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The Purpose of Our Researches

We would like to:

• understand (partial or ordinary) algebraic differential eqautions
of Painlevé type by means of geometry of the phase spaces and
their relative compactifications.
• find more (partial or ordinary) algebraic differential equations of
Painlevé type of higher orders and to classify all of them.



Two Main Strategy

• Strategy 1:
Compactify the phase space by adding divisors on the boundary. Then
analyse the order of poles of ODEs. Painlevé property of ODE imposes
rather strong conditions on the order of poles. ((n− log)-conditions).
• Conjecture for (1− log)-condition:
For each ODE ṽ of Painlevé type, we can find a good model of family of
compactifications of phase spaces, such that ṽ satisfy the (1−log)-conditions
on each boundary divisors.
• Resolution of accessible singularities:
Under the (1−log)-conditions, the accessible singularities can be considered
as the zero of some vector bundles on the divisor. Then if there are no ac-
cessible singularities at all, divisor satisfies the Okamoto-Painlevé conditions.
This fits into our notion of Okamoto-Painlevé pair.

• Related works: K.Okamoto, H.Sakai, S—Umeumura, S—Takebe—Terajima,



• Strategy 2:Moduli theoretic methods—Riemann—Hilbert correspondeces
Construct the family of the moduli spacesM −→ T × Λ (resp. M −→
T × Λ) of stable parabolic connections and stable φ-parabolic connections.
Moreover, we can construct the family of the moduli spacesRep −→ T×A
of representations. Then we have the following Riemann-Hilbert correspon-
dences,

M RH−−→ Rep
π

⏐⏐y ⏐⏐yφ
T × Λ (1×µ)−−−→ T ×A

(1)

• Fact: Painlevé equations = Isomonodromic Flows:
Painlevé equations can be derived from the isomonodromic flows onM.

•Main Theorem:
Riemann—Hilbert correspondences give proper surjective bimeromorphic an-
alytic morphisms between fibers. This facts shows that the isomonodromic
flows satisfies the Painlevé properties.
• Related works:
Fuchs, Miwa-Jimbo-Ueno (1980— ??), K. Iwasaki(1990—), M.Inaba—K.Iwasaki—
S (2003—), M. Inaba (2006), K. Iwasaki—T. Uehara(2005—).



Plan of Talk

• 1 Painlevé Property
• 2 Classification of ODEs with Painlevé Property of order ≤ 2.
(due to Poincaré, Fuchs, Painlevé, Gambier).
• 3 Geometry of Spaces of initial Conditions, Okamoto—Painlevé
pairs and (1− log)-conditions
• 4 Isomonodromic deformation of Linear ODEs or stable parabolic
connections.
• 5 Riemann-Hilbert correspondences.
• 6 Compactification of the moduli space of stable parabolic con-
nections by stable φ-connections.
• 7 Geometry of Riemann-Hilbert correspodences. (Bäcklund trans-
formations and Riccati solutions)



1. Painlevé Property

Algebraic ODE:

F (t, x,
dx

dt
,
d2x

dt2
, · · · , d

mx

dt
) = 0 (2)

where

F (t, x0, x1, x2, · · · , xm) ∈ C(t)[x0, x1, · · · , xm]
Cauchy Problem: Take

(t0, c0) = (t0, c0, c1, · · · , cm) ∈ {(t0, c0) ∈ Cm+2|F = 0}.
Find a solution x(t) = ϕ(t; (t0, c0)) such that

diϕ

dti
(t0) = ci, (i = 0, . . . ,m). (3)

If the equation (2) is linear, we see that the singularity of the
solution x(t) = ϕ(t, (t0, c0)) can be detected from the equation
itself and does not depend on the initial values.



Example 1.1. Non-movable singularities

Consider the linear ODEs and their solutions:

(t− a)dx
dt
= 1. =⇒ x(t) = log(t− a) + c1

dx

dt
=
−x

(t− a)2,=⇒ x(t) = c2e
1
t−a

Solutions have the singularities at t = a which do not depend on

the initial values (= integral constants c1, c2). Such singularities are

called non-movable singularities .



Example 1.2.Movable singularities
0 = d

dx.

(1)m ≥ 2, mxm−1x0 = 1 =⇒ x = m
√
t− c.

movable algebraic branched point .
(2) x00 + (x0)2 = 0 =⇒ x = log(t− c1) + c2.

movable logarithmic branched point .
(3) (xx00 − (x0)2)2 + 4x(x0)3 = 0 =⇒ x = c1 exp(−1/(t− c2)).

movable essential singular point .

(4) x0 − x2 = 0 =⇒ x = −1
t−c1,.

movable pole .



1.1. Painlevé property.

Definition 1.1.An algebraic ODE (2) has Painlevé property if the

generic solution of (2) has only poles as its movable singularities .



Example 1.3. : The ODE for Weierstrass ℘ function
has Painlevé property.

Assume that g2, g3 ∈ C, g32 − 27g23 6= 0.

(x0)2 = 4x3 − g2x− g3
The solutions are given by

x(t) = ℘(t− b)
where ℘(t) is the Weierstrass ℘-function. The constant b can be
determined by the initial condition, so the solution x(t) = ℘(t− b)
has movable poles of order 2 at t ≡ b mod Λ, periods of the above
elliptic curve, and no other singularity.



Example 2: Riccati equation

x0 = a(t)x2 + b(t)x + c(t). (4)

By the change of unknown x −→ u,

x = − 1
a(t)

d
dt log(u) = −

1
a(t)

u0
u , (5)

the Riccati equation (4) is transformed into the linear equation

u00 − [a
0(t)
a(t)

+ b(t)]u0 + a(t)c(t)u = 0. (6)

Hence the solutions u(t) of (6) has only nonmovable singularities
and only movable singularities of x(t) is the zero of u(t). Since the
zero of u(t) has a finite order, then the movable singularities of x(t)
are only poles.



Classification of 1st order ODE with Painlevé property

Theorem 1.1. (L. Fuchs, H. Poincaré, J. Malmquist, M. Matsuda).
For m = 1, an algebraic ODE (2) has Painlevé property if and only
if (2) can be transformed into one of the following equations:

(1)Riccati equation

x0 = a(t)x2 + b(t)x + c(t). (7)

(2)The equation of the Weierstrass ℘ function .

