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Example 1: Hospital Acquired Infection

Population: Patients in intensive care.

Response variable: Duration of stay in intensive care.
= ‘Survival’' type of response.

Fixed covariates: Age, sex etc.

Time dependent covariates: Time of hospital acquired infection,
organ function (score).

Question: Effect of ‘preventing infection’ on duration in intensive care.



Example 1: Hospital Acquired Infection

Causal question: What if we can prevent infection (higher standards of
hygene etc.) for future patients, so that no one develops this infection?

Problem: In the data, time of infection (if at all) may depend on
patient’s recovery process and general health.

= Cannot compare patients who happen not to have an infection with
situation where infection is prevented for everyone.

Causal inference: Assume that certain aspects of the data are stable
so that they are still valid under an intervention that prevents this
infection.



Example 2: Chemotherapy for Cancer Patients

Population: Patients with operable breast cancer.

Response variable: Absence of residual malignant cells at surgery.
= One binary outcome measured at end of study period.

Fixed covariates: Age, tumour size at start etc.

Time dependent covariates: Tumour size, number of chemotherapy
cycles.

Question: Effect of the number of cycles on presence of tumour.



Example 2: Chemotherapy for Cancer Patients

Causal question: If we prescribe a certain number of chemotherapy
cycles to future patients will this have a different effect than prescribing
a lower (higher) number?

Problem: In the data, number (and timing) of chemotherapy cycles
vary and may depend on patient history, patient’'s wish to terminate,
toxic response, death, negative palpation result...

= Patients who happen to have had e.g. four cycles cannot be compared
with situation where everyone is prescribed four cycles.

Causal inference: Assume that certain aspects of the data are stable
so that they are still valid under an intervention of prescribing no. of
cycles.



Data Situation

Aq,..., AN "action” variables — can be ‘manipulated’

Lq,..., Ly covariates — (available) background information

Y = L1 response variable

all measured over time, L; before A;

A<= (Ay,...,A;_1) past up to before i; A=", A~ etc. similarly



Strategies

Strategy s = (s1,...,sn) set of functions assigning an action

a; = s;(a<’, lgi) to each history (a~*, lﬁ’i)

If s; constant for (a<*,15%), i = 1,..., N, then unconditional strategy

Otherwise conditional /dynamic strategy.



Causal Inference

Three issues:

1) What is the causal target of inference?
— effect of unconditional strategy;

— effect of conditional strategy;

— finding optimal strategy?

2) Under what assumption can we learn anything at all from observed
data about our causal target of inference?
= they are slighlty different depending on taget.

3) What methods should we use? For sequential treatments:
— G—computation

— Inverse probability of treatment weighting (IPTW)

— (G—estimation)



Identifiability

Wanted: p(y;s) (or as before E(k(Y);s)) from observables.

Have seen that simple stability is sufficient to identify this.

Lillo|(A<", L") foralli=1,...,N+1

Or graphically:

%

L,—> A —>L,—>A,—>Y

e~

o

(References: Robins (1986), Dawid & Didelez (2005))
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Examples

Example 3: (from earlier)

Simple stability violated: Lo L 0 | Ay and Y L o | (A1, As, Lo)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A, L, U. Y, and define ‘new’ joint
distributions p;(a,1,u,y) =

p(as", 15" u=%0) x p(a”", 17", u”", yla=" 15", u™";s)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A, L, U. Y, and define ‘new’ joint
distributions p;(a,1,u,y) =
>i > <i 156 uSti: )

p(a=", 15", u~";0) xp(a u”’, ylas

obs. for < ¢
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.
Assume extended stability holds wrt. A, L, U. Y, and define ‘new’ joint
distributions p;(a,1,u,y) =

p(a§i7 léia ugi; O) X P(a>i7 l>i7 u>i7 y’agia lSi) uéi; Sl

strategy for > ¢
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A, L, U. Y, and define ‘'new’ joint
distributions p;(a,1,u,y) =

p(a=", 15" u="0) x p(a”", 1", u”", yla>" 15", u=";s)

Theorem 1: sufficient condition for identifiability of s is
pi—1(y|aS", 15Y) = p;(y|a=", 159, 1=1,...,N.

