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e K. Iwasaki, An Area-Preserving Action of the Modular Group on Cubic Surfaces and the Painlev” e VI Equation, Commun.
Math. Phys. 242, 185219 (2003).

e K. lwasaki, T. Uehara, Periodic Solutions to Painlevé VI and Dynamical System on Cubic Surface, (math.AG/0512583)

e K. lwasaki, T. Uehara, An ergodic study of Painlevé VI, (math.AG/0604582 )



The Purpose of Our Researches

We would like to:

e understand (partial or ordinary) algebraic differential eqautions
of Painlevé type by means of geometry of the phase spaces and
their relative compactifications.

e find more (partial or ordinary) algebraic differential equations of
Painlevé type of higher orders and to classify all of them.



Two Main Strategy

e Strategy 1:

Compactify the phase space by adding divisors on the boundary. Then
analyse the order of poles of ODEs. Painlevé property of ODE imposes
rather strong conditions on the order of poles. ((n — log)-conditions).

e Conjecture for (1 — log)-condition:

For each ODE v of Painlevé type, we can find a good model of family of
compactifications of phase spaces, such that v satisfy the (1—log)-conditions
on each boundary divisors.

e Resolution of accessible singularities:

Under the (1—log)-conditions, the accessible singularities can be considered
as the zero of some vector bundles on the divisor. Then if there are no ac-
cessible singularities at all, divisor satisfies the Okamoto-Painlevé conditions.
This fits into our notion of Okamoto-Painlevé pair.

e Related works: K.Okamoto, H.Sakai, S—-Umeumura, S—Takebe—Terajima,



e Strategy 2:Moduli theoretic methods—Riemann—Hilbert correspondeces
Construct the family of the moduli spaces M — T x A (resp. M —
T x A) of stable parabolic connections and stable ¢-parabolic connections.
Moreover, we can construct the family of the moduli spaces Rep — T'x A
of representations. Then we have the following Riemann-Hilbert correspon-

dences,

M 25 Rep
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e Fact: Painlevé equations = Isomonodromic Flows:
Painlevé equations can be derived from the isomonodromic flows on M.
e Main Theorem:

Riemann—Hilbert correspondences give proper surjective bimeromorphic an-
alytic morphisms between fibers. This facts shows that the isomonodromic
flows satisfies the Painlevé properties.

e Related works:

Fuchs, Miwa-Jimbo-Ueno (1980- 77), K. Iwasaki(1990-), M.Inaba—K.Iwasaki—

S (2003-), M. Inaba (2006), K. lwasaki-T. Uehara(2005-).



Plan of Talk

e 1 Painlevé Property

e 2 Classification of ODEs with Painlevé Property of order < 2.
(due to Poincaré, Fuchs, Painlevé, Gambier).

e 3 Geometry of Spaces of initial Conditions, Okamoto—Painlevé
pairs and (1 — log)-conditions

e 4 |somonodromic deformation of Linear ODEs or stable parabolic
connections.

e 5 Riemann-Hilbert correspondences.

e 6 Compactification of the moduli space of stable parabolic con-
nections by stable ¢-connections.

e 7 Geometry of Riemann-Hilbert correspodences. (Backlund trans-
formations and Riccati solutions)



1. Painlevé Property
Algebraic ODE:

dr d*z d™Mx
F(t coe . —) =10 )
(7x7dt7dt27 b dt ) ()
where
F(taxmxlam% Tt 7xm) - C(t)[aj())xla Tt 733772]

Cauchy Problem: Take
(g, co) = (to, co,c1,- -+ ,em) € {(tg, o) € Cm_'_z‘F =0}.
Find a solution x(t) = (t; (tg, cg)) such that
d' .
%(to) =c¢;, (1=0,...,m). (3)
If the equation (2) is linear, we see that the singularity of the

solution x(t) = ¢(t, (tg,cg)) can be detected from the equation
itself and does not depend on the initial values.



Example 1.1. Non-movable singularities

Consider the linear ODEs and their solutions:

d
(t — a)d—f — 1. = 2(t)=log(t —a) + ¢

de  —x
dt (t—a)?
Solutions have the singularities at ¢ = a which do not depend on

1
—>  x(t) = cgel—a

the initial values (= integral constants ¢y, ¢3). Such singularities are

called non-movable singularities .



Example 1.2. Movable singularities
/ d

()m>2 ma™l/=1=2=¥t—c
movable algebraic branched point.
(2) 2" + (2)? = 0 = z = log(t — ¢1) + ¢o.
movable logarithmic branched point.
(3) (zz” — (2/)?)? + 4x(2))? =0 = = = cyexp(—1/(t — )).
movable essential singular point.
()2 —2°=0—= 2z = t:ip'
movable pole.




1. Painlevé property.

Definition 1.1. An algebraic ODE (2) has [Painlevé property if the
generic solution of (2) has only poles as its [movable Singularities .




Example 1.3.: The ODE for Weierstrass @ function
has Painlevé property.

Assume that ¢o, g3 € C, gg’ — 27g§ = 0.

(2')? = 42” — gow — g3
The solutions are given by

z(t) = p(t — b)
where (%) is the Weierstrass g-function. The constant b can be
determined by the initial condition, so the solution x(t) = (¢t — b)
has movable poles of order 2 at £t = b mod A, periods of the above
elliptic curve, and no other singularity.