(x0)2 = 4x3 − g2x− g3 (8)

(g2, g3 ∈ C, g32 − 27g23 6= 0).
(3) Or, one can integrate (2) algebraically.

I will give a very simple geometric proof for Theorem 1.1.



The case of order 2 —(original) Painlevé equations

Definition 1.2.Painlevé equation is a second order algebraic ODE
of rational type, that is,

x
00
= R(x, x0, t), R(x, y, t) ∈ C(x, y, t) (9)

satisfying Painlevé property.

Painlevé and his student B.O. Gambier showed that Painlevé equa-
tion reduces, by an approptiate transformation of the variables, to
an equation which can be integrated by quadrature, or to a linear
equation, or to PJ , J = I, II, III, IV, V, V I. (See Table 1). Here
α, β, γ and δ are complex constants.



Painlevé—Gambier Classification

PI :
d2x

dt2
= 6x2 + t,

PII :
d2x

dt2
= 2x3 + tx+ α,

PIII :
d2x

dt2
=

1

x

µ
dx

dt

¶2

− 1

t

dx

dt
+

1

t
(αx2 + β) + γx3 +

δ

x
,

PIV :
d2x

dt2
=

1

2x

µ
dx

dt

¶2

+
3

2
x3 + 4tx2 + 2(t2 − α)x+

β

x
,

PV :
d2x

dt2
=

µ
1

2x
+

1

x− 1

¶µ
dx

dt

¶2

− 1

t

dx

dt
+

(x− 1)2

t2

µ
αx+

β

x

¶
+γ
x

t
+ δ

x(x+ 1)

x− 1
,

PV I :
d2x

dt2
=

1

2

µ
1

x
+

1

x− 1
+

1

x− t

¶µ
dx

dt

¶2

−
µ

1

t
+

1

t− 1
+

1

x− t

¶µ
dx

dt

¶
,

+
x(x− 1)(x− t)
t2(t− 1)2

∙
α− β

t

x2
+ γ

t− 1

(x− 1)2
+

µ
1

2
− δ

¶
t(t− 1)

(x− t)2

¸
.

Table 1



2. Geometry of Spaces of initial Conditions,
Okamoto—Painlevé pairs and (1− log)-conditions

First, let us recall that each PJ is equivalent to a Hamiltonian
system HJ

(HJ) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx

dt
=
∂HJ
∂y

,

dy

dt
= −∂HJ

∂x
,

(10)



HI(x, y, t) =
1

2
y2 − 2x3 − tx,

HII(x, y, t) =
1

2
y2 −

µ
x2 +

t

2

¶
y −

µ
α +

1

2

¶
x,

HIII(x, y, t) =
1

t

£
2x2y2 −

©
2η∞tx

2 + (2κ0 + 1)x− 2η0t
ª
y + η∞ (κ0 + κ∞) tx

¤
,

HIV (x, y, t) = 2xy2 −
©
x2 + 2tx + 2κ0

ª
y + κ∞x,

HV (x, y, t) =
1

t

£
x(x− 1)2y2 −

©
κ0(x− 1)2 + κtx(x− 1)− ηtx

ª
y + κ∞(x− 1)

¤
,µ

κ :=
1

4

©
(κ0 + κt)

2 − κ2
∞
ª¶
,

HV I(x, y, t) =
1

t(t− 1)
£
x(x− 1)(x− t)y2 − {κ0(x− 1)(x− t)

+κ1x(x− t) + (κt − 1)x(x− 1)} y + κ(x− t)]µ
κ :=

1

4

©
(κ0 + κ1 + κt − 1)2 − κ2

∞
ª¶
.

Table 2



Consider the Painlevé vector field

(HJ) : v = ∂
∂t +

∂HJ
∂y

∂
∂x −

∂HJ
∂x

∂
∂y (11)

This Painlevé vector field (HJ) is an algebraic regular vector field
defined on the space C2 × BJ 3 (x, y, t).
where BJ = C, C \ {0} or C \ {0, 1}.



v C2 × BJ ,→ P2 × BJ ṽ

π ↓ ↓

BJ = BJ

(12)

L = P2 \C2 ' P1.

A rational vector field

(HJ) : ṽ = ∂
∂t +

∂HJ
∂y

∂
∂x −

∂HJ
∂x

∂
∂y

has the pole along L×BJ .



Resolutions of Accessible Singularites
Okamoto’s space of initial conditions

ṽ P2 × BJ
τ← S ṽ

↓ . π

BJ

(13)



t

t0 t1 t2

(x0, y0, t0)

P2 × BIV

L

P2 − L = C2

t

t0 t1 t2

(x0, y0, t0)

S

BIV

π

Figure 1. Example: Painlevé IV case.



Work of K. Okamoto, H. Sakai, S-Takebe, S-Takebe-
Terajima
(Observations) After the resolutions of accessible singularities,
we see that:

• S = St, t ∈ BJ is a rational surface which is 9-points blowings
ups of P2.
• S = St has a global rational two forms ω such that the pole di-
visor Y of ω (= anti-canonical divisor −KS) satisfies the follow-
ing Okamoto—Painlevé conditions. −KS = Y =

Pr
i=1miYi.

D = Yred =
P
Yi

deg−(KS)|Yi = −KS · Yi = Y · Yi = 0 1 ≤
∀ i ≤ r . (14)

•Moreover the Painlevé vector field ṽ satisfies the (1 − log)-
condition

ṽ ∈ H0(S,Θ(− logD)(D)) (15)

where D = Yred.



Main Questions

• Can one recover the Painlevé equations from the geometry of
spaces of initial conditions ?
•What is the meaning of these two conditions?
• How are they essential for Painleve property?



2.1. Definition of Okamoto—Painlevé pairs .

Definition 2.1. Let (S, Y ) be a pair of a complex projective
smooth rational surface S and an anti-canonical divisor Y ∈ |−KS|
of S. Let Y =

Pr
i=1miYi be the irreducible decomposition of Y .

We call a pair
(S, Y )

a rational Okamoto—Painlevé Pair if for all i, 1 ≤ i ≤ r,
deg(−KS)|Yi = Y · Yi = deg Y|Yi = 0. (16)

(Okamoto—Painlevé condition ).



Configuration of −KS = Y
for a rational Okamoto— Painlevé pair (S, Y )

For a rational Okamoto—Painlevé pair (S, Y ), let us set

−KS = Y =
rX
i=1

miYi.

