Bootstrapping divergence weighted independence graphs for design based survey analysis

```
July 2008
joe.whittaker@lancaster.ac.uk
Joint work with Chung-Feng Kao
```

- Introduction
- Outline methodology
- Examples
- Stability experiment

Aims

- Design based inference is the paradigm for analysis of survey data:
 - parameters are functions of population units,
 - variation arises from sampling lists.
- Context: exploratory analysis of survey data,
 need overview of joint distributions of subsets.
- We want 'graphical models' that make no appeal to super populations, probability modelling or likelihood.
- Use population measures of independence strength, $G = (V, E) \rightarrow (V, E, W)$.

Design based survey analysis

Cochran (1977), finite population.

Theoretical paradigm is to estimate parameters

$$Q = \sum_{t \in \mathcal{P}} y^t$$

defined on the population $\mathcal{P} = \{t | t = 1, \dots, N\}$, from the sample \mathcal{S}

$$\widehat{Q} = \sum_{t \in \mathcal{S}} y^t.$$

• Inference: repeated sampling of S from P.

Population proportions

k survey variables (y_1, y_2, \ldots, y_k) .

ullet Population proportion in r-th category of i-th vble

$$\phi_i(r) = \sum_{t=1}^{N} I_{\{y_i^t = r\}} N^{-1}$$

where I is indicator function.

Suppose y_i discrete in ordered (wlog) set $r = 0, 1, ..., M_i - 1$,

discretise innately continuous variables, assign integers to categorical variables.

Proportions as expectations

Easier to express measures as expectations of rvs under SRS with replacement from population:

$$Y_i$$
 takes values $\{y_i^1, \dots, y_i^N\}$ with prob N^{-1} .

Population proportions may be written

$$\phi_i(r) = \mathsf{E}_{\mathcal{P}} I_{\{Y_i = r\}}$$

Bivariate proportions $\phi_{ij}(r,s) = \mathsf{E}_{\mathcal{P}} I_{\{Y_i = r \cap Y_j = s\}}$ extends to conditional distributions, higher dimensions.

Shannon entropy $- \mathsf{E}_{\scriptscriptstyle \mathcal{P}} \log \phi(Y)$ measures departure of ϕ from uniformity.

Divergence against independence

•
$$\operatorname{Inf}_{\mathcal{P}}(Y_i \perp \perp Y_j) = \operatorname{E}_{\mathcal{P}} \log \frac{\phi_{ij}(Y_i, Y_j)}{\phi_i(Y_i) \phi_j(Y_j)}$$
.

Double sum over the population.

Inf measures how nearly $\phi_{ij}(r_i, r_j)$ factorises into product when averaged over the population.

Well known properties.

Conditional independence: generalise to three or more dimensions.

•
$$\operatorname{Inf}_{\mathcal{P}}(Y_i \perp \!\!\!\perp Y_j | Y_k) = \operatorname{E}_{\mathcal{P}} \log \frac{\phi_{ij|k}(Y_i, Y_j | Y_k)}{\phi_{i|k}(Y_i | Y_k) \phi_{j|k}(Y_j | Y_k)}$$
.

Magnitude of Inf

- Compare to cpr and to correlation coefficient:
 - two binary rvs, equi-probable margins, cpr τ ,
 - two standard Normal rvs, corr ρ , $\left(\ln f(X \perp Y) = -\frac{1}{2} \log (1 \rho^2) \right).$

Inf measured in bits using \log_2 .

Divergence weighted independence graph

• The DWIG is the graph (V, E, W) with edge weights

$$w_{ij} = \operatorname{Inf}_{\mathcal{P}}(Y_i \perp \!\!\!\perp Y_j | Y_{\setminus ij}),$$

where $_{ij}$ indicates the remaining vbles in set. w_{ij} is the extra information for predicting Y_i provided by Y_j when the rest have been taken into account.

ullet Graph is complete, all edges appear, natural display sets edge width and tone $\propto w_{ij}$.

Toy example: 4 binary variables

Proportions linearly increase over the 16 categories in standard order:

0.7, 1.5, 2.2, 2.9, 3.7, 4.4, 5.1, 5.9, 6.6, 7.4, 8.1, 8.8, 9.6, 10.3, 11.0, 11.8%

				Y_3	
	Y_1	0.00	0.453	0.936	1.584
Divergences	Y_2	0.453	0.00	2.910	5.296
	Y_3	0.936	2.910	0.00	15.161
Divergences	Y_4	1.584	5.296	15.161	0.00

symmetric, positive, diagonal values zero.

Largest 15.161 mbits, set max edge width/tone to 20 mbits.

set max 20 mbits actual 15.1611

Relative strengths now apparent,

 Y_4 interacts most strongly, most predictable,

 Y_1 is the least predictable.

Sensitive to the setting of thickest width.

Remarks

A DWIG gives an overview of a joint distribution.