Example 2: Riccati equation
z = a(t)z? + b(t)z + (). (4)

By the change of unknown z — w,

1 d 1 o
T= ~adt log(u) = —muﬂ ) (5)
the Riccati equation (4) is transformed into the linear equation
/
t
u — [a ) + o) + a(t)c(t)u = 0. (6)

a(t)
Hence the solutions u(t) of (6) has only nonmovable singularities
and only movable singularities of x(t) is the zero of u(t). Since the

zero of u(t) has a finite order, then the movable singularities of x(t)

are only poles.



Classification of 1st order ODE with Painlevé property

Theorem 1.1. (L. Fuchs, H. Poincaré, J. Malmquist, M. Matsuda).
For m = 1, an algebraic ODE (2) has Painlevé property if and only
if (2) can be transformed into one of the following equations:

(1) Riccati equation

r = a(t)z® + b(t)x + c(t). (7)
(2) The equation of the Weierstrass p function .
(') = 42° — gow — g3 (8)

(9293 € C, g5 — 275 # 0).
(3) Or, one can integrate (2) algebraically.

| will give a very simple geometric proof for Theorem 1.1.




Definition 1.2. Painlevé equation is a second order algebraic ODE
of rational type, that is,

2

satisfying Painlevé property.

Painlevé and his student B.O. Gambier showed that Painlevé equa-
tion reduces, by an approptiate transformation of the variables, to
an equation which can be integrated by quadrature, or to a linear

equation, orto Py, J =1, 11, II1I,1V,V,VI. (See Table 1). Here
a, 3,7 and d are complex constants.



. d’x _ 2
P]. W—6$ +t,
d2
Py d—; = 223+t +q,
A2z 1 /dz\* 1ldz 1 5
P — = 2 (=) =+ Z(ax?+ B) +yxd+ —
1L g2 x(dt) LG e E

A2z 1 [(dz\*> 3 3
Py: — = —(— ) +=2®+ 42 +2(t° — )z + =
Ve T 2 (dt> R Ul

4’z 1 1 dz\? 1ldz (z— 1) 3
P: — = [—+ — ] - =—+ + =
LT (2:1: :1:—1) (dt) £ dt 2 (O‘x a:)

x  x(r+1)
+y—+j—=~
7% r—1"

PR G R S S £ AN S
VI- gz = 2\z z—1 z—t)\dt t t—1 z—t

_I_x(x—l)(x—t)[a_ t t—1 +(1 5)

A=
12(t — 1)2 2 @12 \2

Table 1




2. Geometry of Spaces of initial Conditions,
Okamoto—Painlevé pairs and (1 — log)-conditions

First, let us recall that each Pj is equivalent to a Hamiltonian
system H ;

(dv  0H

(Hy):Q 4t Oy (10)
@ B _GHJ
\dt_ 3:137



H[(CU, Y, t)
Hfl(xa Y, t)
HIII(:C7 Y, t)

H]V(il?, Y, t)

Hv(l', Y, t)

HVI(%QJ) -

2_9x3 — tx,

_1

— 27
L, 5 1 1
§y —(x +§>y—(a+§)x
1
t

[25623/ {2770075:162 + (260 + 1)z — 277075} Y + Moo (Ko + Koo t:c} :
2:1:3/2 — {332 + 2tx + 2/450} Y + Koo,
x(x — 1%y —{/iol‘—l) + rx(z — 1) —nte} y + Kooz — 1)],

L
t(m {(Ko + K¢)* — KJOO})

[2(z = 1)(z — t)y* — {ro(z — 1)(z — 1)

t(t —1)
+r12(r —t) + (ke — Dz — 1)}y + k(z — t)]

<H = {0+ ha i - 1)2_,1;}).

Table 2



0H O0H ;
(Hy): | v=3+Gi% - G5 (11)

This Painlevé vector field (H ;) is an algebraic regular vector field
defined on the space C?> x B; 3 (z,y,1).
where By = C, C\ {0} or C\ {0, 1}.



L=P?\C?’~PL

A rational vector field

(Hy) :

has the pole along L X Bj.

(12)



Okamoto's space of initial conditions

v P2xB; & S
3 T

By

v

(13)



P?— [ =C?
PZXB”/

($0ay0a

(x07y07t

Figure 1. Example: Painlevé IV case.



Work of K. Okamoto, H. Sakai, S-Takebe, S-Takebe-
Terajima

(Observations) After the resolutions of accessible singularities,
we see that:

e S =8;,t € By is a rational surface which is 9-points blowings
ups of P2,

e S = & has a global rational two forms w such that the pole di-
visor Y of w (= anti-canonical divisor — K ¢) satisfies the follow-
ing Okamoto—Painlevé conditions. —Kg =Y = >\ 1 m;Y;.
D =Yreq= Z Y;

deg —(Kg)y, = —Kg-Y; =Y -¥;=0 1<Vi<r. (14

e Moreover the Painlevé vector field v satisfies the (1 — log)-
condition

v € HY(S,0(—log D)(D)) (15)
where D = ),..4.



Main Questions

e Can one recover the Painlevé equations from the geometry of
spaces of initial conditions ?

e What is the meaning of these two conditions?

e How are they essential for Painleve property?



)1, Definition of Okamoto-Painlevé pairs.

Definition 2.1.Let (S,Y) be a pair of a complex projective
smooth rational surface S and an anti-canonical divisor Y € |— K|

of S. Let Y = > "I m;Y; be the irreducible decomposition of Y.
We call a pair

(5,Y)
a ['rational’Okamoto=PainlevéPair if for all 7,1 < i <,
deg(—Kg))y; =Y - Y =deg Y}y, = 0. (16)

( Okamoto~Painlevé condition ).



