Methods of Integrable Systems in Geometry
London Mathematical Society Durham Symposium 2006

Commuting Partial Differential Operators

Emma Previato

(Boston University) ep@bu.edu
August 16, 2006

Contents:
. History: the ODO case
. Introduction of the problem: Spectral varieties;
Quantum integrability
Examples I: Differential Galois theory
Algebraic Geometry: Naive and non-naive
Examples II: Abelian Surfaces
Examples III: Sato’s 7 function

- O

Al



§0. History
We work over the complex numbers

We consider the ring of differential operators:

D= {Z w; (2)0?, u; analytic near z = 0}
j=0

D cCcP={"_uj(x)d}, formal pseudodifferential
operators. P is a ring:

dou=ud+u

O lou=u0"t'—wo2+u"073~—...

Note: Instead, we could take the coefficients to be
formal power series

In concrete examples we may allow meromorphic
coefficients, such as the Weierstrass g function; or con-
sider instead a translation of the x variable that shifts
the origin to a point xg where all the coeflicients are
regular (this is always possible for the “rank-1" cen-
tralizers of interest — a fact which I already find non-
trivial)

Normalize L € D (D has 2 automorphisms, change
of variable and conjugation by a function)

L=0"+up_2(x)0" >+ ...+ up(z).
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Burchnall-Chaundy problem [BC]: which L’s have cen-
tralizer Cp (L) which is larger than a polynomial ring
(C[Ll], L, € D?

e Iford L >0 and A, B € D both commute with
L, then [A, B] = 0; in particular, Cp(L) is commuta-
tive, hence every maximal-commutative subalgebra of
D is a centralizer

In P any (normalized) L has a unique nth root,
n =ordL, of form £ = d+u_1(x)0 " +u_o(x)07%+...

o (I Schur [Sc]) Cp(L) = {3~ _¢;L7,¢; € CYND

e It follows that centralizers are ‘curves’: their
transcendence degree over the field of coeflicients is 1,
and Spec C(L) can be regarded as an affine curve X

Examples:

genus-1 case: Clp(x), p'(x)] = C[L, B]

L=0%—-2p(x

N—"

B =2(0° + 3p(x)d — - ¢/ (x)

At Y | )
T2 Ziog M@ WL mwe)® (nwr +mews)®

B? =4L° — g, L — gs
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(Ince) the Lamé operator L = —9*+a(a+1)p(x—
xg) (with real, smooth potential), is a solution to the
Burchnall-Chaundy problem iff a € Z (if a is positive
the genus is a).

(Halphen) 03 + (1 — n?)p(z)0 + 1_2”2 o' (x) gives
another solution, where n is the genus of the curve and

the isospectral flow for a parameter y gives a solution
— 9 (1—n?)
= Tp(x—cy),

to the Boussinesq equation, u(a:, y)

e Definition. The rank of a subset of D is the greatest
common divisor of the orders of all the elements of D.

Roughly stated, Burchnall and Chaundy’s char-
acterization of rank-1 commutative subalgebras: they
correspond to affine curves, and the ‘isospectral’ ones
corresponding to the same curve correspond to points
of JacX\©. The KP deformations are linear flows on
Jacobians, and they can be solved exactly in terms of
theta functions.



Aside: Isospectral time deformations

Introduce parameters t = (¢ = =z, to, t3,...), the KP
hierarchy: |
Oy, L = [(L7)+, L]

where ( )4 is projection P — D, is a set of PDE’s
on u;(t), which turn out to be commuting Hamilto-
nian flows (AKS=Adler-Kostant-Symes). A solution
L is “stationary” w.rt. t; iff L7 € D(= 0,L =
0) eg. for j = 2 we get KAV and for j = 3 we
get Boussinesq, both reductions of the KP equation:
Uyy = (ut + buug + ua::m:)a: (y = 19,1 = t3>

More generally, let K; = (£’); and say that a
KP solution is stationary if a nontrival combination
Zjlv c;L’ € D, i.e. the corresponding time operator

Zjlv c; K, acts trivially.

An ODO L € D is such that the corresponding KP
solution is stationary for some N not a multiple of
order(L) iff L is a solution to the Burchnall-Chaundy
problem (however, this does not guarantee the KP-
orbit is finite dimensional unless Cp(L) has order 1).



Inverse spectral problem (Krichever [K])

We make the following choices:

a Riemann surface I' of genus g

a point oo € I

a local parameter z~! near oo

a generic divisor P; + ...+ P; = D (the condition
is that h%(Py + ...+ P, — 00) = 0, no functions with a
zero at oo and poles bounded by P; + ...+ F,).