- Informative as to
 - conditional associations
 strengths, symmetries, structure;
 - prediction and approximate separation:
 which are the key predictors;
 - approximations:
 thresholding a DWIG gives an UG.
- Weights based on alternative CI statements to describe joint distribution possible:
 - Bayes nets, chain graphs,

The entropy estimate of the divergence

In design based inference a parameter is a functional of the finite population, and estimated using the same recipe on the sample.

Divergence against independence

$$\begin{split} \widehat{w}_{ij} &= \mathsf{E}_{\mathcal{S}} \log \frac{\widehat{\phi}_{ij}(Y_i, Y_j)}{\widehat{\phi}_i(Y_i) \, \widehat{\phi}_j(Y_j)} \quad \text{from def of Inf} \\ &= \mathsf{E}_{\mathcal{S}} \log \widehat{\phi}_{ij}(Y_i, Y_j) - \mathsf{E}_{\mathcal{S}} \log \widehat{\phi}_i(Y_i) - \mathsf{E}_{\mathcal{S}} \log \widehat{\phi}_j(Y_j) \end{split}$$

linear comb of entropies of sample proportions.

Easily generalises to cond indep.

Young women smoking: GHS data

http://www.data-archive.ac.uk

Data from GH surveys: 01/02, 02/03, 03/04,

• 4651 young women aged 20-34, 8 variables.

DWIG for young women smoking: all years

	smk3	
curr	quit	never
1598	659	2394

nn(smk3) = (pind,tenure,edage,sep)
strongest edge: (edlev,edage)

set max 200 mbits actual 126.4376

Munich rent data

Stasinopoulos and Rigby (2000)

Rent survey, April 1993.
Response variable, monthly net rent, DM.
DWIG for explanatory variables

• 1969 obs, 6 variables.

Conclude:

one strong edge, 112 mbits is small, two other edges relatively strong, five others visible, seven others invisible.

→ Divergence: how is it estimated? is it stable?

set max 150 mbits actual 112.2773

Employee satisfaction data 2001

Source: http://stars.ac.uk

Medical sales force, about 10k in UK.

Survey: 9k questionnaires,

20% response →1758,

remove missing values →

• 1272 observations, 16 variables.

Chain graph on 3 blocks.

actual 74.9191

Deviance approximation to the divergence

Numerically can evaluate w_{ij} from logistic regession deviance.

Rewrite

$$\widehat{w}_{ij} = \mathsf{E}_{\mathcal{S}} \log \widehat{\phi}_{i|\backslash i}(Y_i|Y_j, Y_{\backslash ij}) - \mathsf{E}_{\mathcal{S}} \log \widehat{\phi}_{i|\backslash ij}(Y_i|Y_{\backslash ij})$$

$$= \max_{\theta} \mathsf{E}_{\mathcal{S}} \log \phi_{i|\backslash i}(Y_i|Y_{\backslash i}, \theta_{\backslash i}) - \max_{\theta} \mathsf{E}_{\mathcal{S}} \log \phi_{i|\backslash ij}(Y_i|Y_{\backslash ij}, \theta_{\backslash ij})$$

Terms proportional to logistic reg log-likelihoods.

• Choose response vble Y_i , fit saturated model on other vbles, w/wo Y_j .

If d_{ij} is difference in two residual deviances, then $\widehat{w}_{ij} = d_{ij}/(2N_s \log{(2)})$.

- Use multinomial logistic regression for 3+ levels of response.
- Optimising under the main effects model gives a deviance difference to approximate \widehat{w}_{ij} .

 d_{ij} is not symmetric in i and j, choose the max: $\tilde{w}_{ij} = \max(d_{ij}, d_{ji})$.

A bootstrapping experiment

Concern to show divergences are stable.

Slight perturbation population proportions

→ slightly perturbed divergences.

Take pop from fixed k-dim prob:

$$k=6$$
 vbles, categ $2^5\times 3$, $N_{_{\mathcal{P}}}=10000$.

Pop dwig from ent & dev approx:

set max 300 mbits actual 200.8153

set max 300 mbits actual 192.1975

Divergences from 10 boots: $N_s = 3200$

- ent vs dev,
 - -150 points = edges x repetitions.
- 6 non zero divergences, clear pattern.
- Get different dwig from dev or ent,
 - not on 45° line,
 - measure different things, interactions,
 - but give similar edge ordering
 - ent \geq dev?
- Variation in ent or dev much the same
 - good, as needed for inference.
 - Smaller when div zero.
 - High intra-boot correlation ent and dev.

Divergences from 10 boots: $N_{\scriptscriptstyle \mathcal{S}}=800$

Pattern still clear.

Divergences from 10 boots: $N_{\scriptscriptstyle \mathcal{S}}=200$

Pattern no longer evident.

Summary

- Divergence measures extend CI and graphs to design-based survey framework.
- Useful tool for EDA in varying dimensions, of marginal and conditional tables.
- The relative weights gives coherence to graph.
- Use graphViz for display, R-package dwig.
- Bootstrap inference works, however statistical criterion for stability based on bootstrap dist with established theory is needed,

eg to make statements $k \approx 10$ needs $N_{\rm S} \approx 1000$.