Markovian Combination 1/45

London Math Society Durham Symposium on
Mathematical Aspects of Graphical Models.

June 30 - July 10, 2008

Markovian Combination of
Decomposable Model Structures:

MCMoSt

Sung-Ho Kim & Sangjin Lee

Department of Mathematical Sciences

Korea Advanced Institute of Science and Technology

Dept. of Math. Sciences, KAIST



Markovian Combination 2/45

Contents
1 Introduction
2 Preliminaries

3 Distribution, interaction graph, and Markovian
subgraph

Combined model structures

Graph of prime separators (GOPS)
Algorithm

Time complexity

Illustration-1

© 0w N o ot =

Illustration-2

10 Concluding remarks

11 Where to go?

Dept. of Math. Sciences, KAIST



Markovian Combination 3/45

1 Introduction

e Problem and motivation

1. Consider a problem of developing a graphical model of
30 item score variables (X’s) and 20 or more

cognitive/knowledge state variables (U’s).

2. We use the model for diagnosing knowledge states
where knowledge states are predicted via conditional

probabilities.

3. X’s are observable and U’s are not, and assume they

are all binary.

4. Cognitive diagnosis and model structure

Dept. of Math. Sciences, KAIST



Markovian Combination 4/45

¢ Two common sense issues in large-scale modeling:

1. Sparseness of data (Koehler, 1986; Maydeu-Olivares

and Joe, 2005; Kim(in revision))

2. Model/time complexity (Chickering, 1996)

- Koehler, K.J., 1986. Goodness-of-fit tests for log-linear models in
sparse contingency tables. JASA, 81(394), 483-493.

- Maydeu-Olivares, A., Joe, H., 2005. Limited- and full-information
estimation and goodness-of -fit testing in 2" contingency tables: a
unified framework. JASA, 100(471), 1009-1020.

- Chickering, D. (1996). Learning Bayesian networks is
NP-complete, In: Learning from Data, D. Fisher and H. Lenz (Ed.),
121-130, Springer-Verlag.

- Kim (in revision). Estimate-based goodness-of-fit test for large
sparse multinomial distributions.
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e Fienberg and Kim (1999) and Kim (2006) considered a
problem of combining conditional graphical log-linear
structures and derived a combining rule for them based on
the relation between the log-linear model and its

conditional version.

e A main feature of the relation is that conditional
log-linear structures appear as parts of their joint model

structure [Theorems 3 and 4, Fienberg and Kim].

- Fienberg and Kim (1999). Combining conditional log-linear
structures, JASA, 445(94), 229-239.
- Kim (2006). Conditional log-linear structures for log-linear
modelling, CSDA, 50(8), 2044-2064.
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But not between marginal and joint models!

¢ Consider two marginal models, [12][23] and [12][24], which

are possible from each of

12][24][23], [12][24][34], [12][23][34], [12][234].

e How can we find a joint model structure from a given

set of marginal model structures?

Dept. of Math. Sciences, KAIST
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2 Preliminaries

e We will consider only undirected graphs.

e For a subset A CV, we denote by G4 = (A4, E4) the
subgraph of G = (V, F) confined to A where

EFp = (E NA X A) U
{(u,v) € A x A; u and v are not separated by
A\ A{u,v} in G}.

We will call G4 the Markovian subgraph of G confined to
A. 2 2

() (b)
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e IfG=(V,F), G'=(V,E’'), and E' C E, then we say that g’
is an edge-subgraph of G and write G’ C¢ G.

e According to the definition of a decomposable graph, we
can find a sequence of cliques (', -, () of a decomposable
graph G which satisfies the following condition [see
Proposition 2.17 of Lauritzen (1996)]: with C(;) = U_,C;
and S; = C; N C(j_l),

for all : > 1, there is a j < ¢ such that S; C C;.

e We denote the collection of these S,’s by x(G).

- Lauritzen (1996). Graphical Models. Oxford: Oxford University

Press.
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e The cliques are elementary graphical components and
the S; is obtained as intersection of neighboring cliques.
We will call the S;’s prime separators of the decomposable
graph §.

e Prime graphs are defined as the maximal subgraphs

without a complete separator in Cox and Wermuth(1999).

e The prime separators in a decomposable graph may be
extended to separators of prime graphs in any undirected

graph.

- Cox, D.R. and Wermuth, N. (1999). Likelihood factorizations for

mixed discrete and continuous variables, SJS, 26, 209-220.
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e We will denote by M (G) the collection of the
distributions that are globally Markov with respect to G,
i.e., if, for three disjoint subsets A, B,C of V, X4 and Xp
are conditionally independent given X, then A and B are

separated by C' in §.

Dept. of Math. Sciences, KAIST
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3 Distribution and interaction graphs

e For a distribution P, let G(P) be the interaction graph of
P.

Theorem 1. (Corollary 3.4 in Kim (2004)) For a distribution
P of Xyy and ACV,

Py e M(G(P)a).

e For a collection V of subsets of V, let
L(Ga, AcV)={P; Pysc M(Ga), AcV}.