Fact (Krichever). There exists a unique function
Y(t, P), the “Baker-Akhiezer (BA) function,” satisfy-
ing the following conditions: | |

(i) near oo, ¥ ~ exp(zi21 tiz')(14+ > &(t)z™")

(ii) at finite points P of the curve, ¢ has poles
bounded by D and is analytic elsewhere. For such a
there exist unique operators K; such that K;v = d; ¢
and these operators are a solution to the KP hierarchy,
in particular £y = 21 gives L € P as above.

(all statements are local in t).

P

50 = S e
V(A(P) + 3>, Uiti + 8)9(A(o0) + 6 — A(D))
I(A(P) + 6 — A(D))I(A(00) + D5, Uiti +9)

|~

(
(

4 is Riemann’s constant (to make 9(A(P)+ 9 — A(D))
vanish for P = P;,j = 1,...,9), U; € CY suitable
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vectors (to make 1 into a function of P independent of
the path of integration), 7; are suitable meromorphic
differentials, ¢; € C suitable constants (to normalize 1)
as in (i) above).

L=0+u_10""+u 20"2+...

u(t) = 2021og9(> _t;U; + A(P) + ) + const.

g1
with ©u = 2u_1, solves the KP equation.

Remark. The U; = > j uij% are linear flows
J

on Jac(X), so we have linearized the flows of the KP
hierarchy. Geometrically, U; is the tangent vector to
the curve A(X) at A(c0), and U; are the jt" hyper-
osculating vectors.

The KP hierarchy is a sequence of deformations

for L = S8S~!, S € P, the Baker (eigen)function
Y = Se*? turns differentiation into multiplication.



Question. Classify the commutative subrings of D.
The case of rank>1 is open.

There are no BC solutions of order 2 with poly-
nomial coefficients. Dixmier [D] constructs a genus-1
maximal commutative subring of the Weyl algebra in
two generators C[p, q] with multiplication rule defined
by the commutator [p,q] = 1, which can be viewed as
a subring of D, by letting p = 0 and ¢ = z. Define

1

u=p’'+¢ +a, v=7;p,

L=v?+4v, B=u"+ 3(uww + vu);
then C(L) = C[L, B] and B? — L? = —q, as shown in
[D]. By the assignment p = 0, ¢ = x we obtain L, B €
D of order 6,9, but the automorphism 0 — —x, z +— 0
will turn the orders into 4,6. Moreover, it will still be
true that Cp(L) = C|[L, B], the affine ring of the curve
u? = A3 — a; in particular, L is a BC solution. These
are rings of rank 3, 2, resp. Mironov [M2]| computes
equations for the coefficients of two rank-2 commuting
operators with spectral curve of genus 2, and an exam-
ple of polynomial-coefficients operators (maximality?)

Question. In rank 1, the motion of poles of the ratio-
nal KP solutions obeys the Calogero-Moser-Krichever
system (ACI Hamiltonian). In higher rank, Veselov
in his thesis cf. [V] set up an analogous integrable
system. ACI features?



§1. Introduction of the problem

To pose the question algebraically again, refer to
IBEG] for a concept of “quantum integrable system”:

In classical mechanics, an integrable Hamiltonian
system on a manifold M of dimension n is a collection
of functions I4,..., I, on the cotangent bundle 7*M
that pairwise Poisson commute and are functionally
independent.

On an n-dimensional algebraic variety M, we re-
gard a dominant map f : 7*M — A, A an n-dimensional
affine variety, whose fibres are Lagrangian, as the ana-
log of (I1,...,1,):T*M — A™, and say that the pair
(A, f) is an integrable Hamiltonian system. This then
defines an embedding of rings of regular functions f* :
O(A) — O(T*M), which is a homomorphism of alge-
bras with a Poisson-commuting image.

The quantum analog of the Poisson algebra O(T* M)
is the algebra D(M) of differential operators on M.

Definition [BEG] (i) A quantum completely inte-
grable system (QCIS) on M is a pair (A, 0) where A is
an n-dimensional affine variety and 6 : O(A) — D(M)
is an embedding of algebras. If A = A", such a map-
ping is defined by an n-tuple D,... D, of differential
operators on M which are algebraically independent
and pairwise commute

(ii) The eigenvalue problem for (A, 6), a system of
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differential equations:

0(g) = g(N), e A, g€ O(A),

is a D-module M) over M generated by an element
1, € M) with the relations 0(g) - 1, = g(M\)1,, Vg €
O(A). The rank of (A,0) is defined to be the rank
of M) at the generic point of M, or the dimension of
the space of formal solutions of the system. A QCIS
is said to be algebraically integrable if it is dominated
by another QCIS of rank 1.

