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A geometrical Problem
Classify conformally flat hypersurfaces f : M1 — S™.

Def. f: M"~! — S" is conformally flat if there are (local) functions so that e“(df, df) is
flat (or, equivalently, there are (local) conformal coordinates).

Known results.
n=3. Every f: M? — S3 is conformally flat (Gauss' Theorem).
n > 4. fis conformally flat < f is a branched channel hypersurface (Cartan 1917).
n = 4. Branched channel hypersurfaces are conformally flat;
there are hypersurfaces that are not conformally flat (e.g., Veronese tubes);

there are generic conformally flat hypersurfaces, i.e., with 3 distinct principal curva-
tures (e.g., cones, cylinders, hypersurfaces of revolution over K-surfaces).

The problem: Classify generic conformally flat hypersurfaces f : M3 — S*,

Observation: There is an intimate relation

conformally flat hypersurfaces in S* «— curved flats in the space of circles in S*.
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. Conformally flat hypersurfaces revisited



Conformally flat hypersurfaces

Cartan’s Thm. If f: M™ 1 — S™ n > 5, is conformally
flat then f is a branched channel hypersurface.

Def. Write I = Y3, n? and I = Y3, k;n?; then

1 1= +/(ks — k1) (k1 — k2) 71,
Y2 =/ (k1 — ko) (ko — k3) 1o,
73 1= /(ka — k3)(ks — k1) 3

are the conformal fundamental forms of f: M3 — S*.

Lemma. f: M3 — S* is conformally flat < dvy; = 0.
Cor. If f is conformally flat then there are curvature line
coordinates (w1, 2, 23) : M3 — IR3 so that dx; = ;.

Observe: 1 = "> | 12da?, where Y |12 =0.

A 1=1"1

1. Conformally flat hypersurfaces

Def. x: (M3,1) — R} is called a Guichard net if I = 3°_ 12dx? with 32°_ 12 = 0.

Remark. A generic conformally flat f : M3 — S* gives a Guichard net zoy~!: R® — IR3
(x : M3 — IR3 canonical Guichard net and y : M* — IR® conformal coordinates).

Thm. A Guichard net x : R® — R} gives a conformally flat f : R® — S* with v; = dx;.



1. Conformally flat hypersurfaces

How to prove all this?

Consider: f: M"1 — §" c L™
Observe: If u € C°°(M™1) then
(d(e"f),d(e" f)) = e2*(df, df).

Thus: If f: M"! — S" is conformally flat
we may choose (locally) a flat lift L

e“f: M1 el

n+l

Then: The tangent bundle of a flat lift
f:M3— L% C RS is flat.
Lemma. In this situation, the normal bundle of
f:M?® — RS is also flat.
Cor. If f: M3 — L% is a flat lift of a conformally flat hypersurface then its Gauss map

v M3 — W@l@, p+— y(p) = dp f(T,M) is a “curved flat”.

Note. Curved flats come with special coordinates:
~> integrability of conformal fundamental forms and of Cartan’s umbilic distributons;

~» conformally flat hypersurfaces come with principal Guichard nets.



2. Curved flats

Curved flats

Setup: Let G/K be a symmetric (or reductive homogeneous) space
and g = £ @ p the corresponding symmetric decomposition of the Lie algebra, i.e.,
[e.¢ ce, [e,p]Cp and [p,p]CE
For a map v: M™ — G/K we consider any lift F: M™ — G
and decompose its connection form F~1dF = & = &, + d, € t D p.
Def. v: M™ — G/K is called a curved flat if [®, A ,] = 0.
Observation: v: M™ — G/K is a curved flat & &, 1= ¢ + AP, is integrable for all A,
i.e., the Gauss-Ricci equations split:
0 = dde + F[Pe A De] + 2[D, A D]
0=dd\+ [P\ AD)] < ¢ 0=dd, + [be A by]
0=[®, Ny
Consequences:
e curved flats come in “associated families”; and. ..
e the curved flat equations become a O-curvature condition for the family;

e hence integrable systems methods (e.g., finite gap integration etc) can be applied.



3. Isothermic surfaces

Isothermic surfaces

Def. f: M? — S3 is isothermic if there are (local) conformal curvature line parameters.

Well understood:

e Darboux pairs of isothermic surfaces in S3:
(i) envlope a Ribaucour sphere congruence
(i) induce conformally equivalent metrics

(5)

« curved flats in m

(in the space of point-pairs)

e Christoffel pairs of isothermic surfaces in R3

(“limiting case of Darboux pairs”):
(i) parallel curvature directions

(i) induce conformally equivalent metrics

~ curved flats in Wg(g)

Note: Special coordinates are already “built in”.



3. Isothermic surfaces

Curved flats come in associated families!
The associated family of curved flats yields:

e the classical Calapso transformation (7T-transformation)

e the conformal deformation for isothermic surfaces.

Small miracle:

The surfaces fx of ya = (fx, /)
only depend on f = f1 and A.

The limiting case:

(fo, fo) = limx_o(fx, fr) yields a
Christoffel pair in IRS.



