# Effects of Boundary Conditions on Preconditioning Strategies for the Navier-Stokes Equations 

## Howard Elman

University of Maryland
Ray Tuminaro
Sandia National Laboratories


## Navier-Stokes Equations

$$
\begin{aligned}
u_{\mathrm{t}}-v \nabla^{2} u+(u \cdot \operatorname{grad}) u+\operatorname{grad} p & =f \\
-\operatorname{div} u & =0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=0 \longrightarrow \text { steady state problem } \\
& \alpha=1 \longrightarrow \text { evolutionary problem }
\end{aligned}
$$

Discretization and linearization $\longrightarrow$ Matrix equation

$$
\left(\begin{array}{cc}
F & B^{T} \\
B & -C
\end{array}\right)\binom{\delta u}{\delta p}=\binom{f}{g} \quad \mathcal{A} x=b
$$

In this study: $C=0$
Use preconditioner of form

$$
Q=\left(\begin{array}{cc}
Q_{F} & B^{T} \\
0 & -Q_{S}
\end{array}\right)
$$

Solve right-preconditioned system

$$
\left[\mathcal{A} Q^{-1}\right][\hat{x}]=b, \quad x=\mathcal{Q}^{-1} \hat{x}
$$

using Krylov subspace method (GMRES)

## Key Component of Preconditioner

System: $\left(\begin{array}{ll}F & B^{T} \\ B & 0\end{array}\right)\binom{\delta u}{\delta p}=\binom{f}{g}$
Preconditioner: $\left(\begin{array}{ll}Q_{F} & B^{T} \\ 0 & -Q_{S}\end{array}\right)$
$\mathcal{F}=-v \Delta+(\vec{w} \cdot \operatorname{grad})$ on velocity space $F=$ discrete approximation of $\mathcal{F}$
$\mathcal{F}_{p}=-v \Delta+(\vec{w} \cdot \mathrm{grad})$ on pressure space $F_{p}=$ discrete approximation of $\mathcal{F}_{p}$

$$
B=\text { discrete }(-d i v), \quad B^{T}=\text { discrete grad }
$$

Key: approximation to Schur complement $Q_{S} \approx S=B F^{-1} B^{T}$
Derived using the commutator $\mathcal{F} \operatorname{grad}-\operatorname{grad} \mathcal{F}_{p} \approx 0$
Discrete form in finite element setting

$$
M_{v}^{-1} F M_{v}^{-1} B^{T}-M_{v}^{-1} B^{T} M_{p}^{-1} F_{p} \approx 0
$$

## Two Preconditioning Strategies

E., Kay, Loghin, Silvester, Wathen,Tuminaro, Howle, Shadid, Shuttleworth

1. Pressure Convection-Diffusion (PCD)

$$
\begin{aligned}
& M_{v}^{-1} F M_{v}^{-1} B^{T}-M_{v}^{-1} B^{T} M_{p}^{-1} F_{p} \approx 0 \\
& \rightarrow B F^{-1} B^{T} \approx\left(B M_{v}^{-1} B^{T}\right) F_{p}^{-1} M_{p}=A_{p} F_{p}^{-1} M_{p} \\
& \quad\left(B F^{-1} B^{T}\right)^{-1} \approx M_{p}^{-1} F_{p} A_{p}^{-1}
\end{aligned}
$$

2. Least-Squares Commutator (LSC)

Choose $F_{p}$ to minimize

$$
\left\|\left[M_{v}^{-1} F M_{v}^{-1} B^{T}\right]_{j}-M_{v}^{-1} B^{T} M_{p}^{-1}\left[F_{p}\right]_{j}\right\|_{M_{v}}
$$

column by column

$$
\rightarrow Q_{S}^{-1} \equiv\left(B M_{v}^{-1} B^{T}\right)^{-1}\left(B M_{v}^{-1} F M_{v}^{-1} B^{T}\right)\left(B M_{v}^{-1} B^{T}\right)^{-1}
$$