A system (A,0) is dominated by one (A’,6') if
there is a map of algebras h : O(A) — O(A’) with
0 = 0’ o h, in which case M) = i My,

Example: L gives an algebraically integrable sys-
tem if and only if it can be obtained by the Krichever
map (Inverse spectral problem above)

Theorem BEG] A QCIS is algebraically inte-
grable if and only if the differential Galois group of
the corresponding system is commutative, for generic

A €A
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§2. Examples I [CV, BEG]: Differential Galois theory
To generalize the Lamé operator:

L= 45 +u(z),u(z) = 24 o(z)

L=-A+ Z gapp((a, T)).

0463%4_

where 3 is the set of positive roots for a simple com-
plex Lie algebra g of rank n, (—, —) is some positive
scalar product in R™, invariant under the action of
the Weyl group, and g, = mq(meq + 1){a, a) for some
My € Z

For g = An—la B27

1
LZ_A+4Z(%_%)2

i<y
2 2 4 4
L=-07— 03
LR R TR T m—m? | (o)

Definition [CEO] A generalized Lamé operator

is a Schrodinger operator L = —A + u(x), A = 59_;2 i
1

Cet (93722, with elliptic potential u of the following form

u(@) = ) capla(@)|r),
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A a finite set of affine-linear functions on V = C", such
that the resulting potential u(x) has the properties of
periodicity and quasi-invariance.

Periodicity and quasi-invariance are crucial gener-
alizations of the one-dimensional case (Calogero-Moser
potentials); to simplify matters, we assume the former
to mean that w is periodic with lattice £+ 7L where £
is the dual of the lattice generated by (loosely speak-
ing) the linear part o of the transformations a con-
tained in A. The property of quasi-invariance is an im-
portant analytic condition, corresponding to the equa-
tions defining the KdV locus in the one-variable case;
u(x)—u(srx) is required to be divisible by (a(x)—m —
nt)?Metl where: {x : a(x) = m + n7} is one of the
hyperplanes 7 comprising the singular locus of u(z),
Co is assumed to be of the form mq(mqa + 1)(ag, o)
for some positive integer m,, and s, is the reflection
with respect to .

Theorem [CEO|] Any generalized Lamé opera-
tor which is completely and strongly integrable, i.e.,
admits a commutative family of differential operators
Ly = L,Ls,...,L, which have meromorphic coeffi-
cients, are periodic with respect to the same lattice, so
that they are defined on the torus T'= C" /(L + 7.L)
(L is an appropriate lattice of rank n), and have alge-
braically independent homogeneous constant highest
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symbols s1,...,s, for which the system

has the unique solution & = 0, is algebraically inte-
grable.

Examples
L = —A—anegﬁ ma(ma+1>< > (< >>
L= —A+2m(m+1) > i (P — ) + p(:cz +25))+

Z?:l Zi:o gs (gs + 1)@(567, ‘|‘ws) with wg (3 0, . 3)

denoting the half periods 0, 5, 5 HTT

A non-Coxeter example was found in [VFC] (for
any numbers [, m):
_ [(I+1) | m(m+1) 4(l4+m+1)
L=-A+ 3 T 2 T (V2m—+1x1++/20+1x2)2 T

4(I4+m—+1)
(V2m+1zy —v2[+1x2)2"
Question Compare the variety Spec C(L), which
is affine, and the “Hermite-Bloch” variety that parametrizes
the Bloch eigenfunctions of L.
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§3. Algebraic Geometry: Naive and non-naive
Recall our emphasis on differential algebra:

D =Cllr1,.--,x]][01,...,0n] = Zua(a:)(?o‘ :

|a|=0

a a multi — index in N”

Review of the one-variable case

Lemma [BC]. If [L, B] = 0 then there exists a
polynomial in two variables f(A, u) € C|\, u] such that
f(L,B) =0, if we assign “weight” na+mb to a mono-
mial X1’ wheren = ord L, m = ord B, then the terms
of highest weight in f are a\™ + Bu™ for some con-
stants «, (.

Proof and Construction: The idea is that by
commutativity B acts on V), the n-dimensional vec-
tor space of solutions y(z) of Ly = Ay (L is regular);
f(A, i) is the characteristic polynomial of this opera-
tor; to see that f(L, B) = 0 it is enough to remark that
f(\, ) = 0iff L, B have a “common eigenfunction”:

{éy :)\y hence f(L,B) would have an infinite-
y=ny

dimensional kernel (eigenfunctions belonging to dis-
tinct eigenvalues A1, ..., A\ are independent by a Van-
dermonde argument). The algebraic curve is encoded

by the “BC matrix” M: if
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L—AIUO,O—I—UO,18+...+8R
(0 =uo,n+1 =Uont2 =--.)
(90(L—)\):u1,0—|—u1,18—|—...