One can show that

Config. of Y is one as Kodaira—Néron’s singular elliptic curves

⇐⇒
Okamoto—Painlevé conditions

deg−(KS)|Yi = Y · Yi = 0 for all i, 1 ≤ i ≤ m.
Moreover r ≤ 9.



Classification of rational Okamoto—Painlevé pairs

Theorem 2.1. ( Sakai, Saito—Takebe—Terajima)
Let (S, Y ) be a rational Okamoto—Painlevé pair such that Yred is
a divisor with only normal crossings. Then the type of Y is same as
one in the list of Table 3.



Y or R(Y ) Ẽ8 D̃8 Ẽ7 D̃7 D̃6 Ẽ6 D̃5 D̃4 Ãr−1 Ã0
∗

1 ≤ r ≤ 9 r = 1

Kodaira’s notation II∗ I∗4 III∗ I∗3 I∗2 IV ∗ I∗1 I∗0 Ir I0

Painlevé equation PI P D̃8

III PII P D̃7

III PIII PIV PV PV I none none

r 9 9 8 8 7 7 6 5 r 1

Table 3

Note that in Figure 2, the real line shows that a smooth rational curve C ' P1 with C2 = −2 and the number
near the each rational curve denotes the multiplicity in Y = −KS.
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Figure 3

Geometric Picture of Painlevé Dynamics
Family of Okamoto—Painlevé pairs

S0 ,→ S ←- D
↓ π . π

BJ × ΛJ
Here π is a smooth projective family of surfaces andBJ ⊂ SpecC[t],
ΛJ ' Cs and D is a flat family of normal crossing divisors.
•We can see that

ṽ ∈ H0(S,ΘS(−logD)(D))



and

π∗(ṽ) =
∂

∂t
• There exists rational relative two forms Ω on S such that supp
of divisor (Ω) = D and

ιṽ(Ω) = 0 =⇒　 ṽ: non-autnomous Hamitonian system

• For each (t0,λ0) ∈ BJ×ΛJ , the image of the Kodaira—Spencer
map

ρ : T(t0,λ0)(BJ) −→ H1(S(t0,λ0),ΘS(t0,λ0)(− logD(t0,λ0)))
lies in the local cohomology group

ρ(
∂

∂t
) ∈ H1D(t0,λ0))

(S(t0,λ0),ΘS(t0,λ0)(− logD(t0,λ0))) ' C



F2

Y1 Y2 Y3 Y4

Y0

t1 = 0 t2 = 1 t3 = t t4 =∞

π

P1

∞-section

Figure 4. Okamoto-Painlevé pair of type D
(1)
4



3. (n− log)-conditions

Consider an system of ODE on C×Cm
dxi
dt
= ai(t, xi, · · · , xm), 1 ≤ i ≤ m (17)

B ×Cm ,→ B × S ←- B ×D0 = D
↓ ↓ ↓
B = B = B

(18)

X1

p

t = t1
t

D1(X1 = 0)

X2, · · · , Xm

Figure 5. Coordinates on Boundary Divisors



ṽ =
∂

∂t
+
A1
X
n1
1

∂

∂X1
+

mX
i=2

Ai
X
ni
1

∂

∂Xi
(19)

ΘS(− logD) = {θ ∈ ΘS, θ · ID ⊂ ID} (20)

ΘB×S(− logD) = {θ ∈ ΘB×S, θ · ID ⊂ ID} (21)

Proposition 3.1. If

n1 = max
1≤i≤m

(ni) = n ≥ 1 (22)

there exists a solution curve of ṽ such that p = (t, 0, · · · , 0) is an
movable branched point. So if ṽ satisfies the Painlevé property, we
have

n1 < max
1≤i≤m

(ni) = n (23)

or

max
1≤i≤m

(ni) = n = 0, (24)



that is, ṽ is regular along D1.

X1

p

t = t1
t

D1(X1 = 0)

X2, · · · , Xm

n1 = 1
movable branch point of order 2

Figure 6



If ṽ does have poles of order n along D = B × D1, but it does
not have the algebraic branched points along D = B × D1, then
locally at the boudnary divisor, one can write ṽ as

ṽ =
∂

∂t
+

B1

Xn−11

∂

∂X1
+

mX
i=2

Bi
Xn1

∂

∂Xi
(25)

Globally, this implies that:

ṽ ∈ H0(B × S,ΘB×S(− logD)(nD)) (26)

Definition 3.1. ṽ satifies (n − log)-conditions if it satisfies the
condition (26).

If m = 1 and ṽ satisfies the Painlevé property, ṽ must be regular
everywhere.



Conjecture 3.1. If ṽ satisfies the Painlevé property, then after
taking a suitable good model of the compactifications of the phase
spaces, ṽ satisfies the (1− log)-conditions along any divisor D.

ṽ =
∂

∂t
+ B1

∂

∂X1
+
B2
X1

∂

∂X2
(27)

Under the assumption that (1 − log)-conditions holds for along
any irreducible components Yi of Okamoto—Painlevé pair (S, Y ),
the conditions

−KS · Yi = 0 ⇐⇒ no accessible singular point on Yi
−KS · Yi = degΘYi ⊗NYi/S



Proof of Theorem 1.1 (First order ODE with P.P.)
Let

C = ∪t∈TCt = ∪t∈T{(x, y) ∈ C2 | F (t, x, y) = 0}
be the family π : C −→ T = SpecC[t] of affine curves parametrized
by t ∈ T = C. Assume that Ct is smooth and irreducible for general
t ∈ T . We can take the smooth relative compactification

C ,→ C ←- C0 ←- C00
π ↓ π ↓ ↓ f ↓
T = T ←- T \D ←- T \ (D ∪D0) = T 00

(28)

D: the set of critical values of π. The genus g(Ct) of curve Ct
is constant. Algebraic ODE (2) F (t, x, x0) = 0 defines a rational
vector field on C0

v =
∂

∂t
+ y

∂

∂x
(29)



Delete the set D0 ⊂ T \ D of non-movable singularities of v, one

can obtain the rational vector field v on C00.
C00
f ↓
T 00

(30)

One can show that if the rational vector field v (29) satisfies the
Painlevé property,

• v is a regular vector field on C00 (has no poles). (If v has a pole
along a divisor, then v has a movable branced points along the
divisor).
• and the moduli of Ct is constant. Consider the relative tangent
sheaf

0 −→ ΘC00/T ” −→ ΘC” −→ f∗ΘT” −→ 0

Note that ΘT” is globally generated by
∂
∂t.