3. Isothermic surfaces

Discrete isothermic and cmc nets.
Bianchi permutability:
D)\lDz\zf = D/\QID/\Lf and [f' D)qf; D)qD)\zf; D)\zf] = i_f

Def. f: Z? — S% is isothermic if Gmn = a(m)

This yields a completely analogous discrete theory:

—

e Christoffel transformation; S e A
SR

e Darboux transformation;
e Calapso transformation;

e Bianchi permutability theorems;

~» discrete minimal & cmc surfaces;
~» Weierstrass representation;

~» Bryant type representation;

~» Bonnet's theorem;

e Polynomial conserved quantities by
Burstall/Calderbank/Santos. . .




4. Conformally flat hypersurfaces with cyclic Guichard net

Conformally flat hypersurfaces with cyclic Guichard net

We saw: From a conformally flat f : M3 — S* we get

O1(6)
O(3)x01(3)!

~ x: (M3,I) — R} Guichard net (unique), and

~ xoy~t:R®— R3 Guichard net (unique up to Md&bius transformation).

~ oy M3 — p— y(p) = d, f(T, M) curved flat (non-unique),

Conversely:
e A curved flat v : M3 — ﬁ% is a “cyclic system" with
conformally flat orthogonal hypersurfaces (analogue of the Darboux transformation);

e A Guichard net z : R® — IR3 gives rise to
a conformally flat hypersurface (unique up to Mdbius transformation).

Questions:
1. How are the hypersurfaces of a curved flat related (“Darboux transformation”)?
2. What is the geometry of the associated family (“Calapso transformation”)?
3. How are the geometry of a conformally flat hypersurface and a Guichard net related?
4. How to define a suitable discrete theory?

5 ...



4. Conformally flat hypersurfaces with cyclic Guichard net

Partial answers to the 3rd question.

Thm. Cones, cylinders and hypersurfaces of revolution over K-surfaces in S%, R and H?3,
respectively, correspond to cyclic Guichard nets with totally umbilic orthogonal surfaces.

Def. A cyclic system is a smooth 2-parameter family of circles in S with a 1-parameter
family of orthogonal surfaces, i.e., a smooth map

. O1(5)
v M? O(z)iol(a)

so that the bundle v of Minkowski spaces is flat.

Example. The normal line congruence of a surface
in a space form Q3 is a cyclic system.

Thm. A cyclic Guichard net is a normal line congruence
in some Q3 with all orthogonal surfaces linear Weingart

Question: What are the corresponding hypersurfaces?

Classification result: They “live” in some Qi,

where the orthogonal surfaces of the cyclic system are
(extrinsically) linear Weingarten surfaces in a family of
(parallel) hyperspheres in Q2.

Conversely, conformally flat hypersurfaces with cyclic Guichard net can be constructed starting
from suitable linear Weingarten surfaces in any space form in a unique way.



4. Conformally flat hypersurfaces with cyclic Guichard net

How to prove this?
Recall: If f: M3 — S* is conformally flat then there are curvature line coordinates
(x,y,2) : M® — IR® so that I = e®*{cos? ¢ dx? + sin® p dy® + dz?}.

Lemma. ¢ satisfies

do = 0, where a 1= —,, cot pdx + ¢, tanp dy + “’”_%Szin—zw;z €952¢ 7. and

ProztPyyztPzzz Pz (Paz—Pyy —Pzz COS2¢
0= 2 + £l sin2p } = 0upaz cOtp + ypy. tan .

Conversely, f can be reconstructed from .

Lemma. The z-lines are circular arcs if and only if
Paz = Py = 0.
Cor. Conformally flat hypersurfaces with cyclic principal Guichard net correspond to ¢'s
satisfying:
o(x,y, 2) = u(z,y) + g(2) with gy — uyy = Asin2u and g2 = C + Acos2g;
or: similar formulas with cosh ¢ and sinh ¢ (then, more cases occur).

Observation: Separation of variables considerably simplifies the PDE's for ¢.



4. Conformally flat hypersurfaces with cyclic Guichard net

Symmetry breaking.
From the structure equations, define 7' = T'(z) € S? and Q = Q(z) € R® \ {0} with
T, = ﬁ@ and Q/ = ﬁT, Where KR = —|62|2 = (1 +C)2 — AQ.
In particular, with ((z) = [; #fz(z),
T = cosh \/k( Tzzo+ﬁ sinh /K¢ Q.= and Q = /{ﬁ sinh /K¢ T,—o+cosh \/k( Q.—o.
Consequences:
e span{T,Q} is a fixed sphere pencil;
e (Q(0) defines a space form Q%;
e T'(z) are parallel hyperspheres in Q%; 1t

e cach surface

f(z,y,2) T(2) N O
(@9) = Foroyvirere © LN Sk

is a linear Weingarten surface.

Explicitely:
f= V1+A+Ccosg {fO + tang i 1+g12ﬁ sinh \/k¢ . t}
/1+4¢'2 cosh /RC 1+A+C V1+A+Ccosg '

where fo = f(.,.,0), with Gauss map n in T(0) C Q%, and ¢ the unit normal of 7°(0) C Q%.

>



Udo Hertrich-Jeromin
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