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1 Introduction

• Problem and motivation

1. Consider a problem of developing a graphical model of

30 item score variables (X’s) and 20 or more

cognitive/knowledge state variables (U’s).

2. We use the model for diagnosing knowledge states

where knowledge states are predicted via conditional

probabilities.

3. X’s are observable and U’s are not, and assume they

are all binary.

4. Cognitive diagnosis and model structure

Dept. of Math. Sciences, KAIST
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• Two common sense issues in large-scale modeling:

1. Sparseness of data (Koehler, 1986; Maydeu-Olivares

and Joe, 2005; Kim(in revision))

2. Model/time complexity (Chickering, 1996)

- Koehler, K.J., 1986. Goodness-of-fit tests for log-linear models in

sparse contingency tables. JASA, 81(394), 483-493.

- Maydeu-Olivares, A., Joe, H., 2005. Limited- and full-information

estimation and goodness-of -fit testing in 2
n contingency tables: a

unified framework. JASA, 100(471), 1009-1020.

- Chickering, D. (1996). Learning Bayesian networks is

NP-complete, In: Learning from Data, D. Fisher and H. Lenz (Ed.),

121-130, Springer-Verlag.

- Kim (in revision). Estimate-based goodness-of-fit test for large

sparse multinomial distributions.
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• Fienberg and Kim (1999) and Kim (2006) considered a

problem of combining conditional graphical log-linear

structures and derived a combining rule for them based on

the relation between the log-linear model and its

conditional version.

• A main feature of the relation is that conditional

log-linear structures appear as parts of their joint model

structure [Theorems 3 and 4, Fienberg and Kim].

- Fienberg and Kim (1999). Combining conditional log-linear

structures, JASA, 445(94), 229-239.

- Kim (2006). Conditional log-linear structures for log-linear

modelling, CSDA, 50(8), 2044-2064.
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But not between marginal and joint models!

• Consider two marginal models, [12][23] and [12][24], which

are possible from each of

[12][24][23], [12][24][34], [12][23][34], [12][234].

• How can we find a joint model structure from a given

set of marginal model structures?

Dept. of Math. Sciences, KAIST
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2 Preliminaries

• We will consider only undirected graphs.

• For a subset A ⊆ V , we denote by GA = (A, EA) the

subgraph of G = (V, E) confined to A where

EA = (E ∩ A × A) ∪

{(u, v) ∈ A × A; u and v are not separated by

A \ {u, v} in G}.

We will call GA the Markovian subgraph of G confined to

A.
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• If G = (V, E), G′ = (V, E′), and E′ ⊆ E, then we say that G′

is an edge-subgraph of G and write G′ ⊆e G.

• According to the definition of a decomposable graph, we

can find a sequence of cliques C1, · · · , Ck of a decomposable

graph G which satisfies the following condition [see

Proposition 2.17 of Lauritzen (1996)]: with C(j) = ∪j
i=1Ci

and Sj = Cj ∩ C(j−1),

for all i > 1, there is a j < i such that Si ⊆ Cj .

• We denote the collection of these Sj’s by χ(G).

- Lauritzen (1996). Graphical Models. Oxford: Oxford University

Press.

Dept. of Math. Sciences, KAIST



Markovian Combination 9/45

• The cliques are elementary graphical components and

the Sj is obtained as intersection of neighboring cliques.

We will call the Sj’s prime separators of the decomposable

graph G.

• Prime graphs are defined as the maximal subgraphs

without a complete separator in Cox and Wermuth(1999).

• The prime separators in a decomposable graph may be

extended to separators of prime graphs in any undirected

graph.

- Cox, D.R. and Wermuth, N. (1999). Likelihood factorizations for

mixed discrete and continuous variables, SJS, 26, 209-220.

Dept. of Math. Sciences, KAIST
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• We will denote by M(G) the collection of the

distributions that are globally Markov with respect to G,

i.e., if, for three disjoint subsets A, B, C of V , XA and XB

are conditionally independent given XC , then A and B are

separated by C in G.

Dept. of Math. Sciences, KAIST
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3 Distribution and interaction graphs
• For a distribution P , let G(P ) be the interaction graph of

P .

Theorem 1. (Corollary 3.4 in Kim (2004)) For a distribution

P of XV and A ⊆ V ,

PA ∈ M(G(P )A).

• For a collection V of subsets of V , let

L̃(GA, A ∈ V) = {P ; PA ∈ M(GA), A ∈ V}.

Theorem 2. (Theorem 3.6 in Kim(2004)) For a collection V of

subsets of V with an undirected graph G,

M(G) ⊆ L̃(GA, A ∈ V).

- Kim (2004). Combining decomposable model structures, RR 04-15,

Division of Applied Mathematics, KAIST.
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4 Combined model structures

• Let G = (V, E) be decomposable and let V1, V2, · · · , Vm be

subsets of V . For simplicity, we write Gi = GVi
.