## Representative Performance I

Streamlines: selected

| Driven cavity flow |
| :--- |
| $\operatorname{Re}=200$ |

pressure field




## Representative Performance II

Streamlines: non-uniform [Navier-Stokes]

## Backward facing step $\mathrm{Re}=100$





## Issues

For PCD on step: Latency before asymptotic convergence rate is evident, on step
For LSC: Mesh-dependent convergence rate Superior performance on step

## Possible explanations:

Boundary conditions for $F_{p}$ and $A_{p}$
Currently, for $F_{p}$ in PCD:
Neumann conditions for cavity
Dirichlet at step inflow, Neumann otherwise
$A_{p}$ matched with $F_{p}$

In LSC: boundary conditions are implicitly defined by

$$
A_{p}=B M_{v}^{-1} B^{T}
$$

Empirical observation: Neumann at step inflow

## Operators in One Dimension

$$
\begin{aligned}
& \text { Let } \mathcal{F}=\mathcal{F}_{p}=-v \frac{d^{2}}{d x^{2}}+w \frac{d}{d x}, \quad \mathcal{B}=\frac{d}{d x}, \quad w>0 \\
& \text { on } \Omega=\underset{0}{ } \begin{array}{l|l|l|l|l|l|l|l|} 
& \mathbf{x} \\
& \mathbf{x}
\end{array}
\end{aligned}
$$

Discrete forms:
$F, B$ defined on interval endpoints $\sim$ velocities
$F_{p}, B^{T}$ defined on interval centers $\sim$ pressures
~ Marker-and-cell finite differences

## Operators in One Dimension



Composite operators $\mathcal{B} \mathcal{F}=\mathcal{F}_{p} \mathcal{B}=-v \frac{d^{3}}{d x^{3}}+w \frac{d^{2}}{d x^{2}}$
New order

Assume: Dirichlet condition $u=0$ for $\mathcal{F}$ at inflow $x=0$ Dirichlet condition $u=0$ for $\mathcal{B}$ at inflow $x=0$

Look at

$$
\begin{aligned}
& \mathrm{v}=\mathcal{F} u=\left(-v \frac{d}{d x}+w\right) \frac{d u}{d x}=\left(-v \frac{d}{d x}+w\right) p \\
& p=\mathcal{B} u=\frac{d u}{d x}
\end{aligned}
$$

At inflow boundary $x=0$ :

$$
v=0 \text { for argument } v \text { of } \mathcal{B} \text { in } \mathcal{B F}
$$

$$
\equiv\left(-v \frac{d}{d x}+w\right) p=0 \text { for argument } p \text { of } \mathcal{F}_{p} \text { in } \mathcal{F}_{p} \mathcal{B}
$$

$\longrightarrow$ New, Robin, boundary condition at inflow ${ }^{8}$

## Matrix Analogue

$$
\begin{aligned}
& {[B F]_{11}=2 v=\xi_{1}+(v-w h / 2)=\left[F_{p} B\right]_{11}} \\
& \Rightarrow \xi_{1}=v+w h / 2
\end{aligned}
$$

## Interpret in Terms of Boundary Conditions



Discrete operator near inflow boundary:

$$
\left[F_{p} p\right]_{1 / 2}=-(v+w h / 2) p_{-1 / 2}+(2 v) p_{1 / 2}-(v-w h / 2) p_{3 / 2}
$$

Discrete Robin boundary condition:

$$
-v \frac{d p}{d x}+w p \approx-v\left(\frac{p_{1 / 2}-p_{-1 / 2}}{\mathrm{~h}}\right)+\mathrm{w}\left(\frac{p_{1 / 2}+p_{-1 / 2}}{2}\right)=0
$$

Solve for ghost point: $\quad p_{-1 / 2}=\frac{v-w h / 2}{v+w h / 2} p_{1 / 2}$

$$
\longrightarrow\left[F_{p} p\right]_{1 / 2}=\underbrace{(v+w h / 2}) p_{1 / 2}-(v-w h / 2) p_{3 / 2}
$$