Taking the direct images, we have

f∗(ΘC”) −→ ΘT”
ρ−→ R1f∗(ΘC00/T ”)

where ρ is the Kodaira—Spencer map and the image ρ( ∂∂t) is in

R1f∗(ΘC00/T”). The regular vector field v is a global section

of ΘC” such that f∗(v) = ρ( ∂∂t). Hence such v exists if and

only if Kodaira-Spencer map ρ is zero. Now the moduli of Ct
is constant.

Ct g(Ct) ODE

Case (1) P1 0 Riccati
Case (2) E (elliptic curve) 1 ODE for ℘
Case (3) a curve of genus ≥ 2 ≥ 2 alg. integrable



Works in New, in Progress and in Future

(1) DS-hierarchy with similarity reduction =⇒ Painlevé equations

(Noumi—Yamada, S. Kakei, T. Suzuki, K. Fuji, · · · .)
(2) Coupled Painlevé system and Higher ordered Painlevé equations

with affine Weyl group symmetries. (Sasano)

(3) Dynamical Systems associated to Painlevé VI via Riemann-Hilbert

correspondences. (K. Iwasaki and T. Uehara (2005–))



4. Strategy 2: Moduli of stable parabolic connections and

Riemann—Hilbert correspondences



• Translations of the terminology

Analysis Geometry
C: a compact R. surface of genus g C: a nonsing. proj. curve of genus g
t = (t1, · · · , tn); n-distinct pts on C t = (t1, · · · , tn); n-distinct pts on C

dx
dz =

Pn
i=1

Ai(z)
z−ti x ∇ : E −→ E ⊗ Ω1

C(D(t))

Linear D.E. on C with A connection on vect. bdl E of rank r
at most regular sing. at t. on C with at most 1st order poles at t.

λ
(i)
j :Eigenvalues of Ai(ti) λ

(i)
j : Eigenvalues of resti(∇) ∈ End(E|ti)

Time varaiables T =Mg,n = {(C, t)}
(s1, . . . , s3g−3, t1, . . . , tn) Moduli of n-pointed curves of genus g
Space of initial conditions Moduli space of stable parabolic

S(C,t,λ) connectionsMα(C, t)λ
Phase space Family of moduli spaces
S −→ T × Λrn M −→ T × Λrn

Riemann-Hilbert correspondence RHλ :Mα
λ −→ Ra

Isomonodromic deformations of L.D.E. Pullback of local constant section

Schlessinger equation Zero curvature equations onM



• Translations of Properties

Analysis Geometry
Painlevé property Properness + Surjectivity of

RHλ :Mα
λ −→ Ra

Symmetry ( Bäklund transformation) Elementary transformations of s.p. conn.
Special Birational map (Flop)

Simple reflections in Bäcklund transf. s̃ :M· · · −→M
appeared in the resol. of simult. sing. of Ra

Hamitonian Structures Symplectic str. onMα(C, t)λ
on Rsmootha and RHλ is a symmplectic map

Spacial solutions like Riccati solution Singylarities of Ra
Poincaré return map or Natural actions of π1(M◦

g,n, ∗)
non-linear monodromy on isomonodromic flows, R(C0,t0),a and

of equations of Painlevé type onMα((C0, t0))λ
τ -functions Sections of the determinant line bundle on

M which are flat on isomonod. flows



Stable Parabolic connections

Setting

Fix the following data

(C, t, (L,∇L), (λ(i)
j )) (31)

which consists of

• C : a complex smooth projective curve of genus g,
• t = (t1, · · · , tn): a set of n-ditinct points on C.
( Put D(t) = t1 + · · · + tn).
• (L,∇L): a line bundle on C with a logarithmic connection

∇L : L −→ L⊗ Ω1
C(D(t)).

• λ = (λ(i)
j )1≤i≤n,0≤j≤r−1 ∈ Cnr such that

Pr−1
j=0 λ

(i)
j = resti(∇L).



Moduli space of stable parabolic connections

We can consider the moduli space of stable parabolic connec-
tion on C with logarithmic singularities at D(t):

Mα(C, t, L)λ = {(E,∇E, {l
(i)
j }1≤i≤n,0≤j≤r−1,Ψ)}/ ' (32)

•E : a vector bundle of rank r on C
•∇ : E −→ E ⊗ ΩC(D(t)) :a logarithmic connection
•Ψ : ∧rE '−→ L : a horizontal isomorphism (Fixing the deter-
minant)

•E|ti = l
(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ lr = 0: a filtration of the

fiber at ti such that dim
³
l
(i)
j /l

(i)
j+1

´
= 1 such that³

resti(∇)− λ
(i)
j Id

´
(l
(i)
j ) ⊂ l

(i)
j+1



α-stability

Take a sequence of rational numbers α = (α
(i)
j )
1≤i≤n
1≤j≤r such that

0 < α
(i)
1 < α

(i)
2 < · · · < α

(i)
r < 1 (33)

for i = 1, . . . , n and α
(i)
j 6= α

(i0)
j0 for (i, j) 6= (i0, j0). We choose

α = (α
(i)
j ) sufficiently generic. Let (E,∇, {l

(i)
∗ }1≤i≤n) be a (t,λ)-

parabolic connection, and F ⊂ E a nonzero subbundle satisfying

∇(F ) ⊂ F ⊗ Ω1C(D(t)). We define integers len(F )
(i)
j by

len(F )
(i)
j = dim(F |ti ∩ l

(i)
j−1)/(F |ti ∩ l

(i)
j ). (34)

Note that len(E)
(i)
j = dim(l

(i)
j−1/l

(i)
j ) = 1 for 1 ≤ j ≤ r.

Definition 4.1. A parabolic connection (E,∇, {l(i)∗ }1≤i≤n) is
α-stable if for any proper nonzero subbundle F $ E satisfying



∇(F ) ⊂ F ⊗ Ω1C(D(t)), the inequality
degF +

Pm
i=1

Pr
j=1 α

(i)
j len(F )

(i)
j

rankF
<
degE +

Pn
i=1

Pr
j=1α

(i)
j len(E)

(i)
j

rankE
(35)

holds.