Definition 3. Suppose there are m Markovian subgraphs,

G1, · · · ,Gm. Then we say that graph H of a set of variables

V is a combined model structure (CMS) corresponding to

G1, · · · ,Gm, if the following conditions hold:

(i) ∪m
i=1Vi = V.

(ii) HVi
= Gi, for i = 1, · · · , m. That is, Gi are Markovian

subgraphs of H.

We will call H a maximal CMS corresponding to G1, · · · ,Gm

if adding any edge to H invalidates condition (ii) for at

least one i = 1, · · · , m.

Dept. of Math. Sciences, KAIST
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• Let CG(A) denote the collection of the cliques which

include nodes of A in the graph G.

Lemma 4. Let G′ = (V ′, E′) be a Markovian subgraph of G

and suppose that, for three disjoint subsets A, B, C of V ′,

〈A|B|C〉G′ . Then

(i) 〈A|B|C〉G;

(ii) For W ∈ CG(A) and W ′ ∈ CG(C), 〈W |B|W ′〉G.

Dept. of Math. Sciences, KAIST
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Theorem 5. (Kim, 2006) Let there be Markovian subgraphs

Gi, i = 1, 2, · · · , m, of a decomposable graph G. Then

(i) ∪m
i=1χ(Gi) ⊆ χ(G);

(ii) for any maximal CMS H,

∪m
i=1χ(Gi) = χ(H).

Theorem 6 (Unique existence). (Kim, 2006) Suppose there are

m Markovian subgraphs G1, · · · ,Gm of a decomposable

graph G. Then there exists a unique maximal CMS H∗ of

the m Markovian subgraphs such that G ⊆e H∗.

- Kim. (2006). Properties of Markovian subgraphs of a

decomposable graph, LNAI 4293, 15-26.

Dept. of Math. Sciences, KAIST
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Theorem 7 (Invariance of PS). Let G be a decomposable

graph and G1 and G2 be Markovian subgraphs of G.

Suppose that a set C ∈ χ(G1) and that C ⊆ V2. Then C is

not intersected in G2 by any other subset of V2.

• We will call a node PS-node if it is a component of a

PS; otherwise, a non-PS-node.

Dept. of Math. Sciences, KAIST
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5 Graph of prime separators (GOPS)

Definition 8. Let A = ∪a∈χ(G)a. Then the graph of the

prime separators (GOPS for short) of G is obtained from

GA by replacing every PS and all the edges between every

pair of neighboring PSs in GA with a node and an edge,

respectively.
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6 Algorithm

[Separateness condition] Let M be a set of Markovian

subgraphs of G and H a maximal CMS of M. If two

nodes are in a graph in M and they are not adjacent in

the graph, then neither are they in H. Otherwise,

adjacency of the nodes in H is determined by checking

separateness of the nodes in M.

Suppose that M consists of m Markovian subgraphs,

G1, · · · ,Gm, of G and we denote by ai a PS of Gi. We can

then combine the models of M as follows.

Step 1. We arrange the subgraphs into Gi1 , · · · ,Gim
such

that |Vij
∩ Vij+1

| ≥ |Vij+1
∩ Vij+2

| for j = 1, 2, · · · , m − 2. For

convenience, let ij = j, j = 1, 2, · · · , m. We define

η1 = {G1}.

Dept. of Math. Sciences, KAIST
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Step 2a. We first put an edge between every pair of PSs,

a1 and a2, if

a1 ∩ a2 6= ∅, (1)

in such a way that the separateness condition is

satisfied with regard to M. We denote the resulting

GOPS by H.

Step 2b. Once the node-sharing PSs are all considered in

Step 2a, we need to consider all the PSs a1 and a2 such

that

a1 ∩
(

∪a∈χ(G2)a
)

= ∅ and a2 ∩
(

∪a∈χ(G1)a
)

= ∅ (2)

and put edges between ai, i = 1, 2, and every PS in G3−i

that is acceptable under the separateness condition, in

addition to the GOPS which is obtained in Step 2a.

For example, for each a1 satisfying (2), we add edges to

H between the a1 and every possible PS in G2 under

Dept. of Math. Sciences, KAIST
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the separateness condition, and similarly for each of a2

that satisfy (2). We denote the result of the

combination by η2.

Step 3. Let ηi be the GOPS obtained from the preceding

step. Note that ηi can be a set of GOPS’s. For each

GOPS H in ηi, we combine H with Gi+1 as in Step 2,

where we replace G1 and G2 with H and Gi+1,

respectively. We repeat this combination with Gi+1 for

all the graphs H in ηi, which results in the set, ηi+1, of

newly combined graphs.

Step 4. If i + 1 = m, then stop the process. Otherwise,

repeat Step 3.