For a rational Okamoto—Painlevé pair (S,Y), let us set

T
~Kg=Y =) mY
1=1

One can show that

Config. of Y is one as Kodaira—Néron's singular elliptic curves

<
Okamoto—Painlevé conditions

deg —(Kg)jy,; =Y -¥; =0 foralli, 1<i<m,|

Moreover r < 9.



Theorem 2.1. ( Sakai, Saito—Takebe—Terajima)

Let (S,Y) be a rational Okamoto—Painlevé pair such that Y,  is
a divisor with only normal crossings. Then the type of Y is same as
one in the list of Table 3.




-~ X

Y or R(Y) Eg| Dy | E; | Dy | D | Eg |Ds| Ds | A1 | Ag

1<r<9|T —

Kodaira’s notation | I7* | I; |III*| It | I; |IV*| ;| It | I, | Io

Painlevé equation | Pr | P;% | Py | Py | Prr| Prv | Py | Pyr | none | none

Table 3

Note that in Figure 2, the real line shows that a smooth rational curve C' ~ P! with C? = —2 and the number
near the each rational curve denotes the multiplicity in Y = — K.



Figure 2



Figure 3

Geometric Picture of Painlevé Dynamics
Family of Okamoto—Painlevé pairs

S <= S§+D
im 7
BJ X /\J
Here T is a smooth projective family of surfaces and B ; C Spec Clt],
A7~ C? and D is a flat family of normal crossing divisors.

e \We can see that

v € HY(S,05(—1logD)(D))




and p

e There exists rational relative two forms €2 on S such that supp
of divisor (£2) = D and

15(2) =0 = ¥: non-autnomous Hamitonian system

e For each (tg, A\g) € Bjx A, the image of the Kodaira—Spencer
map

P Lo zg)(By) — Hl(s(th)\O)’ Os,

lies in the local cohomology group

0 1
P(E) HD

t. ) (—10g Dig,7)))

(’foaA(J))(S(tO’)‘O)’ @S(toﬂm(_ log Dy, ))) = C



Y Y, Y3 Y,

oo-section
¥
Yo
Q ® ] (]
F, . . . ..
o o J K
T
¥
P! i i i ]
t1=0 T,2:1 tz3=1 ty = 00

Figure 4. Okamoto-Painlevé pair of type fo)



3. (n — log)-conditions
Consider an system of ODE on C x C™

d.
%:ai(t,xi,---,xm), 1<i<m
BxC" < BxS+— BxD =D
! ! !
B = B = B

Figure 5. Coordinates on Boundary Divisors

(17)

(18)



0.
ot "1 (9X1 i Z g aX

1=2
@S<—10gD)={HE@S, H'IDC[D} (20)
Opxg(—logD) =10 € Opyg, 0-Ip C Ip} (21)
Proposition 3.1. If

b = (19)

ny= max (n;)=n2>1 22
1 1§i§m< z) - ( )
there exists a solution curve of ¥ such that p = (¢,0,---,0) is an

movable branched point. So if ¥ satisfies the Painlevé property, we
have

< ) = 23
ni 1232{”2(”@) n (23)
or

max (n;) =n =0, (24)

1<i<m



that is, v is regular along D;.

n1 = 1
movable branch point of order 2

Figure 6



If v does have poles of order n along D = B x Dy, but it does
not have the algebraic branched points along D = B x Dy, then
locally at the boudnary divisor, one can write v as

o By 0 f:Bz-a

) = — 25
T xr1oX, i — X{'0X, (25)

Globally, this implies that:
v € H'(B x 8,05y (—logD)(nD)) (26)

Definition 3.1. v satifies (n — log)-conditions if it satisfies the
condition (26).

If m = 1 and v satisfies the Painlevé property, ¥ must be regular
everywhere.



Conjecture 3.1.If v satisfies the Painlevé property, then after
taking a suitable good model of the compactifications of the phase
spaces, ¥ satisfies the (1 — log)-conditions along any divisor D.

0 0 By O
By +
ot 0X1 X10Xy
Under the assumption that (1 — log)-conditions holds for along
any irreducible components Y; of Okamoto—Painlevé pair (S,Y),
the conditions
—Kg-Y; =0 <= no accessible singular point on Y;

—Kg-Y; = degOy, ® Ny, /5

(27)




Proof of Theorem 1.1 (First order ODE with P.P.)
Let

C = UerCr = UteT{(ﬂfay) S CZ ‘ F(taxay) = O}

be the family 7 : C — T" = Spec Clt| of affine curves parametrized
byt € T'= C. Assume that (% is smooth and irreducible for general
t € T'. We can take the smooth relative compactification

C — C « C c"
Tl Tl I F (28)
T = T «T\D«T\(DUD)=T"

D: the set of critical values of 7. The genus g(C}) of curve C;
is constant. Algebralc ODE (2) F(t,z,2') = 0 defines a rational

vector field on C

0 0
v—%er% (29)



Delete the set D' C T'\ D of non-movable singularities of v, one

. . . —1/
can obtain the rational vector field v on C .
—1

C

fl (30)
T//

One can show that if the rational vector field v (29) satisfies the
Painlevé property,

e v is a regular vector field on C (has no poles). (If v has a pole
along a divisor, then v has a movable branced points along the
divisor).

e and the moduli of C} is constant. Consider the relative tangent
sheaf

0 — Oz 7, —> O — O — 0

/T”

Note that ©p» is globally generated by %



Taking the direct images, we have

0
f*(@zn) — @TW — le*(@E”/T”)
0

where p is the Kodaira—Spencer map and the image p(7;) is in
le*(@all

The regular vector field v is a global section

/Tn)'
of O3, such that fi(v) = p(%) Hence such v exists if and

only if Kodaira-Spencer map p is zero. Now the moduli of C;
Is constant.