Moduli space of SLr-rep. of the fundamental group

Take the categorical quotient of affine variety

Rep(C, t, r) = {ρ : π1(C \Dt) −→ SLr(C)}//Ad(SLr(C))
(36)

(ρ1, ρ2 ∈ Hom(π1(C \D(t)), SLr(C)) are Jordan equivalent iff sem(ρ1) ' sem(ρ2)).

Fix:
a =

³
a
(i)
j

´
1≤i≤n,1≤j≤r−1

∈ Ar,n = Cn(r−1)

Then we define another moduli space of SLr-representations with
fixed characteristic polynomial of monodromies around ti:

Rep(C, t, r)a =
n
[ρ] ∈ Rep(C, t, r), det(sIr − ρ(γi)) = χ

a(i)
(s)
o

where

χ
a(i)
(s) = sr + a

(i)
r−1s

r−1 + · · · + a(i)1 s + (−1)r.



Riemann-Hilbert correspondence

Assume that r ≥ 2, n ≥ 1 and nr − 2r − 2 > 0 when g = 0,
n ≥ 2. (Moreover the weight α is generic). Then the Riemann-
Hilbert correspondence

RH(C,t,λ) :Mα(C, t, L)λ −→ Rep(C, t, r)a (37)

can be defined by

(E,∇E, {l(i)j },Ψ) 7→ ker(∇an|C\Dt)

where

χ
a(i)
(s) =

r−1Y
j=0

(s− exp(−2π
√
−1λ(i)j ))

Note that

dimMα(C, t, L)λ = (r − 1)(2(r + 1)(g − 1) + rn)



Fundamental Results

Theorem 4.1. (Inaba-Iwasaki-Saito (r = 2, g = 0, n ≥ 4), Inaba
(general case)) Under the notation as above, we have the following.

(1) The modulis space Mα(C, t, L)λ is a nonsingular alge-
braic manifold with a natural symplectic structure.

(2) The modulis spaceMα(C, t, L)λ has a natural compactifica-
tion Mα(C, t, L)λ which is the moduli space of the φ-stable
parabolic connections.



Theorem 4.2. (Inaba-Iwasaki-Saito (r = 2, g = 0, n ≥ 4), Inaba
(general case)): Under the conditions above, the Riemann-Hilbert
correspondense

RHC,t,λ :Mα(C, t, L)λ −→ Rep(C, t, r)a (38)

is a proper surjective bimeromorphic map. Hence the
Riemann-Hilbert correspondence gives an (analytic) resolution of
singularities. MoreoverRHC,t,λ preserves the symplectic structures
on Rep(C, t, r)aMα(C, t, L)λ.

Remark 4.1. • Rep(C, t, r)a is an affine scheme
which may have singularities for special a.

• In the case of g = 0, we can show that dω = 0.
Moreover, we expect that dω = 0 in general.



Varying time (C, t) and parameter λ, a

Consider the open set of the moduli space of n-pointed curves of
genus g

Mo
g,n = {(C, t) = (C, t1, · · · , tn), ti 6= tj, i 6= j}

and the universal curve π : C −→ Mo
g,n. Fixing a relative line

bundle L for π with logarithmic connection ∇L we can obtain the
family of moduli spaces over Mo

g,n × Λ(L)

Mα
g,n(L)

↓ πn
Mo
g,n × Λ(L)

(39)

such that π−1n ((C, t, L,λ)) =Mα(C, t, L)λ



We can also construct the fiber space

Repr,ng

↓ φr,ng

Mo
g,n ×Ar,n

(40)

such that

(φ
r,n
g )
−1((C, t,a)) = Rep(C, t, SLr)a.



Riemann-Hilbert corr. in family

We can obtain the following commutative diagram:

Mα(L)
RHn−−−→ Repr,ng

πn

⏐⏐y ⏐⏐yφr,ng
Mo
g,n × Λ(L)

(1×µr,n)−−−−−→ Mo
g,n ×Ar,n

(41)

where µr,n can be given by the relations

χa(s) =
r−1Y
j=0

(s− exp(−2π
√
−1λ(i)j ))

that is, a
(i)
k are (±1)× kth fundamental symmetric functions of

exp(−2π
√
−1λ(i)j ).



Geometric Isomonodromic Deform. of L.D.E.
The case of generic exponents λ
Fix a generic λ ∈ Λ(L) and set a = µr,n(λ) so that

RHC,t,λ :Mα(C, t, L)λ
'−→ Rep(C, t, r)a

is an analytic isomorphism for any (C, t) ∈Mo
g,n.

•
Algebraic structure of Rep(C, t, r)a
does not change under variation of (C, t), that is,
Rep(C, t, r)a ' Rep(C0, t0, r)a.

• Algebraic structure ofMα(C, t, L)λ
change under variation of (C, t).



Taking the universal covering map ]Mo
g,n −→ Mo

g,n, and pulling
back we obtain the diagram:

M̂α
g,n(L)λ

RHn,λ−−−−→
'

µ
R̂epr,ng

¶
a
' Rep(C0, t0, r)a × ]Mo

g,n

(π̃n)λ

⏐⏐y ⏐⏐yφ̃r,ng,a
]Mo
g,n × {λ}

(1×µr,n)−−−−−→ ]Mo
g,n × a.

Since φ̃
r,n
g,a is isomorphic to product family, it has a unique constant

section sx passing through a point x ∈ Rep(C0, t0, r)a × {t0}.
Pulling back the section {sx}x∈Rep(C0,t0,r)a×{t0} via RHλ, we
obtain the set of analytic sections of (π̃n)λ : M̂α

g,n(L)λ→ ]Mo
g,n×

{λ}
{s̃x}x∈Rep(C0,t0,r)a×{t0}.



The family of sections {s̃x}x gives the splitting homomorphism
ṽλ : (π̃n)

∗
λ(T ]Mo

g,n×{λ}
) −→ TM̂α

g,n(L)λ

for the natural homomorphism TM̂α
g,n(L)λ

−→ (π̃n)
∗
λ(T ]Mo

g,n
×

{λ}). Then the subbundle
IFg,n,λ = ṽλ((π̃n)∗λ(T ]Mo

g,n×{λ}
)) ⊂ TM̂α

g,n(L)λ
. (42)

Take any local generators of the tangent sheaf of T ]Mo
g,n

h ∂
∂q1
, . . . ,

∂

∂qN
i.

where N = 3g−3+n = dim ]Mo
g,n. Then setting vi(λ) := vλ(

∂
∂qi
),

we obtain the integrable differential system on M̂α
g,n(L)λ

IFg,n,λ ' hv1(λ), . . . , vN (λ)i.
(locally).