Dept. of Math. Sciences, KAIST
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Figure 1: A model of 13 variables.
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Figure 2: Marginals of the model in Figure 1.
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Figure 3: Combining G2 and G4 of the model in Figure 1.
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40 variables.

Dept. of Math. Sciences, KAIST



Markovian Combination 26/45

7 Time complexity of the procedure

• For two graphs, G1 and G2, let |Vi| = ni with i = 1, 2,

|V1 ∩ V2| = n12 and ñi = ni − n12.

• It is well known that the time complexity of the

depth-first search method (Tarjan, 1972) for a graph

G = (V, E) is of order O(|V | + |E|).

• So the time complexity for the combination is of order

ñ2
1O(ñ2 + ẽ2) + ñ2

2O(ñ1 + ẽ1), where ẽi is the number of

edges in the induced subgraph of Gi on Vi \ V3−i.

- Tarjan, R. E. (1972). Depth-first search and linear graph

algorithms. SIAM J. Comput. 1(2), 146-160.
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8 Illustration-1
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Figure 6: A model of 40 binary variables
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Figure 7: A matrix of regressor-response relationships for

the 40 variables as obtained from a tree regression analy-

sis. The 1’s in column j are the indicators of the regressor

variables for the response variable Xj. The six blocks cor-

respond to the six subsets of variables listed in Table 1.
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Table 1: The indexes of the variables in the 6 subsets,

V1, · · · , V6.

V1 = {1, 2, 3, 4, 5, 6, 7, 8, 11, 12}

V2 = {8, 9, 10, 11, 12, 14, 15, 16, 17, 18}

V3 = {10, 13, 14, 15, 19, 20, 21, 22, 23, 24}

V4 = {13, 20, 21, 22, 25, 26, 27, 28, 29, 34}

V5 = {28, 29, 30, 31, 32, 34, 35, 36, 37, 38}

V6 = {30, 31, 32, 33, 35, 36, 37, 38, 39, 40}

Dept. of Math. Sciences, KAIST
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Table 2: Goodness-of-fit levels of the six marginal models

Marginal model d.f. Pearson χ2 p-value

1 567 547.50 0.714

2 645 667.41 0.263

3 601 589.07 0.628

4 649 679.25 0.199

5 617 591.89 0.760

6 604 621.53 0.302
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Figure 8: Marginal models of the model in Figure 6 for

the 6 subsets of variables which are listed in Table 1. Gi is

the decomposable log-linear model for subset Vi. PSs are

represented by thick lines. See Figure 9 for the PSs of the

6 marginal models.
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9 Illustration-2
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Figure 13: The first nine marginal models, G1, · · · ,G9, of the

model in Figure 12.
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Figure 14: The second nine marginal models, G10, · · · ,G18,

of the model in Figure 12.
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Figure 15: The combined result of the 18 marginal models

in Figures 13 and 14. The thick edges are additional to the

true model in Figure 12.
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10 Concluding Remarks

1. The main idea of MCMoSt is similar to

constraint-based learning[CBL] (Meek 1995; Spirtes,

Glymour & Scheines, 2000; Neapolitan, 2004) where

we construct a Bayesian network based on a list of

constraints which are given in terms of conditional

independence among a given set of random variables.

- Meek, C. (1995). Causal influence and causal explanation with

background knowledge, UAI 11, 403-410.

- Neapolitan, R.E. (2004). Learning Bayesian Networks, Pearson

Prentice Hall, Upper Saddle River, NJ.

- Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation,

Prediction, and Search, 2nd ed.
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But a noteworthy difference between the two is that,

while the statements of conditional independencies, as

for the CBL, are an extraction from the probability

model of the whole set of the variables involved, the

statements for MCMoSt are from the marginal

probability models of the subsets of variables.

2. In selecting subsets of random variables, it is important

to have the random variables associated more highly

within subsets than between subsets. This way of

subset-selection would end up with subsets of random

variables where random variables that are neighbors in

the graph of the model structure of the whole data set

are more likely to appear in the same marginal model.
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3. Although the model combination is carried out under

the decomposability assumption, we can deal with the

marginal models of a graphical model, which are not

decomposable, by transforming their model structures

into decomposable (i.e., triangulated) graphs.
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11 Where to go?

• Combining model structures other than UG’s.

• Models with no observed data.

• Consistency of models (Dawid and Lauritzen, 1993)

• Robustness of prediction/classification (Kim, 2005;

Fienberg and Kim, 2007)

- Dawid and Lauritzen (1993). Hyper Markov laws in the statistical

analysis of decomposable graphical models. The Annals of Statistics,

21, 3, 1272-1317.

- Kim (2005). Stochastic ordering and robustness in classification

from a Bayesian network, Decision Support Systems, 39 (3), 253-266.

- Fienberg and Kim (2007). Positive association among three binary

variables and cross-product ratios, Biometrika 94(4), 999-1005.
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Thank You!
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