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We might explain unimodularity as a non-obvious use of group-invariance. Simplest
setting: transitive graphs. A graph is a pair G = (V,E) with E a symmetric subset of
V x V. An automorphism of (G is a permutation of V that induces a permutation of
E. The set of all automorphisms of GG forms a group, Aut(G). We call G transitive if
Aut(G) acts transitively on V (i.e., there is only one orbit).
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(Don Hatch)



Consider the following examples: Let G be an infinite transitive graph and let P be an
invariant percolation, i.e., an Aut(G)-invariant measure on 2V, on 25, or even on 2VVE.

Let w be a configuration with distribution P.

Example: Could it be that w is a single vertex? Il.e., is there an invariant way to pick

a vertex at random?

No: If there were, the assumptions would imply that the probability p that w = {z} is

the same for all , whence an infinite sum of p would equal 1, an impossibility.

Example: Could it be that w is a finite nonempty vertex set? I.e., is there an invariant

way to pick a finite set of vertices at random?

No: If there were, then we could pick one of the vertices of the finite set at random

(uniformly), thereby obtaining an invariant probability measure on singletons.



Cluster means connected component of w. A vertex z is a furcation of a config-
uration w if removing x would split the cluster containing x into at least 3 infinite

clusters.

B,

Example: Is the number of furcations P-a.s. 0 or oo? Yes, for the set of furcations

has an invariant distribution on 2V.
Example: Does P-a.s. each cluster have 0 or oo furcations?

This does not follow from elementary considerations as the previous examples do (we

can prove this).



But suppose we have the following kind of conservation of mass.

We call f:V xV — [0,00] diagonally invariant if f(yz,~vy) = f(x,y) for all z,y € V
and v € Aut(G).

THE MASS-TRANSPORT PRINCIPLE. For all diagonally invariant f, we have
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where o is any fixed vertex of G.

Suppose this holds.



Write K (x) for the cluster containing x.

Now, given the configuration w, define F'(x,y;w) to be 0 if K (z) has 0 or oo furcations,
but to be 1/N if y is one of N furcations of K (z) and 1 < N < co. Then F is diagonally
invariant, whence the Mass-Transport Principle applies to f(x,y) := EF(z,y;w). Since
>y Fz,y;w) <1, we have

Zf(o,a:)gl. (1)

If any cluster has a finite positive number of furcations, then each of them receives
infinite mass. More precisely, if o is one of a finite number of furcations of K (o), then
> .. F(x,0;w) = oco. Therefore, if with positive probability some cluster has a finite
positive number of furcations, then with positive probability o is one of a finite number
of furcations of K (o), and therefore E| > F(x, o;w)} = o0o. That is, > f(x,0) = oo,

which contradicts the Mass-Transport Principle and (1).



Call G unimodular if the Mass-Transport Principle holds for G. Which graphs enjoy
this wonderful property? All graphs do that are properly embedded in euclidean or
hyperbolic space with a transitive action of isometries of the space. All Cayley graphs
do:

We say that a group I' is generated by a subset S of its elements if the smallest
subgroup containing S is all of I'. In other words, every element of I' can be written
as a product of elements of the form s or s=! with s € S. If I' is generated by S,
then we form the associated Cayley graph G with vertices I' and (unoriented) edges
{(:1:, xs); x € G, s € SUS‘l}. Because S generates I', the graph is connected. Cayley
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graphs are transitive since left multiplication by yx ™" is an automorphism of G that

carries = to .



Now if f : I'* — [0, 00] is diagonally invariant, then for o the identity of I' and any

x € I', we have f(o,z) = f(z71,0). Since inversion preserves counting measure on I,

we obtain the Mass-Transport Principle.

(For a general transitive graph, the Mass-Transport Principle is equivalent to unimod-
ularity of Haar measure on Aut(G). History: Liggett (1985), Adams (1990), van den
Berg and Meester (1991), Haggstrom (1997), Benjamini, L., Peres, Schramm (1999). 1

ignore other uses of unimodularity in probability that go back considerably longer.)






The grandparent graph is not unimodular: let f(x,y) be the indicator that y is the

Zf(o,x) =1
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grandparent of x. Then

while

Another definition: G is amenable if there is a sequence K,, of finite vertex sets in G
such that the number of neighbors of K,, divided by the size of K,, tends to 0.

Example: Z¢
Non-examples: regular trees of degree at least 3; hyperbolic tessellations.

All amenable transitive graphs are unimodular (Soardi and Woess).



A selection of theorems:

Bernoulli(p) percolation on GG puts each edge in w independently with probability p.
The probability of an infinite cluster in w is 0 or 1 by Kolmogorov’s 0-1 Law. It increases
in p, so there is a critical value p. where it changes. What is the probability of an
infinite cluster at p.? Benjamini and Schramm conjectured it is 0 on any transitive
graph, provided that p. < 1. It was known for Z¢ for d = 2 (Kesten) and d > 19 (Hara
and Slade).

THEOREM (BLPS 1999). This is true for all non-amenable transitive unimodular
graphs.

It is unknown whether this holds for non-unimodular graphs.



THEOREM (HAGGSTROM; HAGGSTROM AND PERES; L. AND PERES; L. AND SCHRAMM).
Let G be a transitive unimodular graph. Given invariant random transition probabili-
ties p,,(x,y) and an invariant p-stationary measure v, (x), biasing w by v, (o) gives a

measure that is invartant from the point of view of the walker.