Cy 9(C) ODE
Case (1) P’ 0 Riccati
Case (2)| FE (elliptic curve) 1 ODE for p
Case (3)|a curve of genus > 2| > 2 |alg. integrable




Works in New, in Progress and in Future

(1) DS-hierarchy with similarity reduction = Painlevé equations
(Noumi-Yamada, S. Kakei, T. Suzuki, K. Fuji, --- .)

(2) Coupled Painlevé system and Higher ordered Painlevé equations
with affine Weyl group symmetries. (Sasano)

(3) Dynamical Systems associated to Painlevé VI via Riemann-Hilbert
correspondences. (K. Iwasaki and T. Uehara (2005—))



4. Strategy 2: Moduli of stable parabolic connections and

Riemann—Hilbert correspondences



e Translations of the terminology

Analysis

Geometry

C': a compact R. surface of genus g

C': a nonsing. proj. curve of genus g

t = (t1,--- ,t,); n-distinct pts on C

t = (t1,--- ,t,); n-distinct pts on C

dx __ n  A;(2)
dz Zi:l z—t; X

Linear D.E. on C with
at most regular sing. at t.

V:E— E®QHD(t))
A connection on vect. bdl E of rank r
on C with at most 1% order poles at t.

Agi):Eigenvalues of A;(t;)

)\y): Eigenvalues of res; (V) € End(E),)

Time varaiables

T — Mg,n {(C7t)}

(81, .+ ,83g-3,t1, .. ,tn) Moduli of n-pointed curves of genus ¢
Space of initial conditions Moduli space of stable parabolic
S(C.N) connections M (C, t)y
Phase space Family of moduli spaces
S— T xA\ M— T x A\

Riemann-Hilbert correspondence

RH}QM?\‘ — R,

Isomonodromic deformations of L.D.E.

Pullback of local constant section

Schlessinger equation

Zero curvature equations on M




e Translations of Properties

Analysis

Geometry

Painlevé property

Properness + Surjectivity of
RH)\ ) ./\/lg — Ra

Symmetry ( Baklund transformation)

Elementary transformations of s.p. conn.

Simple reflections in Backlund transf.

Special Birational map (Flop)
s M--o — M

appeared in the resol. of simult. sing. of R,

Hamitonian Structures

Symplectic str. on M*(C,t)x
on R¥mooth and RHy, is a symmplectic map

Spacial solutions like Riccati solution

Singylarities of R,

Poincaré return map or
non-linear monodromy
of equations of Painlevé type

Natural actions of (M, *)

g,n
on isomonodromic flows, R, t4)a and

on ./\/la((Co, to)))\

T-functions

Sections of the determinant line bundle on
M which are flat on isomonod. flows




Stable Parabolic connections

Setting

Fix the following data
(%)
(07 t, (L7 VL), ()\] ))
which consists of

e (' : a complex smooth projective curve of genus g,
ot = (t1,--- ,t,): a set of n-ditinct points on C'.
(Put D(t) =t1+ -+ t,).
e (L,Vy): aline bundle on C with a logarithmic connection

Vi L — L®QLD(t)).

o)\ = ()\(i))1<z-<n 0<j<r—1 € C" such that Zr_l AW — res;. (V7).

7 /L= nUS)S J=0""

(31)



Moduli space of stable parabolic connections

We can consider the moduli space of stable parabolic connec-
tion on C with logarithmic singularities at D(t):

MX(C.t, L)\ = {(E, Vg, {l;i)}gz'gn,ogjgr—bq’)}/ ~ (32)

e IV : a vector bundle of rank 7 on C
oV :FE— ER®RQ(D(t)) :a logarithmic connection

U : N"E — L : a horizontal isomorphism (Fixing the deter-

minant) |
‘E|t l(> D l<> - D lff_l O [, = 0: a filtration of the
fiber at ¢; such that dim ly)/lyll) 1 such that

(resti(V) Ag%d) GRS

] 7+1



a-stability

- _ (gl)1i<n
Take a sequence of rational numbers a = (ozj )1<j§r such that

0<ﬂ9<a9< < <1 (33)

fori =1,. .nandoz #oz,)for(z])#(",j’) We choose

a = 5 )) sufficiently generic. Let (F,V, {l }1<Z<n) be a (t, A)-

parabolic connection, and F' C E a nonzero subbundle satisfying

V(F)CF® Qlc(D(t)) We define integers 1en(F)<-i) by

len(F)\ = dim(Fly, 0 1)) /(Fly, 1) (34)
Note that 1en(E)§-i) = dim(l(-i '

J_l/lgz)) lfor1 <j<r.

Definition 4.1. A parabolic connection (FE,V, {l }1<Z<n) is
a-stable if for any proper nonzero subbundle ' $ E satisfying



V(F)C F®Q! o(D(t )) the inequality
deg '+ ;0 D i 1en(F)§i) deg B+ 701D i
<

rank F rank E

holds.

(35)



Moduli space of SL,-rep. of the fundamental group

Take the categorical quotient of affine variety

Rep(C,t,r)={p: m(C\ Dt) — SL(C)}//Ad(SL,(C))
(36)

(p1, p2 € Hom(m (C \ D(t)),SL,.(C)) are Jordan equivalent iff sem(p1) =~ sem(py)).