Case of special exponents λ

•When the exponents λ is special, the R.H. corr.

RHn,λ : M̂α
g,n(L)λ −→

µ
R̂epr,ng

¶
a

contracts some subvatieties to the singular locus on

µ
R̂epr,ng

¶
a• However, by Hartogs’ theorem, we can extend the isomonodromic

foliation IFg,n,λ to the total space M̂α
g,n(L)λ.



Painlevé Property of Isomonodromic Flows

Theorem 4.3. (Inaba-Iwasaki-S, Part I (2003) and II(2006), In-
aba(2006)).
The isomonodromic flows IFλ satisfies the Painlevé property for
all exponents λ.

Hamiltonian strucure of Isomonodromic Flows

Theorem 4.4. (Inaba-Iwasaki-S, Part I (2003) and II(2006), In-
aba(2006)).
The isomonodromic flows IFλ can be written in a Hamiltonian
system locally



• In the case of generic λ, the differential system on M̂α
g,n(L)λ

IFg,n,r := hv1(λ), . . . , vN (λ)i.
has cleary solution manifolds or integrable manifolds = the im-

ages of ]Mo
g,n by {s̃x}x. By construction,
These integrable submanifolds are
isomonodromic flow of connections.

• Even in the case of special λ, the properness of RHλ,n
implies the theorem.

• IF (0,4,2) is equivalent to a Painlevé VI equation.
• IF (0,n,2) with n ≥ 5 are Garnier systems.



Parabolic connections of rank 2 on P1.
Let n ≥ 3 and set

Tn = {(t1, . . . , tn) ∈ (P1)n | ti 6= tj, (i 6= j)}, (43)

Λn = {λ = (λ1, . . . ,λn) ∈ Cn}. (44)

Fixing a data (t,λ) = (t1, . . . , tn,λ1, . . . ,λn) ∈ Tn × Λn, we
define a reduced divisor on P1 as

D(t) = t1 + · · · + tn. (45)

Moreover we fix a line bundle L on P1 with a logarithmic connection
∇L : L −→ L⊗ Ω1

P1
(D(t)).



Definition 4.2. A (rank 2) (t,λ)-parabolic connection on P1

with the determinant (L,∇L) is a quadruplet (E,∇,ϕ, {li}1≤i≤n)
which consists of

(1) a rank 2 vector bundle E on P1,
(2) a logarithmic connection ∇ : E −→ E ⊗ Ω1

P1
(D(t))

(3) a bundle isomorphism ϕ : ∧2E '−→ L
(4) one dimensional subspace li of the fiber Eti of E at ti, li ⊂ Eti,
i = 1, . . . , n, such that
(a) for any local sections s1, s2 of E,

ϕ⊗ id(∇s1 ∧ s2 + s1 ∧∇s2) = ∇L(ϕ(s1 ∧ s2)),
(b) li ⊂ Ker(resti(∇) − λi), that is, λi is an　 eigenvalue of
the residue resti(∇) of ∇ at ti and li is a one-dimensional
eigensubspace of resti(∇).

The set of local exponents λ ∈ Λn



Note that a data λ = (λ1, . . . ,λn) ∈ Λn ' Cn specifies the
set of eigenvalues of the residue matrix of a connection ∇ at t =
(t1, . . . , tn), which will be called a set of local exponents of ∇.
Definition 4.3. A set of local exponents λ = (λ1, . . . ,λn) ∈ Λn
is called special if

(1)λ is resonant, that is, for some 1 ≤ i ≤ n,
2λi ∈ Z, (46)

(2) or λ is reducible, that is, for some (²1, . . . , ²n) ∈ {±1}n
nX
i=1

²iλi ∈ Z. (47)

If λ ∈ Λn is not special, λ is said to be generic.



Parabolic degrees and α-stability
Let us fix a series of positive rational numbersα = (α1,α2, . . . ,α2n),
which is called a weight, such that

0 ≤ α1 < α2 < · · · < αi < · · · < α2n < α2n+1 = 1. (48)

For a (t,λ)-parabolic connection onP1 with the determinant (L,∇L),
we can define the parabolic degree of E = (E,∇,ϕ, l)with respect
to the weight α by

pardegαE = degE +
nX
i=1

¡
α2i−1 dimEti/li + α2i dim li

¢
(49)

= degL +
nX
i=1

(α2i−1 + α2i).



Let F ⊂ E be a rank 1 subbundle of E such that ∇F ⊂ F ⊗
Ω1
P1
(D(t)). We define the parabolic degree of (F,∇|F ) by

pardegα F = degF +
nX
i=1

¡
α2i−1 dimFti/li ∩ Fti + α2i dim li ∩ Fti

¢
(50)

Definition 4.4. Fix a weight α. A (t,λ)-parabolic connection
(E,∇,ϕ, l) on P1 with the determinant (L,∇L) is said to be α-
stable (resp. α-semistable ) if for every rank-1 subbundle F with
∇(F ) ⊂ F ⊗ Ω1

P1
(D(t))

pardegα F <
pardegαE

2
, (resp. pardegα F ≤

pardegαE

2
).

(51)

(For simplicity, “α-stable” will be abbreviated to “stable”).



We define the coarse moduli space by

Mα
n (t,λ, L) =

⎧⎨⎩(E,∇,ϕ, l); an α-stable (t,λ)-parabolicconnection with
the determinant (L,∇L)

⎫⎬⎭ /isom.
(52)



Stable parabolic φ-connections
If n ≥ 4, the moduli space Mα

n (t,λ, L) never becomes projective
nor complete. In order to obtain a compactification of the moduli
spaceMα

n (t,λ, L), we will introduce the notion of a stable parabolic
φ-connection, or equivalently, a stable parabolic Λ-triple. Again, let
us fix (t,λ) ∈ Tn×Λn and a line bundle L on P1 with a connection
∇L : L→ L⊗ Ω1

P1
(D(t)).