Example: Degree-biasing for simple random walk on the clusters.

This is false on non-unimodular graphs.




THEOREM (ALDOUS AND L.). Let G be a transitive unimodular graph. Given in-

variant random symmetric rates r,,(z,y) such that E| " r(o,z)| < oo, the associated

continuous-time random walk has no explosions a.s.

This is false on non-unimodular graphs.




Proof. Let Z :=E[Y" r(o,z)]. Consider the discrete-time random walk (X, ; n > 0)

corresponding to the weights r,(z,y). This has a stationary measure

V() =Y ru(r,9)/Z.

Y

It also describes the steps of the continuous-time random walk, ignoring the waiting
times. Biasing by v, gives a probability measure. The continuous-time random walk

moves from = at rate Y. r,(z,y) = Zv,(z), so spends expected time 1/(Zv,(z))

y
before moving (given w). Thus, it explodes w.p.p. given (X,,) iff >~ 1/v,(X,) < o0
by the Borel-Cantelli lemma. But this sum is infinite by stationarity and Poincaré’s

recurrence theorem (which applies because the biased measure is finite). i



THEOREM (FONTES AND MATHIEU; ALDOUS AND L.). Let G be a transitive uni-

modular graph. Given invariant random pairs of symmetric rates (rw, Rw) such that

ro(z,y) < Ry(z,y)

for all x,y and almost all w, let ps(0,0) and Pi(o0,0) be the expected [annealed] return
probabilities for the associated continuous-time (minimal) random walks. Then for all
t >0, we have

pt(0,0) > Pi(0,0).

It is unknown whether this holds for non-unimodular graphs. It is also unknown if we

assume invariance of r,, and R,, separately.



Proof. Let

and

Then

Thus,

.— —Tw(iﬁ,y) 1fgj7éy,
a0 (2, y) = {erw(x,z) ifo =1y

_ J-Ru(zy) ifz#y,
Au(z,y) = { Y., Ru(z,2) ifz=uy.

P (w,y) = (e7'") (2, y) and PP (x,y) = (e74)(z,y).

pi(0,0) = E[G_m” (o, 0)] =:Tr [e_t“w} )

Since [_11 _11] > 0, we have a, < A,. Therefore

pi(0,0) = Tr [e”"%] > Tr [e_tA“} = Pi(0,0).



Extensions of unimodularity:

On finite graphs, the Mass-Transport Principle is obvious if we take o to be a uniform

random “root” and average over o:
E[> f(o,x)] =E[)_ f(z,0)]. (2)

This is just interchanging the order of summation. But it is crucial that the root be

chosen uniformly. Indeed, (2) characterizes the uniform measure.

Consider this graph:
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We should choose o to be a blue vertex with probability twice that of a black vertex in
order that (2) hold.




With this graph:

we should choose o to be a blue vertex with probability four times that of a black vertex

in order that the Mass-Transport Principle hold,

E[Zf(o,x)] = E[Zf(x,o)] :



What about the hyperbolic triangle tessellation?




We call G quasi-transitive if Aut(G) acts quasi-transitively on V (i.e., there are
only finitely many orbits). If G is quasi-transitive and amenable, then each orbit has
a natural frequency (BLPS), which should be used for the probability of choosing a

representative from that orbit for o in the Mass-Transport Principle,

E[Y flo,2)] =E[) f(x.0)].

If there are probabilities «; for the orbit representatives oq,...,0r such that choos-
ing o; with probability «; makes the Mass-Transport Principle true, then we call GG

unimodular.

How do we tell? The following is necessary and sufficient: if x is in the orbit of o; and

y is in the orbit of o;, then
[S(@)yl _ oy
1S(y)z|

where S(z) := {v € Aut(G); vo = z}.




Consider now the space of rooted graphs or networks. In fact, consider only rooted-
isomorphism classes of networks. A probability measure on this space is unimodular

if the Mass-Transport Principle holds:

E[ Y [f(Gox)]=E[ ) [(Giz,o0) (3)

z€eV(G) zeV(Q)
for all Borel non-negative f that are diagonally invariant under isomorphisms.

For example, as observed by Benjamini/Schramm and by Aldous/Steele, all weak limits

of uniformly rooted finite networks are unimodular.



All the theorems given for transitive unimodular graphs hold for unimodular random
rooted networks (Aldous-L.).

Example: If we want the offspring distribution (px) for a unimodular version UGW
of Galton-Watson trees, let rp := ¢ ip,_1/k for k > 1 and ry := 0, where ¢ =
Y k>0 Pr/(k+1). With the sequence (ri) and n vertices, give each vertex k balls with
prol;ability rk, independently. Then pair the balls at random and place an edge for each
pair between the corresponding vertices. There may be one ball left over; if so, ignore
it. In the limit, we get a random tree where the root has degree k£ with probability ry

and each neighbor of the root has an independent Galton-Watson((py)) tree.



)

150 vertices with p; = py = 1/2

(






Example: Biasing UGW by the degree of the root gives a stationary measure for simple

random walk (L., Pemantle and Peres):

Example: Aperiodic tessellations. Like Palm measure.
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