Fix: o 1)
B 1 _ n(r—1
a= (aj )1§i§n,1§j§r—1 € Arn = C

Then we define another moduli space of SL,-representations with
fixed characteristic polynomial of monodromies around ¢;:

Rep(C,t,r)a = {[,0] c Rep(C,t,r),det(sl, — p(;)) = Xa(i)<3)}

where

X, (1)(s) ="+ o\ 15T_1 + -t agi)s + (—1)".

r—




Riemann-Hilbert correspondence

Assume that r > 2, n > 1 and nr — 2r — 2 > 0 when g = 0,

n > 2. (Moreover the weight « is generic). Then the Riemann-
Hilbert correspondence

RH(C,t,}\) : MQ(C, t, L))\ — Rep(C, t, T)a (37)
can be defined by

(B, Vp, {1}, 9) = ker (V1% 1)
where »
Xa(v;)(S) = H(s — exp(—ZWﬁA§i))>
=0
Note that

dim M*(C,t, L)y = (r — 1)(2(r +1)(g — 1) + rn)



Fundamental Results

Theorem 4.1. (Inaba-lwasaki-Saito (r = 2,9 = 0,n > 4), Inaba
(general case)) Under the notation as above, we have the following.
(1) The modulis space M*(C,t, L)y is a nonsingular alge-

braic manifold with a natural symplectic structure.
(2) The modulis space M*(C, t, L)y has a natural compactifica-

tion M%(C,t, L)y which is the moduli space of the ¢-stable
parabolic connections.




Theorem 4.2. (Inaba-lwasaki-Saito (r = 2,9 = 0,n > 4), Inaba
(general case)): Under the conditions above, the Riemann-Hilbert
correspondense

RHC,t,)\ . ./\/la<0, t, L))\ — Rep(C, t, T)a (38)

is a proper surjective bimeromorphic map. Hence the
Riemann-Hilbert correspondence gives an (analytic) resolution of
singularities. Moreover RH ¢ ; » preserves the symplectic structures

on Rep(C,t,r)a M*(C,t,L)y.
Rep(C,t,7)q is an affine scheme J
a.

which may have singularities for special

Remark 4.1. e [

. In the case of g = 0, we can show that dw = 0.
Moreover, we expect that dw = 0 in general.




Varying time (C,t) and parameter A, a

Consider the open set of the moduli space of n-pointed curves of
genus ¢

M, ={(C,t) = (C,t1,- -+ ,tn) t; # t,0 # j}

and the universal curve 7 : C — Mg ,,. Fixing a relative line

bundle L for m with logarithmic connection V; we can obtain the
family of moduli spaces over Mg, x A(L)

Mgn(L)

L (39)
Mg, x A(L)

such that [ ng((C’,t,L,)\)):./\/la(C,t,Lb\ ]




We can also construct the fiber space
Repg’n

L ¢g"

Mgo,n X Ar,n
such that

(65™) " H((C,t,a)) = Rep(C, t, SLy)a

(40)



Riemann-Hilbert corr. in family

We can obtain the following commutative diagram:

mery 2 Rephn
Wnl lgbg’n (41)
1 r,n
Mg, x A(L) (I par, )> Mg, X Ar
where p 5, can be given by the relations
r—1 .
Xa(s) = H(s — eXp(—ZW\/—lAy)))
j=0

that is, CLEC are (+1)x k' fundamental symmetric functions of

exp(— 27T\/7)\§7’).



(Geometric Isomonodromic Deform. of L.D.E.

The case of generic exponents A

Fix a generic A € A(L) and set a = p () so that
RH(, 5 : MY(C,t, L)y < Rep(C, t,1)a

is an analytic isomorphism for any (C,t) € Mg ,,.

4 Algebraic structure of Rep(C, t,7)a

\_ Rep(oa t7 T)a = Rep(COa th T)a-

o| does not change under variation of (C, t), that is,

~

/

[Algebraic structure of M*(C, t, L))}

change under variation of (C,t).




Taking the universal covering map Mg)n — MQO’n, and pulling
back we obtain the diagram:
RH, \ N
Mgl,n([/b\ Nn ? (Rfipg’n) = Rep(O(), to, 7“)a X Mg,n
T a

Nl o
Mg)n x {} (1><W’n)> Mg’n X a.

Since qgg”g is isomorphic to product family, it has a unique constant
section sx passing through a point x € Rep(Cy, tg, 7)a X {to}.
Pulling back the section {sx}xcRep(Cy to,r)ax{to} Vid RH, we

obtain the set of analytic sections of (7,), : /\/{g)fn(L)A — Mg’n X
1A}

{S&}XERGP(Co,tO,T)aX{to}'



The family of sections {Sx }x gives the splitting homomorphism

Uy ! (ﬁn);(TMO ><{A}> 7 T/\/{?’n(L)A

for the natural homomorphism T/\/(}l —> (ﬁn)i(TM&n X

n(L))\
g,
{A}). Then the subbundle

Take any local generators of the tangent sheaf of TMO
an
29,
Oq1" Oy’
where N = 3g—3+n = dim MQO’”. Then setting v;(A) == UA(%),

we obtain the integrable differential system on /\/[L}q)‘)n(L))\
I:Fg,n,)\ ~ (U1(A), ..., UN(N)).
(locally).