Definition 4.5. The data (E1, E2,φ,∇,ϕ, {li}ni=1) is said to
be a (t,λ)-parabolic φ-connection of rank 2 with the determinant
(L,∇L) if E1, E2 are rank 2 vector bundles on P1 with degE1 =
degL, φ : E1 → E2, ∇ : E1 → E2 ⊗ Ω1P1(D(t)) are morphisms
of sheaves, ϕ :

V2E2 ∼−→ L is an isomorphism and li ⊂ (E1)ti are
one dimensional subspaces for i = 1, . . . , n such that

(1) φ(fa) = fφ(a) and ∇(fa) = φ(a)⊗df +f∇(a) for f ∈ OP1,
a ∈ E1,

(2) (ϕ⊗id)(∇(s1)∧φ(s2)+φ(s1)∧∇(s2)) = ∇L(ϕ(φ(s1)∧φ(s2)))
for s1, s2 ∈ E1 and

(3) (resti(∇)− λiφti)|li = 0 for i = 1, . . . , n.



Remark 4.2. Assume that two vector bundles E1, E2 and mor-
phisms φ : E1 → E2, ∇ : E1 → E2 ⊗ Ω1

P1
(D(t)) satisfying

φ(fa) = fφ(a), ∇(fa) = φ(a) ⊗ df + f∇(a) for f ∈ OP1,
a ∈ E1 are given. If φ is an isomorphism, then (φ ⊗ id)−1 ◦ ∇ :
E1→ E1 ⊗ Ω1P1(D(t)) becomes a connection on E1.



Fix rational numbers α01,α
0
2, . . . ,α

0
2n,α

0
2n+1 satisfying

0 ≤ α01 < α02 < · · · < α02n < α02n+1 = 1

and positive integers β1, β2. Setting α
0 = (α01, . . . ,α

0
2n),β =

(β1,β2), we obtain a weight (α0,β) for parabolic φ-connections.

Definition 4.6. Fix a sufficiently large integer γ. Let

(E1, E2,φ,∇,ϕ, {li}ni=1)
be a parabolic φ-connection. For any subbundles F1 ⊂ E1, F2 ⊂ E2
satisfying φ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗ Ω1P1(D(t)), we define

µ((F1, F2))α0β =
1

β1 rank(F1) + β2 rank(F2)
(β1(degF1(−D(t)))

+β2(degF2−γ rank(F2))+
nX
i=1

β1(α
0
2i−1d2i−1(F1)+α

0
2id2i(F1))



where d2i−1(F ) = dim((F1)ti/li∩ (F1)ti), d2i(F1) = dim((F1)ti ∩
li).
A parabolic φ-connection (E1, E2,φ,∇,ϕ, {li}ni=1) is said to be
(α0,β)-stable (resp. (α0,β)-semistable) if for any subbundles F1 ⊂
E1, F2 ⊂ E2 satisfying φ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗ Ω1P1(D(t))
and (F1, F2) 6= (E1, E2), (0, 0), the inequality

µ((F1, F2))α0β < µ((E1, E2))α0β, (resp. µ((F1, F2))α0β ≤ µ((E1, E2))α0β.) (53)

We define the coarse moduli space of (α0,β)-stable (t,λ)-parabolic
φ-connections with the determinant (L,∇L) by

M
α0β
n (t,λ, L) := {(E1, E2,φ,∇,ϕ, {li})} /isom. (54)

For a given weight (α0,β) and 1 ≤ i ≤ 2n, define a rational number
αi by

αi =
β1

β1 + β2
α0i. (55)



Then α = (αi) satisfies the condition

0 ≤ α1 < α2 < · · · < α2n <
β1

(β1 + β2)
< 1, (56)

hence α defines a weight for parabolic connections. It is easy to see
that if we take γ sufficiently large (E,∇,ϕ, {li}) is α-stable if and
only if the associated parabolic φ-connection (E,E, idE,∇,ϕ, {li})
is stable with respect to (α0,β). Therefore we see that the natural
map

(E,∇,ϕ, {li}) 7→ (E,E, idE,∇,ϕ, {li}) (57)

induces an injection

Mα
n (t,λ, L) ,→M

α0β
n (t,λ, L). (58)

Conversely, assuming that β = (β1,β2) are given, for a weight

α = (αi) satisfying the condition (56), we can define α
0
i = αi

β1+β2
β1



for 1 ≤ i ≤ 2n. Since 0 ≤ α01 < α02 < · · · < α02n = α2n
β1+β2
β1

< 1,

(α0,β) give a weight for parabolic φ-connections.
Moreover, considering the relative setting over Tn × Λn, we can
define two families of the moduli spaces

πn :M
α0β
n (L) −→ Tn × Λn, πn :M

α
n (L) −→ Tn × Λn (59)

such that the following diagram commutes;

Mα
n (L)

ι
,→ M

α0β
n (L)

πn

⏐⏐y ⏐⏐yπn
Tn × Λn Tn × Λn.

(60)

Here the fibers of πn and πn over (t,λ) ∈ Tn × Λn are
π−1n (t,λ) =M

α(t,λ, L), π−1n (t,λ) =Mα0β(t,λ, L). (61)



Riemann-Hilbert correspondence

Mα
n (L)

RHn−−−→ Rn
πn

⏐⏐y ⏐⏐yφn
T 0n × Λn

(1×µn)−−−−→ T 0n × An.

(62)

Here, we have 1× µn (1× µn)(t,λ) = (t,a)

ai = 2 cos 2πλi for 1 ≤ i ≤ n. (63)



The case of n = 4 (The Painlevé VI case).

Theorem 4.5. Take L = OP1(−1) with a natural connection.
(1) For a suitable choice of a weight α0, the morphism

π4 :Mα0
4 (−1) −→ T4 × Λ4

is projective and smooth . Moreover for any (t,λ) ∈ T4 × Λ4 the fiber

π−1
4 (t,λ) :=M

α0
4 (t,λ,−1) is irreducible, hence a smooth projective surface.

(2) Let D =Mα0
4 (−1) \Mα

4 (−1) be the complement of Mα
4 (−1) in Mα0

4 (−1).
(Note that α = α0/2). Then D is a flat reduced divisor over T4 × Λ4.

(3) For each (t,λ), set

St,λ := π−1
4 (t,λ) :=M

α0
4 (t,λ,−1).