8m_1O(L—>\):’U,m_1,0—|—...
B—,u:um,o—l—um,lﬁ—l—...—l—(?m

8”_1 O (B — ,LL) = Um+n—1,0 + ...

then M = [mw] with mg; = Uj—1,5—1 (Z = 1, R’ +
n; j =1,...,m 4 n) is such that det M = f(\,u)",
where r = ged(ord L, ord B).

Example:
2
_ 92
L=0"-—
3 3
— 93
B=0- -0+
A — 5 0 1 0 07
- “A— 3 0 1 0
det | —1% = “A—% 0 1| =p>=N
—p+ = -3 0 1 0
L -2 —p+x -3 0 1.
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Question 1 Does a maximal-commutative sub-
algebra A of D in n > 1 variables have to be finitely
generated, as in n = 17 The answer is no. Notice that
when it is, SpecA can be viewed as an affine variety,
and it turns out to have dimension < n [BEG].

Question 2 When we have a finitely-generated
subalgebra A of D, is there a way to identify explicitly
the variety SpecA, for example by algebraic equations
satisfied by the generators, given by a differential re-
sultant, as was the case for dimension 17
Commutative rings of PDOs

D = C(wl,...,xn)[al,...,ﬁn]

DoIC[(?l,...,an] CcD

Construction (Kasman-P. [KP]):
A maximal-commutative ring R C D which is not
finitely generated.

Step I Suppose p(0i,...,0,) € Dy factors = L o
K, LLKeD
let R(K):=(KoDgo K 1)ND

Theorem R(K) is maximal commutative.
(USG exlzl—i—...—l—xnzn)
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Step II. Let Ry = polynomials ¢ in C|x,y| s.t. gz, gy, Quy
are divisible by (zy — A),
(= Clw;i(zy — N\)3], w; a basis of C[z,y])

Theorem R(K) >~ R)

Example:

1

b= (8182 - )\)3, K = xlxz((‘)l(?z — )\) o
L1T2

1 1
L = 8%8% + —8185 — 33'1_2(95 + —8%82
Ty o

1 —2A —1 - Az1x
L1I2 81(92 4 : 1 282
L1L2 Ti{T2
—1-A 1 A
—2520% + 0+ A+ —— +
2 U 55
L1y T{T;  T1x2
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Construction: differential resultant
(F.S. Macaulay for polynomials)

Li,...,L,yq orders ¢1,...,0,11

N=1+) (6-1)

R: each row 0% o (L; — ;) 1 < |a| < (n+JZ_zi)

Resultant=gcd of all maximal minors = 0 if
Ly,...,L,+1 commute.
Conjecture: indep. of x1,...,x,.

The natural question is then, does there exist a
commutative ring of scalar PDOs, isomorphic to the
functions on an abelian surface, regular off a theta divi-
sor? Maybe the answer are Kleinian functions [BEELS],
but I do not know if those Schrodinger operators com-
mute. A natural generalization of the 1-variable the-
ory begins with 2-variable Schrodinger operators —A+

2 2 . .
q(x1,22), A = aan + 88w2, whose spectrum is in some
1 2

sense algebro-geometric, with eigenfunctions ¢ (x1, x2, 21, 22)
defined on an algebraic surface where 21,2 are lo-

cal parameters:(—A + q)Y = A(z1, 22)¥, for example
with potential essentially a sum of 1-variable algebro-
geometric potentials (“separable”).
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84. Examples IT [S, N, M|: Abelian Surfaces
Sato-Nakayashiki’s approach:

az: 0 0<:<, |a|=a0+ + a1
83%'
D= Z aq(x)0%, aq(x) € Clz]], a« € N
o] <<oo
Sketch

micro-differential operators: codirection x

P = Z ao(r)0%, a€Z x N1

o < <oo

A a g dimensional Abelian variety, ©® C A a smooth
principal polarization
8% — [ n; n; 2nd kind

L line bundle over A,
orc: Ae — M(g! x g!,D)

deformations of D-modules
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Nakayashiki [N] produced rings of (g! x g!) matri-
ces whose entries are differential operators in g vari-
ables, isomorphic to the ring H°(A\©, O4) where A is
a g-dimensional principally polarized abelian variety,
and © a smooth theta divisor (note: A cannot be a
Jacobian as soon as g > 4). Nakayashiki defines a se-
quence of time derivatives in the data, so as to let them
flow (linearly on PicA =2 A) and derive the analog of
the KP equations for the ¥ function.