Case of special exponents A

e \WWhen the exponents A is special, the R.H. corr.
RHn)\ ; ng,nu;))\ — (ﬁepg’n)

a

. . L] /\
contracts some subvatieties to the singular locus on Repg’n>

a
e However, by Hartogs' theorem, we can extend the isomonodromic

foliation ZF , ,, x to the total space M?,n(L)A-



Painlevé Property of Isomonodromic Flows

Theorem 4.3. (Inaba-lwasaki-S, Part | (2003) and 11(2006), In-
aba(20006)).

The isomonodromic flows ZF y satisfies the Painlevé property for
all exponents .

Hamiltonian strucure of Isomonodromic Flows

Theorem 4.4. (Inaba-lwasaki-S, Part | (2003) and 11(2006), In-
aba(2006)).

The isomonodromic flows ZF y can be written in a Hamiltonian
system locally



e In the case of generic A, the differential system on M&n(L)A
Ifg)njfr = </01(A), .« . ,UN(A)>

has cleary solution manifolds or integrable manifolds = the im-
ages of MQO’” by {5x}x. By construction,
These integrable submanifolds are
isomonodromic flow of connections.

e Even in the case of special A, the properness of RHj ,,
implies the theorem.

® LF (p4.9) is equivalent to a Painleveé VI equation.
’I}—(O,n,Q) with n > 5 are (zarnier systems.




Parabolic connections of rank 2 on P!.
Let n > 3 and set

Tp={(t1,... ,ta) € PY" | t; #t;, (i # )}, (43)

Ap={A=(A1,..., A\p) € C"}L (44)

Fixing a data (t,A) = (t1,... ,tn, Al,--- , A\n) € T X Ay, we
define a reduced divisor on P! as

Dt)=t;+---+1ty (45)

Moreover we fix a line bundle L on P! with a logarithmic connection

Vi L — L®Oy,(D(t)).



Definition 4.2. A (rank 2) (t, \)-parabolic connection on P!
with the determinant (L, V1) is a quadruplet (£, V, ¢, {l;}1<i<n)
which consists of

(1) a rank 2 vector bundle E on P!,

2) a logarithmic connection V: F — F ® Q%ﬂ(D(t))
)
)

(

(3) a bundle isomorphism ¢ : A2E —» L

(4) one dimensional subspace [; of the fiber E;, of E at t;, I; C Ey,,
1 =1,...,n, such that

(a) for any local sections s1, s9 of FE,

@ R 1d(Vsy Asy+ s AVsy) =Vr(p(s) Asg)),

(b)l; C Ker(rest, (V) — X;), that is, A; is an  eigenvalue of
the residue res; (V) of V at ¢; and [; is a one-dimensional
eigensubspace of res; (V).

The set of local exponents A € A,,



Note that a data A = (Aq,..., \n) € Ay, =~ C" specifies the
set of eigenvalues of the residue matrix of a connection V at t =

(t1,... ,tn), which will be called a set of local exponents of V.

Definition 4.3. A set of local exponents A = (A{,... , \p) € Ay,
is called special if

(1) X is resonant, that is, for some 1 <7 < n,

2M\; € 1, (46)
(2) or A is reducible, that is, for some (eq, ... ,€,) € {£1}"
n
Y € € Z. (47)
1=1

It A € A, is not special, A is said to be generic.



Parabolic degrees and a-stability
Let us fix a series of positive rational numbers a = (aj, o, ... , a9y,),
which is called a weight, such that

D<o << - <a; < - <agy <agpt1 = L. (48)

For a (t, X)-parabolic connection on P! with the determinant (L, V),
we can define the parabolic degree of E' = (E,V, ¢, [)with respect
to the weight ¢ by

n
pardeg, E = deg F + Z (aj—1 dim Ey, /1; + aig; dim [;)(49)
1=1

n
= deg L+ ) (agi—1+ay).
i—1



Let F' C E be a rank 1 subbundle of F/ such that VF' C F' ®
Q%l(D(t)). We define the parabolic degree of (F, V) by

n
pardeg, ' = deg F' + Z (0421-_1 dim F3, /l; N Fy, + ag; dim [; N Fti)
1=1
(50)

Definition 4.4. Fix a weight . A (t, A)-parabolic connection
(E,V,,1) on P! with the determinant (L, V) is said to be a-

stable (resp. a-semistable ) if for every rank-1 subbundle F' with
V(F) C F &0y, (D(t))
pardeg,, E pardeg, E

2 )

).
(51)
(For simplicity, “a-stable” will be abbreviated to “stable’).

(resp. pardeg,, ' <

pardeg,, F' <



We define the coarse moduli space by

( an a-stable (t, A)-parabolic
MXt, A\, L) =< (E,V,p,1); connection with /isom.

the determinant (L, V)

\

(52)



Stable parabolic ¢-connections

If n > 4, the moduli space M>¥(t, X, L) never becomes projective
nor complete. In order to obtain a compactification of the moduli
space MX¥(t, A, L), we will introduce the notion of a stable parabolic
@-connection, or equivalently, a stable parabolic A-triple. Again, let
us fix (t, X) € Ty, x Ay, and a line bundle L on P! with a connection

Vi L= Ly, (D).



Definition 4.5. The data (E1, E9, ¢, V, ¢, {l;}i* |) is said to
be a (t, A)-parabolic ¢-connection of rank 2 with the determinant
(L,V 1) if Ey, Ey are rank 2 vector bundles on P! with deg B} =
degL, ¢ : E1 — E>, V: B — FH® Q;l(D(t)) are morphisms
of sheaves, v : A2 E5 — L is an isomorphism and [; C (E1)y; are
one dimensional subspaces for 2 = 1,... ,n such that

(1) ¢(fa) = fé(a) and V(fa) = ¢(a) @ df + fV(a) for f € Opr,

a € by,

(2) (p®id)(V(s1)AP(s2)+¢(s1)AV(s2)) = VL(@(d(s1)AP(s2)))
for s, s9 € Fq and

(3) (res; (V) — Aigg,)[;, =0 fori=1,... ,n.



