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A geometrical Problem

Classify conformally flat hypersurfaces f : Mn−1 → Sn.

Def. f : Mn−1 → Sn is conformally flat if there are (local) functions so that e2u〈df, df〉 is
flat (or, equivalently, there are (local) conformal coordinates).

Known results.

n = 3. Every f : M2 → S3 is conformally flat (Gauss’ Theorem).

n > 4. f is conformally flat ⇔ f is a branched channel hypersurface (Cartan 1917).

n = 4. Branched channel hypersurfaces are conformally flat;

there are hypersurfaces that are not conformally flat (e.g., Veronese tubes);

there are generic conformally flat hypersurfaces, i.e., with 3 distinct principal curva-
tures (e.g., cones, cylinders, hypersurfaces of revolution over K-surfaces).

The problem: Classify generic conformally flat hypersurfaces f : M3 → S4.

Observation: There is an intimate relation

conformally flat hypersurfaces in S4 ←→ curved flats in the space of circles in S4.

.



The Program

The Program

1. Conformally flat hypersurfaces

2. Curved flats

3. Isothermic surfaces

4. Conformally flat hypersurfaces revisited

.



1. Conformally flat hypersurfaces

Conformally flat hypersurfaces

Cartan’s Thm. If f : Mn−1 → Sn, n ≥ 5, is conformally
flat then f is a branched channel hypersurface.

Def. Write I =
∑3

i=1 η2i and II =
∑3

i=1 kiη
2
i ; then

γ1 :=
√

(k3 − k1)(k1 − k2) η1,

γ2 :=
√

(k1 − k2)(k2 − k3) η2,

γ3 :=
√

(k2 − k3)(k3 − k1) η3

are the conformal fundamental forms of f : M3 → S4.

Lemma. f : M3 → S4 is conformally flat ⇔ dγi = 0.

Cor. If f is conformally flat then there are curvature line
coordinates (x1, x2, x3) : M3 → R

3
2 so that dxi = γi.

Observe: I =
∑3

i=1 l2i dx2
i , where

∑3
i=1 l2i = 0.

Def. x : (M3, I)→ R
3
2 is called a Guichard net if I =

∑3
i=1 l2i dx2

i with
∑3

i=1 l2i = 0.

Remark. A generic conformally flat f : M3 → S4 gives a Guichard net x ◦ y−1 : R3 → R
3
2

(x : M3 → R
3
2 canonical Guichard net and y : M3 → R

3 conformal coordinates).

Thm. A Guichard net x : R3 → R
3
2 gives a conformally flat f : R3 → S4 with γi = dxi.

.



1. Conformally flat hypersurfaces

How to prove all this?

Consider: f : Mn−1 → Sn ⊂ Ln+1.

S

I
n

L
n

R

+1

+1

n
Observe: If u ∈ C∞(Mn−1) then

〈d(euf), d(euf)〉 = e2u〈df, df〉.
Thus: If f : Mn−1 → Sn is conformally flat
we may choose (locally) a flat lift

euf : Mn−1 → Ln+1.

Then: The tangent bundle of a flat lift

f : M3 → L5 ⊂ R6
1 is flat.

Lemma. In this situation, the normal bundle of

f : M3 → R
6
1 is also flat.

Cor. If f : M3 → L5 is a flat lift of a conformally flat hypersurface then its Gauss map

γ : M3 → O1(6)
O(3)×O1(3)

, p 7→ γ(p) = dpf(TpM) is a “curved flat”.

Note. Curved flats come with special coordinates:

; integrability of conformal fundamental forms and of Cartan’s umbilic distributons;

; conformally flat hypersurfaces come with principal Guichard nets.
.



2. Curved flats

Curved flats

Setup: Let G/K be a symmetric (or reductive homogeneous) space

and g = k⊕ p the corresponding symmetric decomposition of the Lie algebra, i.e.,

[k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k.

For a map γ : Mm → G/K we consider any lift F : Mm → G

and decompose its connection form F−1dF = Φ = Φk + Φp ∈ k⊕ p.

