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Aims

• Design based inference is the paradigm for

analysis of survey data:

− parameters are functions of population units,

− variation arises from sampling lists.

• Context: exploratory analysis of survey data,

need overview of joint distributions of subsets.

• We want ’graphical models’ that make no

appeal to super populations, probability modelling

or likelihood.

• Use population measures of independence

strength, G = (V,E)→(V,E,W ).
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Design based survey analysis

Cochran (1977), finite population.

• Theoretical paradigm is to estimate parameters

Q =
∑

t∈P

yt

defined on the population P = {t|t = 1, . . . , N},

from the sample S

Q̂ =
∑

t∈S

yt.

• Inference: repeated sampling of S from P .
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Population proportions

k survey variables (y1, y2, . . . , yk).

• Population proportion in r-th category of i-th

vble

φi(r) =
N∑

t=1

I{yt
i
=r} N−1

where I is indicator function.

Suppose yi discrete in ordered (wlog) set

r = 0, 1, . . . ,Mi − 1,

discretise innately continuous variables,

assign integers to categorical variables.
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Proportions as expectations

Easier to express measures as expectations of rvs

under SRS with replacement from population:

Yi takes values {y1

i , . . . , y
N
i } with prob N−1.

• Population proportions may be written

φi(r) = E
P
I{Yi=r}

Bivariate proportions φij(r, s) = E
P
I{Yi=r∩Yj=s}

extends to conditional distributions,

higher dimensions.

Shannon entropy −E
P

logφ(Y )

measures departure of φ from uniformity.
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Divergence against independence

• Inf
P
(Yi⊥⊥Yj) = E

P
log

φij(Yi, Yj)

φi(Yi) φj(Yj)
.

Double sum over the population.

Inf measures how nearly φij(ri, rj) factorises into

product when averaged over the population.

Well known properties.

Conditional independence: generalise to three or

more dimensions.

• Inf
P
(Yi⊥⊥Yj|Yk) = E

P
log

φij|k(Yi, Yj|Yk)

φi|k(Yi|Yk) φj|k(Yj|Yk)
.
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Magnitude of Inf

• Compare to cpr and to correlation coefficient:

− two binary rvs, equi-probable margins, cpr τ ,

− two standard Normal rvs, corr ρ,

( Inf(X⊥⊥Y ) = −
1

2
log (1 − ρ2)).
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Divergence weighted independence graph

• The DWIG is the graph (V,E,W ) with edge

weights

wij = Inf
P
(Yi⊥⊥Yj|Y\ij),

where \ij indicates the remaining vbles in set.

wij is the extra information for predicting Yi

provided by Yj when the rest have been taken

into account.

• Graph is complete, all edges appear,

natural display sets edge width and tone ∝ wij.
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Toy example: 4 binary variables

Proportions linearly increase over the 16

categories in standard order:

0.7, 1.5, 2.2, 2.9, 3.7, 4.4, 5.1, 5.9, 6.6, 7.4, 8.1, 8.8, 9.6, 10.3, 11.0, 11.8%

Divergences

Y1 Y2 Y3 Y4

Y1 0.00 0.453 0.936 1.584

Y2 0.453 0.00 2.910 5.296

Y3 0.936 2.910 0.00 15.161

Y4 1.584 5.296 15.161 0.00

symmetric, positive, diagonal values zero.

Largest 15.161 mbits,

set max edge width/tone to 20 mbits.
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set max 20 mbits
actual 15.1611

y1 y2

y3 y4

Relative strengths now apparent,

Y4 interacts most strongly, most predictable,

Y1 is the least predictable.

Sensitive to the setting of thickest width.
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Remarks

A DWIG gives an overview of a joint distribution.

• Informative as to

− conditional associations

strengths, symmetries, structure;

− prediction and approximate separation:

which are the key predictors;

− approximations:

thresholding a DWIG gives an UG.

• Weights based on alternative CI statements to

describe joint distribution possible:

Bayes nets, chain graphs,
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The entropy estimate of the divergence

In design based inference a parameter is a

functional of the finite population, and estimated

using the same recipe on the sample.

