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Some motivation from integral geometry

The Radon transform:

Given a function f(λ, µ) on TR = R2, we can integrate along the lines

L(x0,x1) = {(λ, µ)|µ = x0 + λx1}

to obtain

f(λ, µ) −→ f̂(x0, x1) =
∫

L(x0,x1)

f(λ, x0 + λx1)dλ

this is an isomorphism (under suitable analytic assumptions).

Question: what if we replace lines by other curves?
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(0) Parabolas: in R2 are given by

C(x0,x1,x2) = {(λ, µ)|µ = x0 + λx1 + λ2x2} .

The space of parabolas is M = R3 and the transform

f(λ, µ) −→ f̂(x0, x1, x2) =
∫

C(x0,x1,x2)

f(λ, x0+λx1+λ2x2)dλ ∈ C∞(M )

can no longer be an isomorphism, but:
the range can be characterised (under suitable analytic hypotheses) by(

∂2

∂x0∂x2
− ∂2

∂x2
1

)
f̂ = 0
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(+) Circles:

Consider circles Cx in TR = S2. The space of oriented circles is

MdS = S2 × R = {axis direction, t = cotψ).

For f ∈ C∞(S2), x ∈MdS, define f −→ f̂(x) =
∫

Cx
f ∈ C∞(M ) .

This time we have 2gdS
f̂ = 0 where

gdS =
dt2

(1 + t2)
− (1 + t2)ds2S2

is the 2 + 1-dimensional de-Sitter metric.
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(-) Hyperbolae:

Let R2 ⊂ TR = RP1 × RP1, the quadric of signature (2, 2) in RP3.

A hyperbola Cx ⊂ TR ⊂ RP3 is the intersection of a plane with TR.

The space of oriented hyperbolae is MadS = S1 × R2 (solid torus).

For f ∈ C∞(S1 × S1), x ∈MadS, define f −→ f̂(x) =
∫

Cx
f .

Then f̂ ∈ C∞(MadS) such that 2gadS
f̂ = 0 where

gadS = (1 + r2)dθ2 − dr2

(1 + r2)
− r2dφ2 ,

is the 2 + 1-dimensional anti de-Sitter metric on MadS.
(Here θ ∈ R/2πZ, (r, φ) = polar coords on R2—note periodicity of time).
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Questions:

• When does integration over a three-parameter family of curves Cx ⊂ T 2
R ,

x ∈M 3 give rise to solutions to a wave equation?

• What geometries arise?

We have correspondence space FR = {(x, (λ, µ)) ∈M ×TR|z ∈ Cx} with
double fibration

FR
p ↙ ↘ q

M TR

The curves through (λ, µ) ∈ TR form 2-surface Σ(λ,µ) = p(q−1(λ, µ)) ⊂M .

by considering δ-functions on TR, the Σ(λ,µ) must be characteristic and ∃
a compatible connection for which they are totally geodesic.
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Theorem 1. [Cartan 1941] Let M arise as above such that the
characteristics are compatible with a Lorentzian metric, then M is an
Einstein-Weyl space.

Definition 1. An Einstein-Weyl space in 2 + 1 dimensions is a three
manifold M equipped with

• a conformal class of Lorentzian metrics [g],

• a torsion-free affine connection ∇ : Γ(TM )→ Ω1 ⊗ TM

such that ∇[g] = 0 and Sym0Ricci(∇) = 0.

• Cartan shows that the equations determine evolution from initial data of
four free functions of 2 variables.
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• If ∃g ∈ [g] such that ∇g = 0, then the metric is flat, dS or adS.

• Einstein-Weyl equations⇔ integrability of the 2-planes Σ(λ,µ) and hence
⇔ ∃TR (Lax pair description).
; the equations are an ‘integrable system’.

• The geometry is the most general 3-dimensional geometry on which the
Bogomolny equations FA = ∗DAΦ on a connection DA on a bundle
E →M plus Higgs field Φ ∈ End(E) are an integrable system.
; notion of an integrable background geometry.

• This geometry is the non-linear part of the generic symmetry reduction
from anti-self-dual conformal structures in four dimensions (and hence
hyper-complex or hyper-kahler spaces, scalar-flat Kahler manifolds, but
all in split signature).
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Symmetry Reductions include:

1. SU(∞) Toda equations:

∂2u

∂x2
+
∂2u

∂x2
=
∂2eu

∂t2
.

when there is a geodesic shear free and twist-free congruence of time-like
geodesics.

2. The dispersionless KP equations

utx − (uux)x = uyy .

when there is a constant weighted (null) vector field.
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3. The spinor vortex equations for a metric g and spinor ψ in 2-dimensions

/Dψ =
3
2
ψ , R = |ψ|2 − 1 .

This is the generic symmetry reduction.
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Families of curves and holomorphic discs
A 3-parameter family of curves in 2-dim ↔ a free function of four variables:

µ = f(λ, x0, x1, x2),

whereas Einstein-Weyl spaces depend on just functions of 2 variables.

Question: Can we characterise families of curves for Einstein-Weyl spaces?

Complex analysis: In the de Sitter case, TR = S2; we must understand
this as the antiholomorphic diagonal inside T = CP1 × CP1.

Holomorphic discs: Oriented circles in TR can be characterized as those
oriented closed curves in TR that bound holomorphic discs D ⊂ T with
∂D ⊂ TR in appropriate topological class.

Thus, MdS = moduli space of holomorphic discs D ⊂ T with ∂D ⊂ TR.
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Theorem 2. Let (M 3, [g],∇) be an Einstein-Weyl space with M = S2×R
that is asymptotically de Sitter and is oriented and time oriented compatibly
with the asymptotic structure.