Def. γ : Mm → G/K is called a curved flat if [Φp ∧ Φp] ≡ 0.

Observation: γ : Mm → G/K is a curved flat ⇔ Φλ := Φk + λΦp is integrable for all λ,

i.e., the Gauss-Ricci equations split:

0 = dΦλ + 1
2 [Φλ ∧ Φλ] ⇐⇒

 0 = dΦk + 1
2 [Φk ∧ Φk] + 1

2 [Φp ∧ Φp]
0 = dΦp + [Φk ∧ Φp]
0 = [Φp ∧ Φp]

Consequences:

• curved flats come in “associated families”; and. . .

• the curved flat equations become a 0-curvature condition for the family;

• hence integrable systems methods (e.g., finite gap integration etc) can be applied.
.



3. Isothermic surfaces

Isothermic surfaces

Def. f : M2 → S3 is isothermic if there are (local) conformal curvature line parameters.

Well understood:

• Darboux pairs of isothermic surfaces in S3:

(i) envlope a Ribaucour sphere congruence

(ii) induce conformally equivalent metrics

↔ curved flats in O1(5)
O(3)×O1(2)

(in the space of point-pairs)

• Christoffel pairs of isothermic surfaces in R3

(“limiting case of Darboux pairs”):

(i) parallel curvature directions

(ii) induce conformally equivalent metrics

; curved flats in O1(5)
O(3)×O1(2)

Note: Special coordinates are already “built in”.
.



3. Isothermic surfaces

Curved flats come in associated families!

The associated family of curved flats yields:

• the classical Calapso transformation (T -transformation)

• the conformal deformation for isothermic surfaces.

Small miracle:

The surfaces fλ of γλ = (fλ, f̂λ)
only depend on f = f1 and λ.

The limiting case:

(f0, f̂0) = limλ→0(fλ, f̂λ) yields a
Christoffel pair in R3.

.



3. Isothermic surfaces

Discrete isothermic and cmc nets.

Bianchi permutability:

Dλ1
Dλ2

f = Dλ2
Dλ1

f and [f ;Dλ1
f ;Dλ1

Dλ2
f ;Dλ2

f ] = λ2

λ1

.

Def. f : Z2 → S3 is isothermic if qm,n = a(m)
b(n) . f

f

This yields a completely analogous discrete theory:

• Christoffel transformation;

• Darboux transformation;

• Calapso transformation;

• Bianchi permutability theorems;

; discrete minimal & cmc surfaces;

; Weierstrass representation;

; Bryant type representation;

; Bonnet’s theorem;

• Polynomial conserved quantities by
Burstall/Calderbank/Santos. . .

.



4. Conformally flat hypersurfaces with cyclic Guichard net

Conformally flat hypersurfaces with cyclic Guichard net

We saw: From a conformally flat f : M3 → S4 we get

; γ : M3 → O1(6)
O(3)×O1(3)

, p 7→ γ(p) = dpf(TpM) curved flat (non-unique),

; x : (M3, I)→ R
3
2 Guichard net (unique), and

; x ◦ y−1 : R3 → R
3
2 Guichard net (unique up to Möbius transformation).

Conversely:

• A curved flat γ : M3 → O1(6)
O(3)×O1(3)

is a “cyclic system” with

conformally flat orthogonal hypersurfaces (analogue of the Darboux transformation);

• A Guichard net x : R3 → R
3
2 gives rise to

a conformally flat hypersurface (unique up to Möbius transformation).

Questions:

1. How are the hypersurfaces of a curved flat related (“Darboux transformation”)?

2. What is the geometry of the associated family (“Calapso transformation”)?

3. How are the geometry of a conformally flat hypersurface and a Guichard net related?

4. How to define a suitable discrete theory?

5. . . .

.



4. Conformally flat hypersurfaces with cyclic Guichard net

Partial answers to the 3rd question.

