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At each site x € Z, we choose w; € (0,1) in-
dependently with the same law u: we denote
by

P = “®Z
the law of the environment.
The law of the Markov chain (Xy) in environ-

ment (wz) is given by

Po(Xpg1=z+1|Xn=12) =wy,

Po(Xpg1=z-1|Xn=2)=1-w,

We denote by
P(-) = E(P.(4))

the annealed law.

Beta case: i ~Beta(a, ), i.e. has density

(a4 B)
(o)l (B)
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For + € Z we set

1—wz-

pi = :
Wy

Theorem 1 (Solomon, 75)
i) If E(log(ppg)) < 0, then
lim X, = 4o, P p.s.

n—aeo

If E(log(pg)) = 0 then X, is recurrent (Sinai’s
walk)

ii) If E(pg) < 1 then

If u ~Beta(a, 3):
E(logpg) < 0 iff a > .
E(pg) <1liffa>p+1

a—F—1
a+0—1

Voo —



Finer behaviour is related to the function s —
E (p)

and to the solution of the equation

E(pg) = 1.
Let 7(n) = inf{k, X = n}.

Theorem 2 (Kesten-Kozlov-Spitzer, 75) Sup-
pose the distribution oflog(pg) is non-arithmetic
and there exists k > 0 such that

E(p§) =1, E(p§log™(po)) < oo.

i) If k <1 then
7(n) law
nl/k > Lis

where Ly IS a positive stable law with index k.
ii) Fork =1

T(n) law
nlogn {
where c is a positive constant.
iii) Fluctuation for 1 < k < 2.




For k < 1, Lk is determined by its Laplace
transform
o—AN"

Question: what is the value of d7
KKS’s proof is based on the tail estimate of
the variable

R=pi1+pip2+--+p1-pn+--
P(th)NCKt_K

Theorem 3 (Enriquez, S., Zindy) For k < 1

2
d=2"—""__C%E(pf10g po)
sin(mk)
i.e.
(n) 2 ;
T 'n/ law 7'(-/“/6 2 K Kk ca
2 C+FE lO S
’I’L]‘/K’ (Sin(ﬂ'lﬁ)) K (IOO ng)) K

where S is the normalized stable distribution
with index k and Laplace transform e ",

Xn law sin(mwk) ( 1 >'f
nk 2“7T/<;QCf2(E(p’6"Iog po) \SS@




Corollary 1 (The Beta case): If u ~Beta(a, 3),
then

kKk=aoa—0

_ om0 P () —¢(B)
sin(r(a—3))  B(a,B)?

where ¢ (z) = (log T (z))’ is the dilogarithm and

B(a, 8) =T () (B8)/T (a+ B).

d

This comes from a result of Chamayou et Letac

Proposition 1 (Chamayou, Letac)
In the Beta case
R lgv 1 -—-W
W
where W ~Beta(a — 3, 3).

This implies Cg = =

1
B)B(a,5)

Remark: The r.v. R has the following proba-
bilistic expression

R = E,(#{crossings 1 — 0})



In general, we derived a probabilistic represen-
tation of (' and d, which is easy to evaluate
numerically.

The case k=1

In the case Kk = 1, Kesten’'s constant is al-
ways explicit (this is due to Goldie) and equal
to Cig = 1/E(pglog(pg)). We strongly believe
that the constant c in the limit should be equal

to ¢ = 1 ~which would give the re-
= 202 E(po109 o) .

markably simple result

n

X”/(Iogn) E(pglog(po))/2

in probability. We still have small technical
problems to treat this critical case!




Sinai’'s potential

Ve(w) =< Vo=20

E(log(pg)) < 0 implies that lims V) = —oo.
The random walk X,, descends along the po-
tential (V).

For example ifa<b<ec

E:C:} eVk
Pl(1(a) < 7(c)) = =k=b
w(T(a) < 7(c)) oL Vi
and if ¢ >0
El(r(e) = Y YN

i<c—1
0<y<c—1,5>1



Weak descending ladder epochs : eg =0

€i+1 = inf{k > €4, Vk < Vei}

The height of the excursion

H; = sup{Vy — Ve;, k € [ej,e;41]}

(H;);>0 is an iid sequence and (Iglehart)
P(Hg > h) ~ Cre” ",
where
(1 — E(erV(e1)))2
rE(pg109(po)) E(e1)

This is related to the renewal theory and to the
tail of the absolute maximum S = max{V;, k >

0}

Cr=

P(S>h) ~ Cre "l
where
C

— 1 . E KJV(G]_)
cr (e (1))



We consider 7(ep) the time to cross n excur-

sions and

7(en)
—A
E(e =~ nl/)

We have

7(en) = 7(0,e1) + 7(e1,e2) + -+ 7(ep—_1,€n).
The time 7(e;e;41) is roughly of order effi,
hence

P(r(ejeiq41) 2t) <t™"

and 7(e;,e; + 1) has a heavy tail for k < 1.
Hence, only a few count, well separated, and
we can consider them as independent.

This leads to

_)\T(el) n
Efe Y|V >0VE<O

since P(-| V;, > 0 Vk < 0) is the shape of the
potential around a ladder time e;.



The RW (X,) tries a geometric number of
times N to reach the level eq; and finally suc-
ceed

(e1)=F1+---+Fy+S

When H is large the parameter of N is close
to 1 : we can neglect S and consider 7(e1) as
a geometric r.v. with parameter E,(7(e1)).

Eu(1(e1)) ~ Ew(F)Ey(N) ~ 2eH My Mo,

where
Ty e1
My= Y eV My= Y e i
k=—o00 k=0
where Ty = inf{k > 0,V = H} is the first time
where the level H is reached. This analysis
leads to

o0 —2 1/k Iu{A "
E / e e nTeTMiMody| V. >0VE<O

0

— (1 _ /OOO e~U(1 — H(%))du)n



where
H(v) = E (e "7V}, > 0Vk < 0)
and
Z = e My Mo

By Tauber theorem, this leads to understand
the tail of Z. Since only the large H count
we can freely condition by the event {H = S},
where S = max{Vz, Vk > 0} and we set

IT={H=S5}n{V,>0Vk <0}
we also replace M» by the full sum
@)
Moy = Z eVt

k=0
Under P(-|Z) we have the symmetry

law

(Vi) =(H =V, _i)
and

law

My = Mo



In fact, for large H, My, M-> and H are as-
ymptotically independent (this is obtained by
a delicate almost coupling argument).

P(e! My My >t | T) ~ CrE(M{ )2

To understand the asymptotic shape of My,
we use the Girsanov transform: let

i(dp) = p"p(dp)
and P the associated law on the environment.
When H is large, the path (14, - ,VTH) be-
haves like (V},) under P(-|[Vi. > 0 Vk > 0). Hence,
we have

P(Z>t|Z)~Cyt™"
where
C, = CrE(M™%)?

where
oo
M = Z e Vk
— 0

and where (V},) <o is distributed under P(:|V} >
0 Vk < 0) and (Vi)g>o is distributed under
P(-|Vi; > 0 Vk > 0).



This gives an expression of the limit law in
terms of the E(M~F) and the constant C; (which
is explicit).

Remark that the Kesten r.v.

R 1L+p1+p1p2+---

GSMQ

Using similar arguments we can get

P(R>t) ~Cgt™ "
where
Cx =CpE(M™")

This relates the constant Cy to 'y and gives
the result.