Definition. Let X be a smooth projective vari-
ety, g = dimH'(X,Ox), D C X an ample divisor,

AV = H%(X,QL)/H'(X,7) = Pic’ X the Picard vari-
ety of X and P — X x AV the Poincaré line bundle.
By choosing a standard basis {aj,...,a4;b1,...,b4}
of the torsion-free part of H;(X,7Z) and normalized

holomorphic differentials wi,...,w,; on X, the ring
of differential operators D4v can be identified with
C’)X[a%l,...,a%g], where (z1,...,24) are coordinates

on the universal cover of AV.
Let F(D)(n) be the Fourier-Mukai transform of
the sheaf Ox(nD),

F(D)(n) = max (71 Ox (nD) ®0x 80 v P)

where 7; are the two projections from X x AV, and let
M, -..,Ng be a normalized basis of differentials of the
second kind with poles only on D.
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Then F(D) = |J.—,F(D)(n) can be given the
structure of a D 4v-module by the connections V ; viewed
as operators 8%3_ — foz n; on the sections (o, a base point,

and z, are points of the universal cover of X). F(D)
with this structure is called a Baker-Akhiezer module.
If (D) is the stalk at & where ¢ € A is the projec-
tion of a point c of the universal cover of AV, then the
elements of M, =, M.(n),

Mc(n> ZF(D)EeXp <Zmz /z 77@) )

are called Baker-Akhiezer functions. When X is a
curve of genus g, these coincide with the Baker- Akhiezer
functions defined by Krichever, if D is a point Py, € X.

When X = A is a principally polarized abelian
variety of dimension g, and © a theta divisor, then A"
can be identified with A by a — [T;)© — 0], where T}, is
the translation map. Therefore if L. is the bundle over
A defined by the cocycle p(m+Qn, z) = exp(2wi*m-c),
where (0 is the period matrix and ¢ € CY, and L.(n) =
HY(A, L.(n®)), L. = U,L.(n), then the theta func-
tions with characteristics:

9 [3{)“] (nz + c;nQ) /9™ (2), 5 € 9 /¥,

give a basis of L.(n), and
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MC — Z;.Loz—oo ZSGZQ/'I’LZQ OA

9 [8/”’] (nz + ¢ + ;1)

0 g
9 (2) - €XP ( ;&:Q(@) :

where (; = % log ), and the normalized line bundle

P satisfies PA;{c} >~ Le.

If © is smooth, then gr-,M, is generated over
grD v by @%illgrnMc for any c € (Y.

Moreover, if ¢ # 0, gr~, M, is a free grD 4v-module
of rank ¢!, and the filtration is such that the action of
first-order differential operators satisfies DSV) F(O)(2) =
F(©)(i 4+ 1) for a sufficiently large i.

Then the map

ic = HY(A\®,04) — M(g! x g!,Dyv)

defined by fV. = i.(f)¥,., where the vector V. gives
a basis of M., gives an isomorphism of the ring of
functions on A with poles at most on © (of any mul-
tiplicity) with a (commutative) ring of (g! x g!) ma-
trices of differential operators on A. Notice that if we
identify O 4 with the ring of convergent power series
C{{x1,...,x4}}, the entries of the matrices are ele-
ments of the ring of differential operators.
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Analog of the KP flows. Sato remarked that
there is no natural multivariable generalization of the
KP hierarchy, because for the analogous rings D =
Cllt1,. .., t4]][015...,04], ¥ = Cit[oe;t, 07 0, . . .,5‘1_189]][81]
filtered by order ay +...+a, of % = 97 ... 05 ¢, there
is no natural choice of a free left C[[t]] submodule & of
U =7®]E, for deforming D-submodules 7 of W. He
then advocated the above described algebro-geometric
example, where the “codirection” dt; is naturally given
by an equation z; = 0 for the theta divisor, under
the identification 0, 1 & 2z, with local parameters near
a point of the spectral variety. Define P.onst under
0% <» 0%/(Pt1+...+Pty). Indeed, the following time
deformations are defined by Nakayashiki:

th(”) — Zsezg/nzg C[[t“

9 [s(/)n] (nz4c—(z'-d—z1,7"))
V" (2)

exp

g 1y
_Z Z tn,(i)( !) (Un,(i) ‘|‘di(1—5z‘1)un+1,(1)) )

n
1=0 n>9;1

where we set r1 = &1 1), i = t1,3),2 < @ < g,d =
(dg,...,d,) € C971 and denote by z’ the vector (x2, ..., x,)
if £ = (21,...,24); Wi,,..;, denotes 82 ... 9.7 log¥(z).
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N. can be embedded in P as a D-submodule,
@ € Net — t(p) = W, in such a way that Way oz, =

%4-1/[/@82- = O;W, for 1 < ¢ < g and the D-

submodule of P, J.(n) = ¢ (Bet(n + 1)), satisfies () =
Tet(n) @Y (Jy, o) where J, o is a suitable collection of
indices from Z x N9~1, and
U(J)={> aq0%a, =0 unless a € J}.