Thm. Cones, cylinders and hypersurfaces of revolution over K-surfaces in S3, R3 and H3,
respectively, correspond to cyclic Guichard nets with totally umbilic orthogonal surfaces.

Def. A cyclic system is a smooth 2-parameter family of circles in S3 with a 1-parameter
family of orthogonal surfaces, i.e., a smooth map

γ : M2 → O1(5)
O(2)×O1(3)

so that the bundle γ⊥ of Minkowski spaces is flat.

Example. The normal line congruence of a surface
in a space form Q3

κ is a cyclic system.

Thm. A cyclic Guichard net is a normal line congruence
in some Q3

κ with all orthogonal surfaces linear Weingarten.

Question: What are the corresponding hypersurfaces?

Classification result: They “live” in some Q4
κ,

where the orthogonal surfaces of the cyclic system are
(extrinsically) linear Weingarten surfaces in a family of
(parallel) hyperspheres in Q4

κ.

Conversely, conformally flat hypersurfaces with cyclic Guichard net can be constructed starting
from suitable linear Weingarten surfaces in any space form in a unique way.

.



4. Conformally flat hypersurfaces with cyclic Guichard net

How to prove this?

Recall: If f : M3 → S4 is conformally flat then there are curvature line coordinates

(x, y, z) : M3 → R
3 so that I = e2u{cos2 ϕ dx2 + sin2 ϕ dy2 + dz2}.

Lemma. ϕ satisfies

dα = 0, where α := −ϕxz cot ϕ dx + ϕyz tanϕ dy +
ϕxx−ϕyy−ϕzz cos 2ϕ

sin 2ϕ dz, and

0 =
ϕxxz+ϕyyz+ϕzzz

2 +
ϕz(ϕxx−ϕyy−ϕzz cos 2ϕ)

sin 2ϕ − ϕxϕxz cot ϕ + ϕyϕyz tanϕ.

Conversely, f can be reconstructed from ϕ.

Lemma. The z-lines are circular arcs if and only if

ϕxz = ϕyz ≡ 0.

Cor. Conformally flat hypersurfaces with cyclic principal Guichard net correspond to ϕ’s
satisfying:

ϕ(x, y, z) = u(x, y) + g(z) with uxx − uyy = A sin 2u and g′2 = C + A cos 2g;

or: similar formulas with coshϕ and sinhϕ (then, more cases occur).

Observation: Separation of variables considerably simplifies the PDE’s for ϕ.

.



4. Conformally flat hypersurfaces with cyclic Guichard net

Symmetry breaking.

From the structure equations, define T = T (z) ∈ S5
1 and Q = Q(z) ∈ R6

1 \ {0} with

T ′ = 1
1+g′2 Q and Q′ = κ

1+g′2 T , where κ := −|Q|2 ≡ (1 + C)2 −A2.

In particular, with ζ(z) =
∫ z

0
dz

1+g′2(z) ,

T = cosh
√

κζ Tz=0+
1√
κ

sinh
√

κζ Qz=0 and Q = κ 1√
κ

sinh
√

κζ Tz=0+cosh
√

κζ Qz=0.

Consequences:

• span{T,Q} is a fixed sphere pencil;

• Q(0) defines a space form Q4
κ;

+1nL Qn
1

Q0
n

Q−1
n

Q1

Q0

Q−1

• T (z) are parallel hyperspheres in Q4
κ;

• each surface

(x, y) 7→ f(x,y,z)
〈T (z),T (0)〉

√
1+g′2(z)

∈ T (z) ∩Q4
κ

is a linear Weingarten surface.

Explicitely:

f =
√
1+A+C cos g√
1+g′2 cosh

√
κζ
{f0 + tan g

1+A+C · n +

√
1+g′2 1√

κ
sinh

√
κζ

√
1+A+C cos g

· t},

where f0 = f(., ., 0), with Gauss map n in T (0) ⊂ Q4
κ, and t the unit normal of T (0) ⊂ Q4

κ.
.



Thank you!
Udo Hertrich-Jeromin
University of Bath
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