Let TR = {totally geodesic null 2-planes in M }.

Then TR is S2 and admits a canonical embedding TR ↪→ T = CP1×CP1.

M can be reconstructed as the moduli space of embedded holomorphic
discs Dx in CP1 × CP1 such that ∂Dx ⊂ TR.

Theorem 3. There is a 1:1 correspondence between oriented and time
oriented asymptotically anti de Sitter Einstein-Weyl spaces on S2 × R and
(small) deformations of the embedding of the anti-holomorphic diagonal in
CP1 × CP1.
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Definition 2. (M , [g],∇) is asymptotically de Sitter if

• ∃ conformal compactification (M̃ , g̃, ∇̃) with M̃ = S2 × [−π
2 ,

π
2 ] and

M ' S2 × (−π
2 ,

π
2) ⊂ M̃ (cf. Penrose),

• g̃ smooth on M̃ and g̃ ∈ [g] on M .

• ∇̃ = ∇ on M , and ∇̃g̃ = νg̃ where ν has a simple pole in τ at ±π
2 ,

where τ is coordinate on [−π
2 ,

π
2 ] factor (cf. t = tan τ in de Sitter case).
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Proof of theorem:

• Let FR ⊂ PT ∗M →M be the S1-bundle of real null co-vectors;
let F →M be the CP1 bundle of complex null co-vectors.

• F is divided into two parts F± by FR; e.g., choose F+ to be those
null vectors that induce a spatial complex structure agreeing with the
spatial orientation.

• Define a 3-dim complex distribution D on F+ by

D(n,x) = {kern ∩Hor∇, ∂/∂n̄}

where x ∈M , n ∈ F+|x, ∂/∂n̄ is the d-bar operator in the direction of
the CP1 fibres of F .
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• The Einstein-Weyl equations ⇔ D is Frobenius integrable.

• D has dim 3, and D ∩ D̄ has dim 2 on FR but 1 on F −FR.

• Define T = F+/D ∩ D̄ ; D descends to endow T with an integrable
complex structure.

• With given assumptions, T is topologically S2 × S2. By checking
asymptotics, it can be seen to be CP1 × CP1 as a complex manifold.

• TR = FR/D ∩ D̄ is a 2-dim totally real submanifold of T .

• Each x ∈ M ↔ a holomorphic disc Dx = F+|x with ∂Dx = FR|x.
This projects to a holomorphic disc Dx ⊂ T with ∂Dx ⊂ TR.
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Proof that (M 3, [g],∇) can be reconstructed from the embedding TR ↪→
CP1 × CP1:

The task of finding a holomorphic disc D ⊂ T with ∂D ⊂ TR is an elliptic
boundary value problem with Fredholm linearization.

The moduli space of such discs in the appropriate topological class is
necessarily 3-dim, and gives M .

Each point z ∈ TR corresponds to a two-surface Σz in M where, for
x ∈M , x ∈ Σz ⇔ z ∈ ∂Dx.

∃! Einstein-Weyl structure on M for which these two-surfaces are totally
geodesic null surfaces. 2

Remark: Note that points at infinity correspond to the limiting case where
D is a CP1 and intersects TR in a point.

15



Proof: that, arbitrary small deformations of TR correspond to
asymptotically de Sitter Einstein-Weyl spaces.

Such elliptic boundary value problems are, via the implicit function theorem,
stable under small deformations.

Thus, the reconstruction can be performed when TR ↪→ CP1 × CP1 is
any small deformation of the standard embedding of the anti-holomorphic
diagonal S2 in CP1×CP1, i.e., ∃ a 3-parameter family M 3 of holomorphic
discs, Dx ↪→ CP1 × CP1 with ∂Dx ⊂ TR.

The existence of an Einstein-Weyl structure on M for which the Σz are
totally geodesic null surfaces is no longer trivial, but follows by standard
arguments. 2
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Other cases & reductions

Asymptotically anti-de Sitter case: TR ' S1× S1 is a small deformation of
RP1 × RP1 ⊂ CP1 × CP1.

Asymptotically flat case: T ' Hirzebruch surface P(O ⊕ O(2), TR '
S1 × S1.

Theorem 4. Solutions reduce to SU(∞) Toda if TR is Lagrangian for the
symplectic structure =Ω, Ω is a meromorphic 2-form with two double poles.
With one quadruple pole on each conic, the reduction is DKP.

Theorem 5. A lorentizian spinor vortex geometry arises when ∃p : T →
CP1 such that TR ' p−1(an S1 in CP1). The holomorphic discs are p−1 of
Riemann maps D → CP1 with ∂D on subintervals of the S1. The Lax pair
operators are the Loewner differential equations for the Riemann maps.
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Further twistor constructions based on holomorphic discs

LeBrun & M, math.DG/0211021, J. Diff. Geom. 61, 2002:{
Zoll projective structures
on S2

}
1:1←→

{
Deformations of embedding RP2 ⊂
CP2

}

LeBrun & M, math.DG/0504582, Duke:{
Self-dual conformal
structures on S2 × S2

}
1:1←→

{
Deformations of embedding RP3 ⊂
CP3

}

M, math-ph/0505039, Crelle:global self-dual U(n) Yang-Mills fields
in split signature on S2 × S2

(= 2 copies of R2,2),

 1:1←→


Hol. Vector bundle
E → CP3 & hermitian metric
H on E|RP3

 .
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