(Dawid & Didelez, 2005)
Simple stability implies the above.
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Comments

Theorem 1, in words:

once we know a; and the observable past variables, the distribution of
Y does not depend on how a; was generated, when a<* is observational
and a~* follows the strategy.

Note:
Essentially same as Pearl & Robins (1995) for unconditional strategies.

Graphical check: draw graphs D; with

— pap,(Ax) =pao(Ag) for k <1

— pap,(Ax) =pas(Ak) as under strategy for k > i
— pap,(A4;) =pas(A;)Upao(4;) Uo.

= check separation Y lLo|(AS, L") in D;, i=1,...,N
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Example 3 ctd.

Assumed underlying structure (note: L = () here)

Now: also assume that s5 is unconditional, i.e. choice of action A, in
our strategy does not depend on past observations.

17



Example 3 ctd.

Then Dy and D5 are given by

1 2 Ay ———
\0

Can see that Y 1lLo|A; in Dy

and YJ_LO-‘(A]_,AQ,LQ) In D2.
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Example 3 ctd.

However, if s is conditional, i.e. A5 depends on past observations in
our strategy, then D1 and D5 are given by

Now YALLO"Al In Dl.

This suggests that the ‘relaxed’ conditions are not so ‘relaxed’ for
conditional interventions.
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Optimal Treatment Strategy

Really, what we want to find is the optimal treatment strategy.
= will typically be conditional strategy.

= have to investigate whether all relevant conditional strategies are
identified from data.

= have to allow a; to depend on whole observed past (a<*,15%).
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Result

Assumption 1: pag(A;) Cpa,(A4;) foralli=1,..., N.

Assumption 2: each Lq,...,Ly is an ancestor of Y in Dy (under
strategy s), 2 =1,..., N.

Theorem 2: With these assumptions, if the graphical check of Theorem
1 succeeds then we also have simple stability. (Dawid & Didelez, 2008)

Optimal strategies: Assumption 2 satisfied because
— actions A; must be allowed to depend on past L=?
— and A, ancestors of Y.
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G—Computation

Assuming simple stability (or Theorem 1).

If s is (non—random) strategy fixing actions at a=*" then

N
=D pI=Y,a=%0) [ [ pt:il=" 2~ 0)
i=1

1<N

Why? A bit of intuition (assuming s is unconditional)...
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lllustration

Simple scenario with L; = ) and only two actions.
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lllustration

Lo ‘confounder’ for A, and Y.

= have to condition on Ls.
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lllustration

Lo ‘mediator’ for A; on Y.

= must not condition on Ls!

= coefficients in regression p(y|ai,as,l2;0) not suitable for causal
effect.

25



lllustration

A, A,
\ RN
] / \&Y

Also, conditioning on Lo could induce selection effect.

= must not condition on Ls!

= coefficients in regression p(y|ai,as,l2;0) not suitable for causal
effect.
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lllustration

Under observational regime:

p(y7a17a27l2;0) —

p(yla, az,l2;0) plaslay,lz;o) p(lalay;o)

chosen by ‘nature’

E(Ch; 0),

chosen by ‘nature’
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lllustration

fixed =1 A, fixed —| A,
\\ - _ \
>
L, - - >Y

Under intervention:

Actions Ay, Ay not random anymore, but fixed.

= not generated by p(a1;0) and p(as|a,ls;0) anymore.

= p(y,l2;8) = p(ylai, az, lz; 0)p(la|as; o)

Stability (or Theo. 1) ensures remaining factors stay the same.
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G—Computation

Integrate / sum out covariates 1= to obtain p(y;s
g P\Y

N
p(y;s) =Y plI=N,a=";0) [ [ p(lL:1<7,a~% 0)

1SN 1=1

So, estimate p(y[I=V,a~":0) and p(I;]I<*,a<%; 0) from data.
= plug in and done!