Remark 4.2. Assume that two vector bundles E7, F9 and mor-
phisms ¢ : B — E>, V : B = FH® Q;l(D(t)) satisfying
6(fa) = fola), V(fa) = dla) @ df + fV(a) for f € Opr,
a € F are given. If ¢ is an isomorphism, then (¢ ® id)~!1 o V :
EFi— E® Q;l(D(t)) becomes a connection on Fj.



Fix rational numbers 0/1, 0/2, . ,O/Qn, o/an satisfying
/ / / /
OSO&1<OZ2<"'<052n<052n_|_1:1

and positive integers 61.,52. Setting o’ = (af,...,0a) ), 3 =
(51, 32), we obtain a weight (a’, 3) for parabolic ¢-connections.

Definition 4.6. Fix a sufficiently large integer . Let

(E1, B9, 6, V0, {l;}1"1)

be a parabolic ¢-connection. For any subbundles F| C Ey, F5 C E»
satisfying ¢(F) C Fy, V(F]) C FH ® Q;l(D(t)), we define

|

u((F1, ) o = By rank(Fy) + rank(FQ)(ﬂl(degFl(_D(t)))

n
+Bo(deg Fy —yrank(Fy))+ Y~ Bi(ady;_ydoi—1 (F)+oidoi( FY))
1=1



where do; 1 (F') = dim((F1)¢,/1; N (F1)g;), doi(F1) = dim((F7 )¢, N
l;).

ZA parabolic ¢-connection (E1, Eo, ¢, V,p,{l;}1* ;) is said to be
(o, B)-stable (resp. (o, 3)-semistable) if for any subbundles ] C
Ei, Fy C B satisfying ¢(F1) C Fy, V(F1) C Fy ® Qp,(D(t))
and (F1, F5) # (Fq, E9), (0,0), the inequality

p((F1, F2))atp < p((Er, E2))atg,  (resp. p((F1, F2))arp < u((E1, E2))aig-) (53)

We define the coarse moduli space of (', 3)-stable (t, A)-parabolic
¢-connections with the determinant (L, V) by

/
M P (6, A, L) = {(By, B2, 6,V 0, 1))} fisom. (54
For a given weight (a’, 3) and 1 < i < 2n, define a rational number
a;; by

S,
B+ 062 "

(55)

o)



Then a = («v;) satisfies the condition

b1
(81 + B2)

hence ax defines a weight for parabolic connections. It is easy to see
that if we take  sufficiently large (E,V, ¢, {l;}) is a-stable if and
only if the associated parabolic ¢-connection (E, E,idg, V, @, {l;})
is stable with respect to (@, 3). Therefore we see that the natural
map

D<o <ap <+ <agy <

<1, (56)

<E7 V, o, {lz}) — (E7 L, 1dE7 V, o, {lz}) (57>

induces an injection

M8, A L) > M P(t A, L), (58)

Conversely, assuming that 3 = (01, /32) are given, for a weight
a = (a;) satisfying the condition (56), we can define o, = Ozi%



for1 <i<2n.Since0 <af <af <-- <a2n—a2n61;1ﬂ2<1

(a/, B) give a weight for parabolic ¢-connections.
Moreover, considering the relative setting over 1;, X Ay, we can
define two families of the moduli spaces

Tn: MEPL) — Ty x A, 7 s ME(L) — Tpy x Ay (59)

such that the following diagram commutes;

ML) < MEP(L)

Wnl lﬁn <6O>

Ty x Ny, — T, X Ay,
Here the fibers of 7w, and 7, over (t,A) € T}, X A, are

o 6, A) = M6, L), 7T, (6, A) = M¥B(t, A\, L). (61)




Riemann-Hilbert correspondence

ML) R,

| | ¢

1% i
T! s Ay T A

Here, we have 1 X py, (1 X uyn)(t, A) = (t,a)

a; = 2COS 2T\, for1 <1 <n.

(62)

(63)



The case of n =4 (The Painlevé VI case).

Theorem 4.5. Take L = Op1(—1) with a natural connection.

(1) For a suitable choice of a weight &', the morphism

Ty - Mf/(—l) — T X Ay

is projective and smooth . Moreover for any (t,\) € Ty x A4 the fiber

7Tt A) = M4 '(t, A, —1) is irreducible, hence a smooth projective surface.
(2) Let D = M (—1)\ M (—1) be the complement of MX(—1) in M (—1).
(Note that a = @'/2). Then D is a flat reduced divisor over Ty x Ay4.
(3) For each (t, \), set

Sex =7, (b, A) 1= MY (6, X, —1).