Theorem 2. (Theorem 3.6 in Kim(2004)) For a collection V of
subsets of VV with an undirected graph G,

M(G) C L(Ga, A€V).

- Kim (2004). Combining decomposable model structures, RR 04-15,
Division of Applied Mathematics, KAIST.
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4 Combined model structures

e Let G = (V,F) be decomposable and let V;,V5,--- |V, be
subsets of V. For simplicity, we write ¢; = Gy

Definition 3. Suppose there are m Markovian subgraphs,
g1, -+ ,Gm. Then we say that graph H of a set of variables
V' is a combined model structure (CMS) corresponding to
g1, - ,Gm, if the following conditions hold:

(i) UL, Vi=V.

(ii) Hy, = G;, for i =1,--- ,m. That is, G, are Markovian
subgraphs of H.

We will call 'H a maximal CMS corresponding to G,---,G,,
if adding any edge to H invalidates condition (ii) for at
least one 1 =1, --- ,m.

Dept. of Math. Sciences, KAIST
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e Let Cg(A) denote the collection of the cliques which
include nodes of A in the graph G.

Lemma 4. Let G’ = (V', E') be a Markovian subgraph of G

and suppose that, for three disjoint subsets A, B,C of V’,
(A|B|C)g/. Then

(i) (A[B|C)g;
(ii) For W € Cg(A) and W' € Cg(C), (W|B|W')g.

Dept. of Math. Sciences, KAIST
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Theorem 5. (Kim, 2006) Let there be Markovian subgraphs
Giy,1=1,2,---,m, of a decomposable graph G. Then

(7) i=1x(9i) € x(9);

(i¢) for any maximal CMS H,

UiZix(Gi) = x(H).

Theorem 6 (Unique existence). (Kim, 2006) Suppose there are

m Markovian subgraphs Gy, ---,G,, of a decomposable
graph G. Then there exists a unique maximal CMS H* of
the m Markovian subgraphs such that G C¢ 'H*.

- Kim. (2006). Properties of Markovian subgraphs of a
decomposable graph, LNAI 4293, 15-26.
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Theorem 7 (Invariance of PS). Let G be a decomposable
graph and G; and G, be Markovian subgraphs of §.

Suppose that a set C' € x(G;) and that C C V5. Then C is
not intersected in G, by any other subset of V5.

e We will call a node PS-node if it is a component of a

PS; otherwise, a non-PS-node.

Dept. of Math. Sciences, KAIST
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5 Graph of prime separators (GOPS)

Definition 8. Let A = U,c,(g)a. Then the graph of the
prime separators (GOPS for short) of G is obtained from
Ga by replacing every PS and all the edges between every
pair of neighboring PSs in G4 with a node and an edge,

respectively.

Dept. of Math. Sciences, KAIST
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6 Algorithm

[Separateness condition| Let M be a set of Markovian
subgraphs of G and ‘H a maximal CMS of M. If two
nodes are in a graph in M and they are not adjacent in
the graph, then neither are they in H. Otherwise,
adjacency of the nodes in H is determined by checking

separateness of the nodes in M.

Suppose that M consists of m Markovian subgraphs,
g1, ,Gm, of G and we denote by a' a PS of G;. We can

then combine the models of M as follows.

Step 1. We arrange the subgraphs into G;,,--- ,§; such
that |V, NV, | >|Vi,,, NV;,,,| for j=1,2,--- m—2. For
convenience, let ¢, = j, 7 =1,2,--- ,m. We define

m = {9’1}.

Dept. of Math. Sciences, KAIST
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Step 2a. We first put an edge between every pair of PSs,
a' and a?, if
at Na® 0, (1)
in such a way that the separateness condition is

satisfied with regard to M. We denote the resulting
GOPS by H.

Step 2b. Once the node-sharing PSs are all considered in
Step 2a, we need to consider all the PSs a! and a? such
that

aln (UGEX(QQ)G) =@ and a*N (UaEX(g1)a) = (2)

and put edges between a', i = 1,2, and every PS in G;_;
that is acceptable under the separateness condition, in
addition to the GOPS which is obtained in Step 2a.
For example, for each a' satisfying (2), we add edges to
H between the o' and every possible PS in G, under

Dept. of Math. Sciences, KAIST
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the separateness condition, and similarly for each of a?
that satisfy (2). We denote the result of the
combination by 7.

Step 3. Let n; be the GOPS obtained from the preceding
step. Note that 7, can be a set of GOPS’s. For each
GOPS H in 7;, we combine H with G, as in Step 2,
where we replace ¢§; and G, with ‘'H and G, 1,
respectively. We repeat this combination with §;,; for
all the graphs H in 7;, which results in the set, 7,11, of

newly combined graphs.

Step 4. If 1 + 1 = m, then stop the process. Otherwise,
repeat Step 3.