Previous page: $\xi_{1}$ to make discrete commutator zero

## At Outflow (Right) Boundary:


Can force $B F-F_{p} B=0 \longrightarrow \xi_{n}=2 v-w h / 2$
Result: $B F^{-1} B^{T}=F_{p}^{-1}\left(B B^{T}\right)$, perfect preconditioner
But: does not have interpretation in terms of outflow b.c. for $\mathcal{F}_{p}$

Mesh dependent condition at right:

$$
-v p^{\prime}+2(w-v / h)=0
$$

## For Problems in Higher Dimensions

$$
\begin{aligned}
& \mathcal{F}=-v \Delta+\vec{w} \cdot \operatorname{grad}=\left[\begin{array}{ll}
\mathcal{F}^{\left(u_{1}\right)} \\
& \mathcal{F}^{\left(u_{2}\right)}
\end{array}\right] \\
& \mathcal{B}=\left[\mathcal{B}_{x}, \mathcal{B}_{y}\right], \text { divergence operator }
\end{aligned}
$$

Commutator: $\mathcal{E}=\mathcal{B} \mathcal{F}-\mathcal{F}_{p} \mathcal{B}$

$$
=\left[\mathcal{B}_{x} \mathcal{F}^{\left(u_{1}\right)}-\mathcal{F}_{p} \mathcal{B}_{x}, \mathcal{B}_{y} \mathcal{F}^{\left(u_{2}\right)}-\mathcal{F}_{p} \mathcal{B}_{y}\right]
$$

Further refinement: split by coordinate $\mathcal{F}=\mathcal{F}_{x}+\mathcal{F}_{y}$

$$
\mathcal{F}_{x}=-v \frac{\partial^{2}}{\partial x^{2}}+w_{1} \frac{\partial}{\partial x}, \quad \mathcal{F}_{y}=-v \frac{\partial^{2}}{\partial y^{2}}+w_{2} \frac{\partial}{\partial y}
$$

Similarly for $\mathcal{F}_{p}$

## Component Splittings of Commutator

(1) $\mathcal{B}_{x} \mathcal{F}_{x}^{\left(u_{1}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{x}$
(2) $\mathcal{B}_{x} \mathcal{F}_{y}^{\left(u_{1}\right)}-\mathcal{F}_{y}^{(p)} \mathcal{B}_{x}$
(3) $\mathcal{B}_{y} \mathcal{F}_{x}^{\left(u_{2}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{y}$
(4) $\mathcal{B}_{y} \mathcal{F}_{y}^{\left(u_{2}\right)}-\mathcal{F}_{y}^{(p)} \mathcal{B}_{y}$

Commutator satisfies

$$
\begin{aligned}
\mathcal{E} & =\left[\mathcal{B}_{x} \mathcal{F}^{\left(u_{1}\right)}-\mathcal{F}_{p} \mathcal{B}_{x}, \mathcal{B}_{y} \mathcal{F}^{\left(u_{2}\right)}-\mathcal{F}_{p} \mathcal{B}_{y}\right] \\
& =[(1)+(2),(3)+(4)]
\end{aligned}
$$

Motivation for this:

- Discrete version of commutator cannot be zero $\longrightarrow$ no "perfect" preconditioner is possible
- Components above behave more like one-dimensional operators
- Perhaps: some are more important than others


## Examine Commutator Components at Inflow

$$
\begin{gathered}
\mathcal{F}=-v \Delta+w_{1} \frac{\partial}{\partial x}+w_{2} \frac{\partial}{\partial y} \\
w_{1}>0, w_{2}=0
\end{gathered}
$$