Then: SWO‘ +Wo0P € Tt = U T.t(n), for B in
the complementary index set, and are suitable C[[t]]-
generators of J.; of the form 0“+[an operator whose
terms have multiindices belonging to J|4| ct]-

Remark. Asobserved by Mironov [M1], the func-
tions in N - exp

S e

1=0 n>d;1

(un,(i) +d;(1— 5z‘1)un+1,(1))

are independent of the time variables, so there isn’t
really a deformation beyond the g-dimensional variety
AV, which indeed is Pic’ A.

Barsotti Equations [B]: 9 is a theta function if and
only if P5,.(9) span a finite-dimensional vector space,

Fu + v)d(u —v) = 29%(u Z Py, (Y
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§5. Examples I1I: Sato’s 7 function

A.N. Parshin proposed a different construction,
based on the theory of higher local fields, in which the
commuting partial differential operators are scalar.

Parshin’s ring contains Sato’s ring properly; the
two constructions have not yet been compared, but
this should be possible since Parshin gave a geometric
interpretation for the rings [P1-2].

An n-dimensional local field K (with “last” residue
field C) is the field of iterated Laurent series K =
C((z1))...((xyn)), with structure of a complete dis-
crete valuation ring O = C((z1)) ... ((zn-1))[|xr]] with
residue field an (n — 1)-dimensional local field. No-
tice that the order of the variables matters, in the
sense that C((z1))((z2)) does not contain the same
elements of C((z2))((x1)), e.g., although they are iso-
morphic. These are suited to give local coordinates
on an n-dimensional manifold, since the inverse of a
polynomial in x1, x2, say, can be written as the inverse
of the highest-order monomial times something entire,
so as a Laurent series it is bounded in both variables.
Whereas, the symbols

C(z1,2)) = Y, cywiad

litj <N

cannot be given a ring structure unless we want to
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define sums of infinitely many complex numbers, be-
cause ¢ + 5 = N involves infinitely many indices un-
less we bound j (or i) from above. With this defi-
nition, Parshin constructs a 2n-dimensional skew-field
P, infinite-dimensional over its center, namely the (for-
mal) pseudo-differential operators:

P =C((z1)) ... ((za))((07 1)) --- ((851))-

The order of the variables is also singled out in the
definition of the grading:

IfL=>Y.. a0 with a, # 0, we say that the
operator L has order m and write ordL = m.

If P, = {L c 7)|OI‘dL < Z}, then ...P_y C By C
... 18 a decreasing filtration of P by subspaces and
P = P, ® P_, where P_ = P_; and P, consists of
operators involving only nonnegative powers of 0,.

The highest term (h.t.) of an operator L is defined
by induction on n: if L =3 ..  a;0% and ordL = m,
then h.t.(L) = h.t.(ay,)-0™. If ht.(L) = fO7"* ...0mn
with 0 # f € C((z1))...((z,)), then we let v(L) =
(m1,...,my). We consider also the subring
E = C[[azl,...,xn]]((al_l))...((f);l)) of P, and E1 =
ENPLi.

E is much larger than Sato’s ring

Cllz1,- .-,z )][[07, 00 1Oz, .., 071 0y]]
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when n > 1.

FACT (Parshin 1999):

e An operator L € F is invertible in E if and only
if the coeflicient f in the highest-order term of L is in-
vertible in the ring C[[z1, ..., x,]]. If the highest-order
term f in L € P is an m-th power in C((x1)) ... ((xn))
(resp., C[[x1,...,2,]] for L € E) then there exists,
unique up to multiplication by m-th root of unity, an
operator M € P (resp. M € E) such that M™ = L.
Thus, Fy is a discrete valuation ring in P with residue

field

C((z1)) - (@) (07 1)) -+ - ((0521))-

o Let Ll - 61 —I—E_,...,Ln & 8n + FE_. Then
|L;, L;] = 0 for all 4,7 if and only if there exists an
operator S € 1+ E_ such that L, = S719;5, for all i.

e For L = (Lq,...,L,) as above, the flows

aL m m m m
= (P L) L] (L L), L))
mz(ml,...,mn) 6220 X---XZZO
commute, and if S € 14 P_ satisfies
0S

5 = — (S99 STY) S,

then L = (5815_1, e S(?nS_l) evolves according to
them.
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Fourier transforms as maps to (formal) Grass-
mannians

Nakayashiki’s construction of differential opera-
tors allows us to generalize the Krichever map in a
way that Parshin uses to extend it from curves to sur-
faces.