Then gt,)\ is a smooth projective surface which can be obtained by blowing-
ups at 8 points of the Hirzeburch surface F, = Proj(Opi1(—2) & Op1) of
degree 2. The surface has a unique effective anti-canonical divisor — K, , =
Vi A whose support is D; x. Then the pair

(St Vea) (64)



is an Okamoto-Painlevé pair of type Dfll). That is, the anti-canonical divi-
sor Vi A consists of 5-nodal rational curves whose configuration is same as

Kodaira—Néron degenerate elliptic curves of type Dé(ll) (=Kodaira type Ij).
Moreover we have (MZ(—1))¢a = (M (=1))ea \ Ve




Okamoto Painlevé pair of type Py y

Y1 Yo Y3 Y oo-section

v

¥

th =0t =1t3 =t ts =00

Pl

Figure 7. Okamoto-Painlevé pair of type Dfﬁ)



Proposition 4.1. The invariant ring (Rg)Ad(SLQ(C)) Is generated
by seven elements x{, x9, x3, a1, as, a3, a4 and there exist a relation

f(x,a) = r1x23 + :1:% -+ x% + :1:% — O1(a)ry — O2(a)xy — O3(a)xs + O4(a),
(65)

where we set
0;(a) = ajas + ajar, (i,7,k) = a cyclic permutation of (1,2, 3),
0i(a) = aiazazaq + a% + a% + a% + aﬁ — 4.

Therefore we have an isomorphism
(Rg)AUSL2AC)) ~ Clzy, 29, 75, a1, ap, as, a]/(f(z, a)).
Hence
Rep(Pl, (tl, to, 13, t4), 2) — Spec (R3>Ad(SL2(C))

is isomorphic to an affine cubic.



Aq-singularit Z
‘\

/A_O/

/ Ay~ C*

a] = 2

The family of affine cubic surfaces



M(=1)

|

T4></\4

RH,
—

(1 i)

~

\
/4

a; = 2C0s2m\;

Ry~ Ty x Rep(Pl, (t1, 1o, 3, 14),2)

l4

T4 X ./44.

for 1 < < 4.



Isomonodromic flows = Painlevé or Garnier flows

\ \ RH, \ | \
/_\\*_/ - R(Iﬁn,t)a
g NS - " [ R(Put)a
M,‘j‘(t()%l;)\ M (t, A, L)\ \
to  1hx{\L to 1, x {ajt

Figure 8. Riemann-Hilbert correspondence and isomonodromic flows for generic A



Riccati flows are tangent to family of (—2)-curves

7N mn N

e —_— ? R(P4,t)
—h contraction // \ | ]

R(Par})a
\)QME(@A,Q Q 4

Mg (to,

A/

/to Tox (A} 0 Tix{ajt

(—2)-rational curve

Case of Painlevé VI

Figure 9. Riemann-Hilbert correspondence and isomonodromic flows for special A



Hamiltonian systems of Painlevé Py

Py 1 is equivalent to a Hamiltonian system Hy/ ;.

(dr _ OHy
(Hyp):{ & Uy
dy  OHyy
\ dt N (933 ’

Hamiltionian in suitable coordinates can be given
Hyr = Hy1(z,y,t, M, A2, A3, A1) € C(t)[,y, Al

t(t 1— 1) [z(z — 1)(z — t)y* — {2\(z — 1)(z — 1)

+2 x(x —t) + (2A3 — Dx(x — 1)}y + Mo — t)]
()\ = {()\1 + Ao+ A3 — 1/2)2 — )\i})

HV[(CC, Yy, t) =



Backlund transformations for Painlevé VI.

e P;y7(A) have non-trivial birational automorphisms which are
called Backlund transformations. The group of all Backlund

transformations form the affine Weyl group W of type DS).

Proposition 4.2. The group of Backlund transformations which
can be obtained from elementary transformations of stable parabolic

connections is a proper subgroup of W(DS)) whose index is finite.

The invloution s( of W(Dfll)) is not in the group.



The case of connection with irregular singular points

Pailevé equation|Order of pole at t = 0|t =1 t= o0
Painleve V' <1 <1 2
IV <1 0 3
111 2 0 2
I1 0 0 4
I 0 0 |4 (ramified)




Backlund tranformations for Py

e —-Symmety of Affine Weyl group W(DS))

° W(Dé(ll)) = <So, S1,° - ,S4> acts on Ay = C* by
si(Aj) = (=1)%)\;,i =1, 4.

1 1
80()\j) = )\j — —Z)\j -+ —.

e Fact:

e (Backlund transformation). The actions of W(Dé(ll)) on Acan be lifted to
birational actions on &’ which prserve v .

~

S s S
) )




Problem

e What is a geometric origin of Backlund transformations 7

Answer

®s,,i=1,---,4 are easy. Elementary transformations.
e Except sg, we can almost explain the geometric origin.



Riccati solution for Painlevé equations and Raional curves

¢ Riccati equation
' = a(t)x® + b(t)x + c(t).
e Example Pjy

( d:IZo 2
pr = 4dxoyo — x5 — 2txg — 2Ko
< . (68)
dyo
di = —2y§ + 2(x0 + t)yo — Koo
L dt

e When g = 0, xog = 0 satisfies first equation automatically. The second
equation becomes Riccati equation:

dyo 2
T —2Yp + 2tYo — Koo

e When ko, = 0, yg = 0 satisfies the second equation automatically, then first

equation becomes

d
% = —:1:% — 2txo — 2K

e Even when Ky = Ky setting xoyo — kg = 0, we have a Riccati equation



e Phase space of Riccati equations
PlxT
e Saito—Terajima, J. of Kyoto Math. (2004)

Riccati solutions| <—=| C=P!C S, C? = -2

e N. A. Lukashevich and A. I. Yablonski,
A.S. Fokas and M.J. Ablowitz, Watanabe.
For A € A4, S/ contains P* if and only if X lies on a reflection hyperplane
with respect to the affine Weyl group actions on Ay.




Figure 10. A Confluence of Nodal Curves in the case Ee (Pyv).