$\times$ Velocity $u_{1}$
$\otimes$ Velocity $u_{2}$

- Pressure $p$

Assume: Dirichlet b.c. along left (inflow)
Periodic b.c. $u(x, 0)=u(x, 1)$ along bottom and top
$v \frac{\partial u_{1}}{\partial x}-p=0, \quad \frac{\partial u_{2}}{\partial x}=0 \quad$ at right (outflow)
(1) $\mathcal{B}_{x} \mathcal{F}_{x}^{\left(u_{1}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{x}$
(2) $\mathcal{B}_{x} \mathcal{F}_{y}^{\left(u_{1}\right)}-\mathcal{F}_{y}^{(p)} \mathcal{B}_{x}$
(3) $\mathcal{B}_{y} \mathcal{F}_{x}^{\left(u_{z}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{y}$
(4) $\mathcal{B}_{y} \mathcal{F}_{y}^{\left(u_{2}\right)}-\mathcal{F}_{y}^{(p)} \mathcal{B}_{y}$

## Commutator Components at Inflow


$\times$ Velocity $u_{1}$
$\otimes$ Velocity $u_{2}$

- Pressure $p$

For each fixed $y$ : same as 1 D commutator $\Longrightarrow$ want Robin condition for $\mathcal{F}_{x}^{(p)}$ at inflow
(2) $\mathcal{B}_{x} \mathcal{F}_{y}^{\left(u_{1}\right)}-\mathcal{F}_{y}^{(p)} \mathcal{B}_{x}$
$\longrightarrow-v \frac{\partial^{2}}{\partial y^{2}}+w_{1} \frac{\partial}{\partial y}$
No requirements on $\mathcal{F}_{y}^{(p)}$

Robin condition for $\mathcal{F}^{(p)}$ at inflow: $-v p_{x}+w_{1} p=0$

## A Difficulty with This

We just showed: for component (1) $\mathcal{B}_{x} \mathcal{F}_{x}^{\left(u_{1}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{x}$ to be zero, need Robin b.c. for $\mathcal{F}^{(p)}$

Now look at (3) $\mathcal{B}_{y} \mathcal{F}_{x}^{\left(u_{2}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{y}$

$\mathcal{F}^{\left(u_{2}\right)}$ has a Dirichlet condition,
$\times$ Velocity $u_{1}$
$\otimes$ Velocity $u_{2}$

- Pressure $p$ implies $\mathcal{F}^{(p)}$ must also have a Dirichlet condition to make (3) equal zero

Not compatible with Robin condition imposed by (1)

## Summarizing: At Inflow

(1) $\mathcal{B}_{x} \mathcal{F}_{x}^{\left(u_{1}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{x}$
(2) $\mathcal{B}_{x} \mathcal{F}_{y}^{\left(u_{1}\right)}-\mathcal{F}_{y}^{(p)} \mathcal{B}_{x}$
(3) $\mathcal{B}_{y} \mathcal{F}_{x}^{\left(u_{2}\right)}-\mathcal{F}_{x}^{(p)} \mathcal{B}_{y}$
(4) $\mathcal{B}_{y} \mathcal{F}_{y}^{\left(u_{2}\right)}-\mathcal{F}_{y}^{(p)} \mathcal{B}_{y}$

Zero commutator components (1) and (3) are incompatible Zero for (2) and (4): compatible with each other and with (1) or (3)

We must choose either (1) or (3), i.e., choose either Robin or Dirichlet boundary conditions for $\mathcal{F}^{(p)}$

Previously: used Dirichlet conditions
Will show: Robin conditions are better

## Matrix Versions of these Results (MAC discretization)

Components of discrete commutator:
(1) $B_{x} F_{x}^{\left(u_{1}\right)}-F_{x}^{(p)} B_{x}$
(2) $B_{x} F_{y}^{\left(u_{1}\right)}-F_{y}^{(p)} B_{x}$
(3) $B_{y} F_{x}^{\left(u_{2}\right)}-F_{x}^{(p)} B_{y}$
(4) $B_{y} F_{y}^{\left(u_{2}\right)}-F_{y}^{(p)} B_{y}$


