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Some motivation from integral geometry

The Radon transform:

Given a function f(\, 1) on 9k = R?, we can integrate along the lines

Lzg,a1) = 1N 1) |1 = o + Az1}

to obtain

FOp) — flzo,a1) = / F (A a0 + A1 )dA

L(aj07m1)
this is an isomorphism (under suitable analytic assumptions).

Question: what if we replace lines by other curves?



(0) Parabolas: in R? are given by
Clag,er,as) = LA W)l = zo + Azt + Nz}

The space of parabolas is .#Z = R?> and the transform

FON ) — f(zo, 1, 22) = FON 2o+ AT+ 220)dN € C°( )

C(woafﬁbwz)

can no longer be an isomorphism, but:
the range can be characterised (under suitable analytic hypotheses) by

0? 0%\ ;
(8:1008x2 B 8:13%) /=0




(+) Circles:

Consider circles C, in Jr = S2. The space of oriented circles is

Mas = S? x R = {axis direction, t = cot ).

For f € C°(5?%), & € Mys, define f — f(z) = fcxf c C®(A).
This time we have ngsf = 0 where

_ W 2y

Is the 2 4+ 1-dimensional de-Sitter metric.



(-) Hyperbolae:

Let R? C J& = RP' x RP, the quadric of signature (2,2) in RP?.
A hyperbola C,, C Z& C RP? is the intersection of a plane with Z.
The space of oriented hyperbolae is .#,q5 = S* x R? (solid torus).
For f € C®(S! x SY), & € Mpqs, define f — f(z) = fcxf'
Then f C°°(M4as) such that Dgadsf = 0 where

dr?

. 2d 2

JadsS — <1 + 7“2)(192 —

is the 2 + 1-dimensional anti de-Sitter metric on #,4s.
(Here € R/27Z, (r, ) = polar coords on R*>—note periodicity of time).



Questions:

e When does integration over a three-parameter family of curves C,, C .72,
x € M/ give rise to solutions to a wave equation?

e What geometries arise?

We have correspondence space Fr = {(x, (\, b)) € M x Tr|z € C,} with
double fibration
TR
p Noq
M TR

The curves through (X, 1) € & form 2-surface ¥, ) = p(¢~ (A, ) C A.

by considering d-functions on g, the X, ,,y must be characteristic and 3
a compatible connection for which they are totally geodesic.



Theorem 1. [Cartan 1941] Let .# arise as above such that the

characteristics are compatible with a Lorentzian metric, then .# is an
Einstein-Weyl space.

Definition 1. An Einstein-Weyl space in 2 + 1 dimensions is a three
manifold .# equipped with

e a conformal class of Lorentzian metrics |g|,

e a torsion-free affine connection V : T(T.#) — Q' @ T.#

such that V|[g] = 0 and SymgRicci(V) = 0.

e Cartan shows that the equations determine evolution from initial data of
four free functions of 2 variables.



If g € [g] such that Vg = 0, then the metric is flat, dS or adS.

Einstein-Weyl equations < integrability of the 2-planes X, ,,) and hence
< 3.9 (Lax pair description).
~> the equations are an ‘integrable system’.

The geometry is the most general 3-dimensional geometry on which the
Bogomolny equations Fy = *D4® on a connection D4 on a bundle
E — # plus Higgs field ® € End(FE) are an integrable system.

~> notion of an integrable background geometry.

This geometry is the non-linear part of the generic symmetry reduction
from anti-self-dual conformal structures in four dimensions (and hence
hyper-complex or hyper-kahler spaces, scalar-flat Kahler manifolds, but
all in split signature).



Symmetry Reductions include:

1. SU(c0) Toda equations:

0% N O*u 0%
ox2  Ox2 Ot

when there is a geodesic shear free and twist-free congruence of time-like
geodesics.

2. The dispersionless KP equations
Uty — (UWlg) g = Uyy -

when there is a constant weighted (null) vector field.



3. The spinor vortex equations for a metric g and spinor v in 2-dimensions

po="v,  R=P -1

This is the generic symmetry reduction.



Families of curves and holomorphic discs
A 3-parameter family of curves in 2-dim « a free function of four variables:

M= f()\a Zo, L1, 5132),
whereas Einstein-Weyl spaces depend on just functions of 2 variables.
Question: Can we characterise families of curves for Einstein-Weyl spaces?

Complex analysis: In the de Sitter case, Jx = S?; we must understand
this as the antiholomorphic diagonal inside 7 = CP* x CP".

Holomorphic discs: Oriented circles in & can be characterized as those
oriented closed curves in & that bound holomorphic discs D C .7 with
0D C & in appropriate topological class.

Thus, .#35 = moduli space of holomorphic discs D C & with 0D C %.
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Theorem 2. Let (.#?,|g], V) be an Einstein-Weyl space with .# = S?xR

that is asymptotically de Sitter and is oriented and time oriented compatibly
with the asymptotic structure.