Parshin views the Krichever map as a consequence
of quasi-isomorphism of complexes:

L(X\p, F) & Fp = F, Rep, Kp

(X is a curve, p € X a smooth point, F a torsion-
free rank-r sheaf on X). Then if 2z is a formal local
parameter at p, and e, a trivialization of F at p, we

have O, = C[[2]], K, = C((z)) and canonical identi-
fications: T'(X\p, ) C Fp®p, Kp = = 7, R, Kp =
O@T ®o = C((2))®"

Then W = (X\p, F) C V = C((2)®" is the

(Krichever) map to Sato’s Grassmannian.
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When X is a (projective, irreducible) surface and
C' a curve on X and p a smooth point on the curve,
x € C, let:

A A

By (F) = ﬂ ((]}w ® Kg) N (Fz ® Og,p)), and
D#£C

Bo(F) = (Fe® Ke)n ([ ) Be)
TFEP
for example, when X = P2, C = P!, then B,(Ox) =
Cllu]]((£)), Bc(Ox) = C[U_ll(( 1t)) Op.c = C((w))[[1]],
0, = Cl[u, t]].

The analog of the Krichever map sends the data:
(X7 Cap S Ca Zlaz27f7 6p)7

with local equation for C' given by z9 = 0 near p, to a
pair of subspaces B = Bo(Ox) C K,W = Bg(F) C
V as above, with K = C((z1))((22)), attendant to
two complexes whose cohomologies are isomorphic to

H (X,0x) and H (X, F).
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Baker function

Lee [L1-3] was able gave a Sato-Grassmannian in-
terpretation of Parshin’s equations.

The Baker function associated to an operator S €
1 4+ P_ is defined to be ¥(t,z) = Sexp(£(t, 2)) where
£(t,2) = X 4. >0 taz”, for an auxiliary set of variables
2o Since B

0% exp(&(t, z)) = 2% exp(&(t, 2)),

the Baker function has the form

~

W(t, 2) = ¥(t, 2) exp(£(2, 2))

where ¥(t, z) is a formal power series in 21, ..., 2, and

%w = (L™);4¢ for an L that flows as in the KP

hierarchy.
For a vector (s1,...,s,) € C", the operator G(s)
on functions f(¢, z) is defined by G(s)f(t,2) = f((ta —

a~1s7%),, z) with the multiindex notation

alsT =a7t Lo ts M s

(here a; > 0). A 7-function for the operator S is a for-

~

mal solutions of the equation ¥(t, z) = ¥(t, z) exp(&(t, 2)) =
% exp&(t, z). It can be shown that such a func-

tion exists by solving recursively for its coefficients.
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Tau function

Segal and Wilson gave an analytic model of Sato’s
Grassmannian, consisting of certain subspaces of the
Hilbert space of square-integrable functions on the n-
torus.

Let H = L?(S!) be the Hilbert space consisting
of all square-integrable functions on S!' = {z € C |
|z| = 1}. H can be written in the form

H:<z°‘|a€Z>C,

with the customary notation for the Hilbert-space span,
and the usual inner product. H can be decomposed
into the sum of two orthogonal subspaces, H = H, &
H_,H_={(z1t . ,z7™ . Yand H = (1,2,...,2™,...)
(here m is any positive integer). The Segal-Wilson
Grassmannian Gr(H) consists of the subspaces W of
H such that the projection py of W to H. is Fred-
holm, and the projection p_ to H_ is Hilbert-Schmidt.
The formal Grassmannian consists of the subspaces W
“commensurable” with H , in the sense that dim(W +
H)/W N Hy is finite, or equivalently [S], dim(W N
H_)=dimH/(W + H_) < 0.

An analogous construction can be given for the
multivariable case. We fix a positive integer n and
denote by z = (z1,...,2,) the coordinate function
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for C"*. The multi-index notation is defined as fol-

lows: 2% = 2729 |a| =a1+ -+ a, if 2z =
(21,...,2n) € C" and a = (a1,...,a,) € Z". If
B8 = (B1,-...,08,) is another element of Z™, we write

a < B when o; < f3; for each 7 € {1,...,n}.