$$
\begin{aligned}
& \left.F_{x}^{\left(u_{1}\right)}=\operatorname{diag}\left(F_{1}, \ldots, F_{1}\right)\right] \text { 1D tridiagonal matrices, } \\
& \left.F_{x}^{\left(u_{2}\right)}=\operatorname{diag}\left(F_{2}, \ldots, F_{2}\right)\right] \quad \sim \text { Dirichlet b.c. at left } \\
& F_{x}^{(p)}=\operatorname{diag}\left(F_{p}, \ldots, F_{p}\right) \quad \text { 1D tridiagonal, b.c. needed }
\end{aligned}
$$

## Matrix Versions of these Results (II)

Component (1)

$$
\left.\begin{array}{l}
B_{x}=\operatorname{diag}\left(B_{1}, \ldots, B_{1}\right), \quad B_{1}=\left[\begin{array}{rrrr}
1 & & & \\
-1 & 1 & & \\
& -1 & & \\
& & \ddots & \\
& & -1 & 1 \\
& & & -1
\end{array}\right]
\end{array}\right]
$$

Each block is identical to 1D matrices:

> Discrete Robin conditions on left for $F_{p}$ makes component (1) equal zero

## Matrix Versions of these Results (III)

Component (3) $\quad B_{y}=\left[\begin{array}{ccccc}I & & & & I \\ -I & I & & & \\ & -I & & & \\ & & \ddots & \\ & & -I & I & \\ & & & -I & I\end{array}\right]$
$\Rightarrow(3) B_{y} F_{x}^{\left(u_{2}\right)}-F_{x}^{(p)} B_{y}=$

Discrete Dirichlet conditions on left for $F_{p}$ makes component (3) equal zero
(1) and (3) are not compatible

## Other Matrix Results

(1) $B_{x} F_{x}^{\left(u_{1}\right)}-F_{x}^{(p)} B_{x}$
(2) $B_{x} F_{y}^{\left(u_{1}\right)}-F_{y}^{(p)} B_{x}$
(3) $B_{y} F_{x}^{\left(u_{2}\right)}-F_{x}^{(p)} B_{y}$
(4) $B_{y} F_{y}^{\left(u_{2}\right)}-F_{y}^{(p)} B_{y}$

Components (2) and (4):

- can be made zero with no requirements on $F_{y}^{(p)}$
- compatible with each other
- compatible with (1) and (3)

Details omitted

## For Characteristic Boundaries


$\times$ Velocity $u_{1}$
$\otimes$ Velocity $u_{2}$

- Pressure $p$

Suppose b.c. of form $w=\left(w_{1}, 0\right)$ are specified at top and bottom
The analogue of Robin condition is

$$
-v p_{y}+w_{2} p=0 \quad \Rightarrow \quad p_{y}=0
$$

Pure Neumann condition, choice made previously for characteristic boundaries

General condition: $-v p_{n}+(w \cdot n) p=0$
Cf. Achdou, LeTallec, Nataf, Vidrascu

## What about outflow boundaries?

Have seen: 1D commutator $\equiv 0$, but coercivity of $F_{p}$ is reduced

Adopt strategy: Neumann conditions for $F_{p}$ at outflow

## Recapitulating: for PCD Preconditioning

$\begin{array}{|c|c|c|}\hline & \text { Original } & \text { New } \\ \hline Q_{S}^{-1} & M_{p}^{-1} F_{p} A_{p}^{-1} & A_{p}^{-1} F_{p} M_{p}^{-1} \\ \hline F_{p} \text { inflow b.c. } & \text { Dirichlet } & \begin{array}{c}\text { Robin or } \\ \text { Dirichlet }\end{array} \\ \hline F_{p} \text { characteristic } \\ \text { b.c. }\end{array} \quad$ Neumann $\left.\quad \begin{array}{c}\text { Neumann or } \\ \text { Dirichlet }\end{array} \left\lvert\, \begin{array}{|c|c|c|}\text { Neumann } \\ \hline F_{p} \text { outflow b.c. } & \text { Neumann } & \begin{array}{c}\text { User-defined, } \\ \text { b.c. compatible } \\ \text { with } F_{p}\end{array}\end{array} \begin{array}{c}B M_{v}^{-1} B^{T} \\ \text { b.c. inherited }\end{array}\right.\right]$