Let Fx = {totally geodesic null 2-planes in . }.
Then % is S? and admits a canonical embedding I — T = CP! x CP'.

M can be reconstructed as the moduli space of embedded holomorphic
discs D, in CP! x CP! such that 8D, C .

Theorem 3. There is a 1:1 correspondence between oriented and time
oriented asymptotically anti de Sitter Einstein-Weyl spaces on S? x R and

(small) deformations of the embedding of the anti-holomorphic diagonal in
CP' x CP".
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Definition 2. (.Z,[g],V) is asymptotically de Sitter if

e 3 conformal compactification (. ,§,V) with M4 = S* x [-Z,Z] and
M~ S?x (=Z,Z) C .M (cf. Penrose),

272
e § smooth on .# and §j € [g] on A .

eV =V on.#, and @fj = vq where v has a simple pole in 7 at £Z,

where T is coordinate on |—7%, %] factor (cf. t = tanT in de Sitter case).
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Proof of theorem:

o Let I C PT*.# — .# be the S'-bundle of real null co-vectors:
let . — .4 be the CP' bundle of complex null co-vectors.

e .7 is divided into two parts .Z* by .Fg; e.g., choose .Z T to be those
null vectors that induce a spatial complex structure agreeing with the
spatial orientation.

e Define a 3-dim complex distribution & on .Z* by
Din,z) = tkern N Hory,0/0n}

where x € 4, n € F1|,, 0/0n is the d-bar operator in the direction of
the CP! fibres of .Z.
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The Einstein-Weyl equations < & is Frobenius integrable.
2 has dim 3, and 2 N 2 has dim 2 on % but 1 on .% — Z%.

Define 7 = ZF1/2 N P; 2 descends to endow 7 with an integrable
complex structure.

With given assumptions, .7 is topologically S? x S2. By checking
asymptotics, it can be seen to be CP' x CP' as a complex manifold.

Tk = Fr/Z N 2 is a 2-dim totally real submanifold of .7.

Each © € .# < a holomorphic disc D, = .%T|, with 0D, = Fg|,.
This projects to a holomorphic disc D, C .7 with 0D, C .
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Proof that (./Z°,[g], V) can be reconstructed from the embedding F —
CP' x CP":

The task of finding a holomorphic disc D C .7 with 0D C % is an elliptic
boundary value problem with Fredholm linearization.

The moduli space of such discs in the appropriate topological class is
necessarily 3-dim, and gives .Z .

Each point z € & corresponds to a two-surface >, in .#Z where, for
x e M, rEX, & zedD,.

3! Einstein-Weyl structure on .# for which these two-surfaces are totally
geodesic null surfaces. O

Remark: Note that points at infinity correspond to the limiting case where
D is a CP' and intersects Z& in a point.
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Proof:  that, arbitrary small deformations of % correspond to
asymptotically de Sitter Einstein-Weyl spaces.

Such elliptic boundary value problems are, via the implicit function theorem,
stable under small deformations.

Thus, the reconstruction can be performed when % — CP' x CP! is
any small deformation of the standard embedding of the anti-holomorphic
diagonal S2 in CP! x CP?, i.e., 3 a 3-parameter family .#> of holomorphic
discs, D, — CP! x CP! with 8D, C .

The existence of an Einstein-Weyl structure on .#Z for which the >, are
totally geodesic null surfaces is no longer trivial, but follows by standard
arguments. U
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Other cases & reductions

Asymptotically anti-de Sitter case: Jx ~ S! x St is a small deformation of
RP' x RP' ¢ CP" x CP".

Asymptotically flat case: 7 =~ Hirzebruch surface P(O & O(2), & ~
St x St

Theorem 4. Solutions reduce to SU(oo) Toda if I is Lagrangian for the
symplectic structure 3$2, £} is a meromorphic 2-form with two double poles.
With one quadruple pole on each conic, the reduction is DKP.

Theorem 5. A lorentizian spinor vortex geometry arises when Jp :  —
CP' such that & ~ p~'(an S in CP'). The holomorphic discs are p~' of
Riemann maps D — CP' with 8D on subintervals of the S*. The Lax pair
operators are the Loewner differential equations for the Riemann maps.
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Further twistor constructions based on holomorphic discs
LeBrun & M, math.DG/0211021, J. Diff. Geom. 61, 2002:

{Zoll projective StructureS} L1 ) Deformations of embedding RP? C
on 52 CP?

LeBrun & M, math.DG/0504582, Duke:

{Self—dual conformal} L:1 | Deformations of embedding RP® C
structures on S? x S? CP3

M, math-ph/0505039, Crelle:

global self-dual U(n) Yang-Mills fields Hol. Vector bundle
in split signature on S? x 52 &L ) E — CP? & hermitian metric

(= 2 copies of R%?), H on E|gps
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