• Divergence against independence

ŵij = E
S

log
φ̂ij(Yi, Yj)

φ̂i(Yi) φ̂j(Yj)
from def of Inf

= E
S

log φ̂ij(Yi, Yj) − E
S

log φ̂i(Yi) − E
S

log φ̂j(Yj)

linear comb of entropies of sample proportions.

Easily generalises to cond indep.
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Young women smoking: GHS data

http://www.data-archive.ac.uk

Data from GH surveys: 01/02, 02/03, 03/04,

• 4651 young women aged 20-34, 8 variables.

13



DWIG for young women smoking: all years

smk3

curr quit never

1598 659 2394

set max 200 mbits
actual 126.4376

edage3

edlev3

sep4

tenure3 chnum4

age4smk3

pind

nn(smk3) = (pind,tenure,edage,sep)

strongest edge: (edlev,edage)
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Munich rent data

Stasinopoulos and Rigby (2000)

Rent survey, April 1993.

Response variable, monthly net rent, DM.

DWIG for explanatory variables

• 1969 obs, 6 variables.

Conclude:

one strong edge, 112 mbits is small,

two other edges relatively strong,

five others visible, seven others invisible.

→ Divergence: how is it estimated? is it stable?

set max 150 mbits
actual 112.2773

flsp4

age5 bath

cheat kitch

loc3
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Employee satisfaction data 2001

Source: http://stars.ac.uk

Medical sales force, about 10k in UK.

Survey: 9k questionnaires,

20% response →1758,

remove missing values →

• 1272 observations, 16 variables.

Chain graph on 3 blocks.
set max 100 mbits

actual 74.9191

ftime

salary

bonus

sales

satsal

satcar

tjob

age

edu

preco
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Deviance approximation to the divergence

Numerically can evaluate wij from logistic

regession deviance.

• Rewrite

ŵij = E
S

log φ̂i|\i(Yi|Yj, Y\ij) − E
S

log φ̂i|\ij(Yi|Y\ij)

= max
θ

E
S

logφi|\i(Yi|Y\i, θ\i) − max
θ

E
S

logφi|\ij(Yi|Y\ij, θ\ij).

Terms proportional to logistic reg log-likelihoods.

• Choose response vble Yi,

fit saturated model on other vbles, w/wo Yj.

If dij is difference in two residual deviances,

then ŵij = dij/(2NS
log (2)).
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• Use multinomial logistic regression for 3+ levels

of response.

• Optimising under the main effects model gives

a deviance difference to approximate ŵij.

dij is not symmetric in i and j,

choose the max: w̃ij = max(dij, dji).
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A bootstrapping experiment

Concern to show divergences are stable.

Slight perturbation population proportions

→ slightly perturbed divergences.

Take pop from fixed k-dim prob:

k = 6 vbles, categ 25 × 3, N
P

= 10000.

Pop dwig from ent & dev approx:

set max 300 mbits
actual 200.8153

x1

x2

x3

x4

x5

x6

set max 300 mbits
actual 192.1975

x1

x2

x3

x4

x5

x6
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Divergences from 10 boots: N
S

= 3200
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• ent vs dev,

− 150 points = edges x repetitions.

• 6 non zero divergences, clear pattern.

• Get different dwig from dev or ent,

− not on 45o line,

− measure different things, interactions,

− but give similar edge ordering

− ent ≥ dev?

• Variation in ent or dev much the same

− good, as needed for inference.

− Smaller when div zero.

− High intra-boot correlation ent and dev.
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Divergences from 10 boots: N
S

= 800

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

ent

de
v

o

oooo

o

ooo

o

o

o

o

o

o p

pppp

p

ppp

p

p

p

p

p

p

Pattern still clear.
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Divergences from 10 boots: N
S

= 200
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Pattern no longer evident.
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Summary

• Divergence measures extend CI and graphs to

design-based survey framework.

• Useful tool for EDA in varying dimensions, of

marginal and conditional tables.

• The relative weights gives coherence to graph.

• Use graphViz for display, R-package dwig.

• Bootstrap inference works, however statistical

criterion for stability based on bootstrap dist with

established theory is needed,

eg to make statements k ≈ 10 needs N
S
≈ 1000.
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