## Performance I

## Driven cavity flow Re=200 <br> Various grid sizes

Biquadratic velocities Bilinear pressures




## Performance II

## Backward facing step Re=100 <br> Various grid sizes <br> Biquadratic velocities Bilinear pressures




## Performance III

> Backward facing step Re=100, 400 Various grid sizes
> Biquadratic velocities Bilinear pressures


## Revised Version of Least-Squares Commutator Preconditioning

Commutator: $\mathcal{E}=\mathcal{B} \mathcal{F}-\mathcal{F}_{p} \mathcal{B}$

$$
=\left[\mathcal{B}_{x} \mathcal{F}^{\left(u_{1}\right)}-\mathcal{F}_{p} \mathcal{B}_{x}, \mathcal{B}_{y} \mathcal{F}^{\left(u_{2}\right)}-\mathcal{F}_{p} \mathcal{B}_{y}\right]
$$

Finite element discretization

$$
\begin{aligned}
E & =M_{p}^{-1} B M_{v}^{-1} F-M_{p}^{-1} F_{p} M_{p}^{-1} B \\
& =M_{p}^{-1}\left[B_{x} M_{v_{1}}^{-1} F^{\left(u_{1}\right)}-F_{p} M_{p}^{-1} B_{x}, B_{y} M_{v_{2}}^{-1} F^{\left(u_{2}\right)}-F_{p} M_{p}^{-1} B_{y}\right]
\end{aligned}
$$

In finite difference setting:
Robin condition adjusts rows of $F_{p}$ for commutator with component of $B$ orthogonal to boundary
Here:
Mimic this by row-wise weighting to de-emphasize the part of commutator from the component of $B$ tangent to the boundary

## Revised LSC Preconditioning

Find $X \equiv F_{p} M_{p}^{-1}$ one row at a time such that

$$
\left\|\left(\left[B M_{v}^{-1} F\right]_{i,:}-X_{i, i} B\right) H^{1 / 2}\right\|=\left\|B^{T}\left[X^{T}\right]_{; i}-\left[F M_{v}^{-1} B^{T}\right]_{i, i}\right\|_{H}
$$

is minimized in a least squares sense, where

$$
H=W^{1 / 2} M_{v}^{-1} W^{1 / 2}
$$

and $W$ is a diagonal weighting matrix with small value $W_{i j}=\varepsilon$ for all indices $j$ such that:

$$
B_{i j} \neq 0
$$

where $i$ is a pressure index near boundary, and $j$ is the index of a velocity component tangent to the boundary
Otherwise: $W_{j j}=1$

## Revised LSC Preconditioning

Resulting preconditioning operator:

$$
Q_{S}^{-1}=\left(B M_{v}^{-1} B^{T}\right)^{-1}\left(B M_{v}^{-1} F H B^{T}\right)\left(B M_{v}^{-1} B^{T}\right)^{-1}
$$

where

$$
H=W^{1 / 2} M_{v}^{-1} W^{1 / 2}
$$

The only difference from the original version (where $W=I$ )
$\varepsilon=1 / 100$ in experiments

## Concluding Remarks

1. Boundary conditions influence PCD preconditioning
2. Robin boundary conditions for $F_{p}$ enhance performance for problems with Dirichlet (inflow or characteristic) conditions: reduce transient period of slow convergence.
3. Outflow conditions are less well understood. They also appear to have less impact.
4. Results for PCD lead to modified LSC with better properties: convergence rate independent of mesh.
5. Results clarify poorly understood aspect of these ideas: weaknesses previously displayed were caused by boundary conditions. (Cf. projection methods.)