Note: for realistic settings will need to model these conditional
distributions; misspecification may “multiply”.

Alternative: inverse probability of treatment weighting.

29



Reminder

fixed = A, fixed —=| A,
\\ - _ &
~>
L, T

Under intervention:

p(y,l2;8) = p(ylai, az,la; 0)p(la]ar; o)
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Inverse Probability of Treatment Weighting

fixed |—> A, fixed |—> A,
\ \\
\ - _ 2
-
L, - —-—>Y

Under intervention:

p(y,l2;8) = p(ylai, az,la; 0)p(la]ar; o)

Same as
p(y7 ay, az, l27 O)

= \ IPTW
p(ai;o)plaz|ay,lz; o)
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IPTW — More Generally

Assuming stability (or Theo. 1), and unconditional strategy s

p(Y;s) «— intervention distribution

N
= > p=N,a=";0) | [ p(li1~*, 2~ 0) «— G-comp.
1=1

I<N

ISN <N.
= ply127 a7 i0) | prwy

N . .
<N [[;21 p(aill=*, 2<% 0)

where a1, ...,ax are fixed according to intervention strategy o = s.

Not obvious how to use IPTW yet.
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IPTW — Even More Generally

Define a probability measure P* as

weights W (1= a=NV)—1

. Hiﬁ(ai]aﬁi)

) [I; p(as|1=t, a<t; 0)

y, 15V ast) =

= p(y, 15V, 2=V

p(
where P is an arbitrary joint distribution for ASY,
Then we can show
— under P*: A; L L=* | A< for all i

— and p*(a~!) = p(a™?) for all i
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IPTW: Marginal Structural Models (MSMs)

A MSM (Robins, 1999) is a model for E(Y;s) = u(a=";3) e.g. logistic
regression etc.

Note: parameters 3 have immediate causal interpretation.

With P* as before, we have
E(Y;s) = E*(Y]ASYN = a=")

if 0 = s is strategy fixing ASY at a=.
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Estimating Equations

Hence, we obtain
E{¢p(ASY)(Y — n(ASN;6))} =0

l.e. unbiased estimating equations under P~.

But this is the same as

P(A=N)(Y — p(A=N;8)) 0}

B {6(A=N)(Y - u(a=; ) = £ { XA T HE D),

l.e. weighted estimating equations are unbiased under observational
regime.
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‘Survival’ Qutcome

Example: Duration of stay in intensive care.

If response is such a survival / duration, don't want to model E(Y;s)
but instead hazard rate A\(¢;s) under strategy o = s.

= Same principle, but with time varying weights.

= Weights must be conditional on ‘survived so far'.
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Comparison

G—computation:
e Need models for p(y[1=",a>";0) and p(I;|1<%,a<%0) V i.

e Under misspecification might not even include the null hypothesis of
no causal effect.

e No simple relation between parameters of above conditional
distributions and causal effect.

e Apart from that, very general method.
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Comparison

IPTW:

e Need models for E(Y;s) and p(a;|I=%, a<%;0) for all i.

e By parameterising E(Y:s) = pu(aS";3) we obtain a causally

Interpretable parameter.

e Can easily be carried out by slight modification of popular regression
methods.

e Cannot (easily) deal with interactions between L; and A; on Y and
hence has problems with conditional strategies.
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Conclusion

Conditions for identifiability of a strategy may depend on type of
strategy.

If we want to find an optimal strategy, just check simple stability.

Note: have not talked about how to find an optimal strategy; not
easy!

Unconditional strategies can be estimated with IPTW as an alternative
to g—computation.

Further method, g—estimation: based on counterfactuals — can we
reformulate that?

In applications need to scrutinise carefully assumption allowing to link
observational and interventional regimes.
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