Let H = L?(T") be the Hilbert space consisting
of all square-integrable functions on the n-torus

T ={(z1,...,2n) €EC" | |z1]| = -+ = |2n| = 1},

which can be identified with the product of n copies
of the unit circle S' ¢ C*. Then the Hilbert space H
can be written in the form

H = (z%ae€Z")c.

We define a splitting H = H, & H_ adapted to
Parshin’s filtration and Krichever map [P1-3].

Then, as in the one-variable case, there is a one-
to-one correspondence between certain subspaces of H
commensurable to

Hy :=C|[z, ..., 24]]

and wave functions, given by ¢ — W, where a span-
ning set for W is given by all derivatives 9{*...0774)
with 5€0, evaluated at t = 0. We take this to be the
Grassmannian Gr(H).
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Again, H has a decomposition of the form
H=H,®H_

where H_ has basis the set of monomials complemen-
tary to Hy. We denote by p. : H — H, and p_ :
H — H_ the natural projection maps. A subspace W
of H is said to be transversal to H_ if the restriction
Pt |lw: W — Hy of py to W is an isomorphism.

We consider a holomorphic function g : D" — C
defined on the closed polydisk

D" ={(z1,...,2n) € C"||z1] £ 1,...,|2n| £ 1}
with g(0) = 1, where 0 = (0,...,0) € Z". If we set

7t ={a € Z" | > 0, a # 0},

then g(z) = g(z1,...,2,) can be written in the form
g9(z) = exp< Z tazo‘)
aEZi

with t, € C for all o € Z7.

We define the maps pg, py—1 : H — H by
(g f)(2) = 9(2)f(2),  (wg-1)(2) = g(2) 7" f(2)
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for all f € W and z € C"*. Since p,-1(H;) C Hy,
with respect to the decomposition of H, the map p -1
can be represented by a block matrix of the form

_la b
/’Lg_l_ 0 c )

whose entries are the maps
G,IH+—>H_|_, bIH_—)H_|_, c: H_ — H_.

Let I'y denote the space of holomorphic functions
g: D" — C with g(0) = 1. Given W € Gr(H), we set

'Y ={g € I'y|u,~+W is transversal to H_}.
Thus g belongs to FK/ if and only if the map

p+|ug—1W : g—1 W — H, is an isomorphism.

Let S be the complex vector space of formal Lau-

rent series in zy ',..., 2z, " consisting of series of the

form
v = Z fa(t)z®

a<lv

for some v € Z" with t = ({a)aczr. We consider the
subspace S_ of § consisting of the series which can be
written as

ko
v = Z fr(t; 21, .. .,zn_l)zfi

k=—o0
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for some kg € Z with kg < —1, so that there is a
decomposition of the form

S=S,08_,

where S consists of the series of the form

Lo
Z fr(t;z1,. .., zn_l)zﬁ
k=0

for some nonzero integer /.

Given an element W of the Grassmannian Gr(H ),
the associated Baker function wyy (g, z) is the function
defined for g € Fﬂ/ and z € T™ satisfying the condi-
tions

ww (g,2) €W, Mg—lwW(gaz) =1+u

with u e S_.

Since each element g € I‘K/ can be written in the
exponential form, the Baker function wyw (g, z) may be
regarded as a function for ¢ = ({o)aczr and z € T™.
Thus we may write

ww(g,2) = ww(t, 2),

t — (ta)QGZi.
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Let W € Gr(H) be transversal to H_, so that the
map p+|w : W — Hy is an isomorphism, and let g be
an element of I'YY. We consider the sequence

(p+ Iw)™" pg P+ Hyg
H, — W — pu,—W —>H, — Hy

of complex linear maps.

Given g € 'Y and an element W € Gr(H) transver-
sal to H_, the associated 7-function Ty (g) = Tw (t) =
TW((ta)a€Z1) is the function

mw(g) = det(py 0 py 0 prg-1 0 (p4 lw) ™)

given by the determinant of the composite of the linear
maps above.

Let A: H. — H_ be the linear map given by A =
p_o (ps|w)~!. Then the 7-function can be written in
the form

w(g) = det(1 + a_le),

where a and b are as above and 1 denotes the identity
map on H,.
We define the rational numbers €, for oo € Z1} by

requiring
E €L =
aEZi
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o0 _1k
SR E )

k=1 BEL?

where x = (x1,...,%,) is a multivariable.

Theorem [LP]| Let W € Gr(H) be transversal,
and let g : D™ — C be an exponential.
Then the associated 7-function

w(9) = Tw((ta)aczr)
satisfies

7_W((tcu T eaz_a)ozEZ1)

™ ((ta)aGZE)

:ug_lwW(gv Z) —

Y

where wyy (g, 2) is the Baker function.
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