Dept. of Math. Sciences, KAIST
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Figure 1: A model of 13 variables.
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Figure 2: Marginals of the model in Figure 1.
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Figure 3: Combining G, and G4 of the model in Figure 1.
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Unite Chech separateness Select & delete

Figure 4: Combining G3 and G, of the model of 13 variables.
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1. Unite

(28.30)20

4. Select & delete (30 a2

Figure 5: Combining *GOPS5 and tGOPSg of the model of
40 variables.
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7 Time complexity of the procedure

e For two graphs, G; and G, let |V;| =n; with i = 1,2,

‘Vl M V2| = N12 and ﬁz =1; —MN12.

e It is well known that the time complexity of the
depth-first search method (Tarjan, 1972) for a graph
G =(V,FE) is of order O(|V| + |E|).

e So the time complexity for the combination is of order
n20(ng + é2) + n30(ny + €1), where ¢€; is the number of
edges in the induced subgraph of G; on V; \ V3_,.

- Tarjan, R. E. (1972). Depth-first search and linear graph
algorithms. SIAM J. Comput. 1(2), 146-160.

Dept. of Math. Sciences, KAIST
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Table 1: The indexes of the variables in the 6 subsets,

{1,2,3,4,5,6,7,8,11,12}
{8,9,10,11,12, 14, 15, 16,17, 18}

{10, 13,14, 15, 19, 20, 21, 22, 23, 24}
(13,20, 21, 22, 25, 26, 27, 28, 29, 34}
{28, 29, 30, 31, 32, 34, 35, 36, 37, 38}
{30, 31, 32, 33, 35, 36, 37, 38, 39, 40}

Dept. of Math. Sciences, KAIST
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Table 2: Goodness-of-fit levels of the six marginal models

Marginal model d.f. Pearson y? p-value

1 567 547.50 0.714
2 645 667.41 0.263
3 601 589.07 0.628
4 649 679.25 0.199
o 617 591.89 0.760
6 604 621.53 0.302
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Figure 8: Marginal models of the model in Figure 6 for
the 6 subsets of variables which are listed in Table 1. §; is
the decomposable log-linear model for subset V,. PSs are

represented by thick lines. See Figure 9 for the PSs of the

Dept. of Math. Sciences, KAIST
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GOPS, GOPS= GOPSg

Figure 9: The GOPS’s of the six marginal models in Figure
8.
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Figure 10: An independence graph of PSs and non-PS vari-
ables. The PSs are in ovals and the dots are for the non-PS
variables, and the small numbers at the bottom-right of the

ovals are the submodel labels of which the ovals are PSs.
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Figure 11: The combined model structure which is obtained
from the independence graph in Figure 10. The thick edges

are additional to the true model in Figure 6.
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9 Illustration-2

Figure 12: A model of 100 variables
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Gy Yo

g7
Figure 13: The first nine marginal models, G, -

model in Figure 12.

Dept. of Math. Sciences, KAIST



Markovian Combination 38/45

G Gus

Gie !
Figure 14: The second nine marginal models, G, --

of the model in Figure 12.
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Figure 15: The combined result of the 18 marginal models
in Figures 13 and 14. The thick edges are additional to the

true model in Figure 12.
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Figure 16: Two marginal models which include nodes 10
and 19.
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10 Concluding Remarks

. The main idea of MCMoSt is similar to
constraint-based learning[CBL| (Meek 1995; Spirtes,
Glymour & Scheines, 2000; Neapolitan, 2004) where
we construct a Bayesian network based on a list of
constraints which are given in terms of conditional

independence among a given set of random variables.

- Meek, C. (1995). Causal influence and causal explanation with
background knowledge, UAI 11, 403-410.

- Neapolitan, R.E. (2004). Learning Bayesian Networks, Pearson
Prentice Hall, Upper Saddle River, NJ.

- Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation,
Prediction, and Search, 2nd ed.

Dept. of Math. Sciences, KAIST
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But a noteworthy difference between the two is that,
while the statements of conditional independencies, as
for the CBL, are an extraction from the probability
model of the whole set of the variables involved, the
statements for MCMoSt are from the marginal

probability models of the subsets of variables.

. In selecting subsets of random variables, it is important

to have the random variables associated more highly

within subsets than between subsets. This way of

subset-selection would end up with subsets of random

variables where random variables that are neighbors in
the graph of the model structure of the whole data set
are more likely to appear in the same marginal model.

Dept. of Math. Sciences, KAIST
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3. Although the model combination is carried out under
the decomposability assumption, we can deal with the
marginal models of a graphical model, which are not
decomposable, by transforming their model structures

into decomposable (i.e., triangulated) graphs.

Dept. of Math. Sciences, KAIST
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11 Where to go?

Combining model structures other than UG’s.
Models with no observed data.
Consistency of models (Dawid and Lauritzen, 1993)

Robustness of prediction/classification (Kim, 2005;
Fienberg and Kim, 2007)

- Dawid and Lauritzen (1993). Hyper Markov laws in the statistical
analysis of decomposable graphical models. The Annals of Statistics,
21, 3, 1272-1317.

- Kim (2005). Stochastic ordering and robustness in classification
from a Bayesian network, Decision Support Systems, 39 (3), 253-266.
- Fienberg and Kim (2007). Positive association among three binary
variables and cross-product ratios, Biometrika 94(4), 999-1005.
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