)

Lemma
For every h ∈ Hom(Γ,C∗), there is 1–1-correspondence between

holomorphic sections ϕ of H2/L with monodromy h and

sections ψ ∈ Γ(H̃2) with

dψ ∈ Ω1(L̃) and γ∗ψ = ψhγ for all γ ∈ Γ.

The correspondence is given by ψ 7→ ϕ = [ψ].

Definition
The section ψ is called prolongation of the holomorphic section ϕ.
The map L# := ψH is called a Darboux transform of f .
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Taimanov–Schmidt Spectral Curve of Degree 0 Tori

Definition
Taimanov–Schmidt spectral curve Σmult of a conformally immersed
torus f in S4 = HP1 with trivial normal bundle is normalization of

{h ∈ Hom(Γ,C∗) | monodromy of holomorphic section of H2/L}

Theorem
The set {h ∈ ...} is a 1–dimensional complex analytic subset of
Hom(Γ,C∗) ∼= C∗ × C∗. Moreover, for generic h ∈ Σmult , the
space of holomorphic sections is complex 1–dimensional.

This implies that generic holonomies Hµ(γ) have

an even number of simple eigenvalues that are non–constant
as functions of µ (called non–trivial eigenvalues) and

λ = 1 as an eigenvalue of even multiplicity (trivial eigenvalue).
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The non–trivial Normal Bundle Case (Degree 6= 0)

In the case of non–trivial normal bundle, the quaternionic Plücker
formula implies that the only possible eigenvalue of the holonomies
Hµ(γ) is λ = 1.
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List of possible Types of Holonomy Representations

Lemma
For constrained Willmore tori in S4, the holonomy Hµ(γ) of the
associated family ∇µ belongs to one of the following cases:

I. generically Hµ(γ) has 4 different eigenvalues,

II. generically Hµ(γ) has λ = 1 as an eigenvalue of multiplicity 2
and 2 non–trivial eigenvalues,

IIIa. all holonomies Hµ(γ) are trivial, or

IIIb. all holonomies Hµ(γ) are of Jordan type with eigenvalue 1
(and have 2× 2 Jordan blocks).

Non–trivial normal bundle  holonomy belongs to Case III
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Non–trivial Holonomy, Polynomial Killing Field (Case I)

Can define eigenline curve Σhol
µ→

4:1
C∗ of µ 7→ Hµ(γ)

Γ abelian  independent of choice of γ ∈ Γ\{0}
map Σhol → Σmult is (essentially) biholomorphic

AIM: construct polynomial Killing field, i.e., a family of sections of
EndC(H2, i) that is polynomial in µ and satisfies ∇µξ(µ, .) = 0 or,
equivalently, a solution ξ(µ, p) =

∑k
j=0 ξj(p)µj to Lax–equation

dξ = [(1− µ)A
(1,0)
◦ + (1− µ−1)A

(0,1)
◦ , ξ].

Such ξ commutes with all Hµ(γ)
 same eigenline curve
 Σhol can be compactified by filling in points over µ = 0,∞
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Hitchin Trick
The (1, 0) and (0, 1)–parts of ∇µ extend to C and C∗ ∪ {∞}:

∂µ = (∇µ)(1,0) = ∂ + (µ− 1)A
(1,0)
◦

∂̄µ = (∇µ)(0,1) = ∂̄ + (µ−1 − 1)A
(0,1)
◦

Theorem
For a holomorphic family F (λ), λ ∈ U ⊂ C of Fredholm operators,

the minimal kernel dimension of F (λ), λ ∈ U is generic and

the holomorphic bundle Vλ = ker(F (λ)) defined at generic
points holomorphically extends through the isolated points of
higher dimensional kernel.

Apply to ∂µ and ∂̄µ on EndC(C4) = EndC(H2, i)  rank 4 bundle
V → CP1 whose fiber Vµ, µ ∈ C∗ is {∇µ − parallel sections} and
whose meromorphic sections are polynomial Killing fields.
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The Case of Trivial Holonomy

Case IIIa: apply Hitchin trick to ∂µ and ∂̄µ on C4 = (H2, i)
 rank 4 bundle V → CP1 whose fiber Vµ, µ ∈ C∗ is
{∇µ − parallel sections of C4}

Investigating the asymptotics of holomorphic sections of V at
µ = 0 or ∞ shows that Case IIIa is only possible if f is super–
conformal or Euclidean minimal

Case IIIb: Hitchin trick  existence of polynomial Killing field ξ
with ξ2 = 0

Investigating the asymptotics of ξ at µ = 0 or ∞ shows that
Case IIIb is only possible if f is Euclidean minimal.
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An Example of Constrained Willmore Tori belonging to Case II

Theorem

Let f : T 2 → S4 be constrained Willmore. Then either

I. f is of finite type and µ extends to covering Σ
µ−→

4:1
CP1 or

II. f is of finite type and µ extends to covering Σ
µ−→

2:1
CP1 or

IIIa. all holonomies are trivial and f is super–conformal or an
algebraic Euclidean minimal surface or

IIIb. all holonomies are of Jordan type and f is a non–algebraic
Euclidean minimal surface.

Non–trivial normal bundle (deg(⊥f ) 6= 0)
 “Holomorphic” Case IIIa or IIIb  Willmore

Trivial normal bundle (deg(⊥f ) = 0) and not Euclidean minimal
 Finite type Cases I or II
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Willmore Case

Let f : T 2 → S4 be Willmore and not Euclidean minimal.
Then either

deg(⊥f ) = 0 and f belongs to Case I

(and is of finite type with Σ
µ−→
4:1

CP1) or

deg(⊥f ) 6= 0 and f belongs to Case IIIa
(and is super–conformal).

Euclidean minimal tori belong to Case IIIa or IIIb.
In case that the normal bundle is trivial
(as it is for minimal tori with planar ends in R3 = S3\{∞})

one cannot define Σhol using ∇µ,
but Taimanov–Schmidt spectral curve Σmult is well defined.

Question: can Σmult be compactified? is Σmult reducible?

Case II does not occur for Willmore tori (with η = 0).
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Tori with Harmonic Normal Vectors

Theorem
If a conformal immersion f : T 2 → S4 = HP1 has the property
that, for some point ∞ ∈ S4, one factor of the Gauss map

M → Gr+(2, 4) = S2 × S2

is harmonic, then f is constrained Willmore and belongs to

Case II of the Main Theorem if the harmonic factor is not
holomorphic and to

Case III if the factor is holomorphic.

In Case III of the Main Theorem, there always exists ∞ ∈ S4 such
that one factor of the Gauss map is holomorphic.
In Case II, if W < 8π, there always exists ∞ ∈ S4 such that one
factor of the Gauss map is harmonic.
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Examples of Tori with Harmonic Normal Vectors

CMC tori in R3

(H 6= 0 case: Bobenko  arbitrary genus)

CMC tori in S3

(Bobenko  arbitrary genus)

Hamiltonian stationary tori
(Helein, Romon  harmonic map takes values in a great
circle  g = 0)

Lagrangian tori with conformal Maslov form
(Castro, Urbano  harmonic map is equivariant  g ≤ 1)
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