Then St,λ is a smooth projective surface which can be obtained by blowing-
ups at 8 points of the Hirzeburch surface F2 = Proj(OP1(−2) ⊕ OP1) of
degree 2. The surface has a unique effective anti-canonical divisor −KSt,λ =
Yt,λ whose support is Dt,λ. Then the pair

(St,λ,Yt,λ) (64)



is an Okamoto-Painlevé pair of type D
(1)
4 . That is, the anti-canonical divi-

sor Yt,λ consists of 5-nodal rational curves whose configuration is same as
Kodaira—Néron degenerate elliptic curves of type D

(1)
4 (=Kodaira type I∗0).

Moreover we have (Mα
4 (−1))t,λ = (Mα0

4 (−1))t,λ \ Yt,λ.



Okamoto Painlevé pair of type PV I

F2

Y1 Y2 Y3 Y4

Y0

t1 = 0t2 = 1 t3 = t t4 =∞

π

P1

∞-section

Figure 7. Okamoto-Painlevé pair of type D
(1)
4



Proposition 4.1.The invariant ring (R3)
Ad(SL2(C)) is generated

by seven elements x1, x2, x3, a1, a2, a3, a4 and there exist a relation
f(x, a) = x1x2x3 + x

2
1 + x

2
2 + x

2
3 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a),

(65)

where we set
θi(a) = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),

θ4(a) = a1a2a3a4 + a
2
1 + a

2
2 + a

2
3 + a

2
4 − 4.

Therefore we have an isomorphism

(R3)
Ad(SL2(C)) ' C[x1, x2, x3, a1, a2, a3, a4]/(f (z, a)).

Hence

Rep(P1, (t1, t2, t3, t4), 2) = Spec (R3)
Ad(SL2(C))

is isomorphic to an affine cubic.



a1 = 2

ai = 2

A4 ' C4

R(P4,t)

The family of affine cubic surfaces

A1-singularity

∆ = 0



M̃α
4 (−1)

RH4−−−→ R̃4 ' T̃4 ×Rep(P1, (t1, t2, t3, t4), 2)
π̃4

⏐⏐y ⏐⏐yφ̃4
T̃4 × Λ4

(1×µn)−−−−→ T̃4 × A4.

(66)

ai = 2 cos 2πλi for 1 ≤ i ≤ 4. (67)



t0 tt0 t

Mα
n (t,λ, L)

R(Pn,t0
)a

RHλ

Isomonodromic flows = Painlevé or Garnier flows

=
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Figure 8. Riemann-Hilbert correspondence and isomonodromic flows for generic λ
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Hamiltonian systems of Painlevé PV I

PV I is equivalent to a Hamiltonian system HV I .

(HV I) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx

dt
=
∂HV I
∂y

,

dy

dt
= −∂HV I

∂x
,

Hamiltionian in suitable coordinates can be given

HV I = HV I(x, y, t,λ1,λ2,λ3,λ4) ∈ C(t)[x, y,λi]

HV I(x, y, t) =
1

t(t− 1)
£
x(x− 1)(x− t)y2 − {2λ1(x− 1)(x− t)

+2λ2x(x− t) + (2λ3 − 1)x(x− 1)} y + λ(x− t)]¡
λ :=

©
(λ1 + λ2 + λ3 − 1/2)2 − λ2

4

ª¢
.



Bäcklund transformations for Painlevé V I.

• PV I(λ) have non-trivial birational automorphisms which are
calledBäcklund transformations. The group of allBäcklund

transformations form the affine Weyl groupW of typeD
(1)
4 .

Proposition 4.2. The group of Bäcklund transformations which
can be obtained from elementary transformations of stable parabolic

connections is a proper subgroup of W (D
(1)
4 ) whose index is finite.

The invloution s0 of W (D
(1)
4 ) is not in the group.



The case of connection with irregular singular points

Pailevé equation Order of pole at t = 0 t = 1 t =∞
Painlevé V ≤ 1 ≤ 1 2

IV ≤ 1 0 3
III 2 0 2
II 0 0 4
I 0 0 4 (ramified)



Bäcklund tranformations for PV I

• —Symmety of Affine Weyl group W (D(1)4 )
•W (D(1)

4 ) = hs0, s1, · · · , s4i acts on ΛV I = C4 by

si(λj) = (−1)δijλj, i = 1, ·, 4.

s0(λj) = λj −
1

2

4X
j=1

λj +
1

2
.

• Fact:
• (Bäcklund transformation). The actions of W (D(1)

4 ) on Λcan be lifted to
birational actions on S0 which prserve ṽ .

S0 s̃i· · ·→ S0
↓ ↓

T × Λ4
si−→ T × Λ4

s̃i∗(ṽ) = ṽ



Problem

•What is a geometric origin of Bäcklund transformations ?

Answer

• si, i = 1, · · · , 4 are easy. Elementary transformations.
• Except s0, we can almost explain the geometric origin.



Riccati solution for Painlevé equations and Raional curves

•Riccati equation：
x0 = a(t)x2 + b(t)x + c(t).

• Example　PIV）　⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx0

dt
= 4x0y0 − x2

0 − 2tx0 − 2κ0

dy0

dt
= −2y2

0 + 2(x0 + t)y0 − κ∞

. (68)

•When κ0 = 0, x0 ≡ 0 satisfies first equation automatically. The second
equation becomes Riccati equation:

dy0

dt
= −2y2

0 + 2ty0 − κ∞

•When κ∞ = 0, y0 ≡ 0 satisfies the second equation automatically, then first
equation becomes

dx0

dt
= −x2

0 − 2tx0 − 2κ0

• Even when κ0 = κ∞，setting x0y0 − κ0 = 0, we have a Riccati equation．



• Phase space of Riccati equations
P1 × T

• Saito—Terajima, J. of Kyoto Math. (2004)
Riccati solutions ⇐⇒ C = P1 ⊂ S0t,λ, C2 = −2

•N. A. Lukashevich and A. I. Yablonski,
A.S. Fokas and M.J. Ablowitz,Watanabe.
For λ ∈ Λ4, S0t,λ contains P1 if and only if λ lies on a reflection hyperplane

with respect to the affine Weyl group actions on Λ4.
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Figure 10. A Confluence of Nodal Curves in the case Ẽ6 (PIV ).


