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Introduction

Introduction

Az =Xz, AeC,zeC"

o Lecture 2: Detect pure imaginary eigevalues of large sparse matrices
o Seek X near a given shift o (good estimate eg. continuation).

e A is large, sparse, nonsymmetric (discretised PDE: Az = AMz)
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Introduction

Az =Xz, AeC,zeC"
Lecture 2: Detect pure imaginary eigevalues of large sparse matrices

A is large, sparse, nonsymmetric (discretised PDE: Az = AMx)

Inverse Iteration:
oy=(A—ol) 1z

o Solve (A—ocl)y==

@ Preconditioned iterative solves

°
o Seek X near a given shift o (good estimate eg. continuation).
°
°
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Introduction

Az =Xz, AeC,zeC"

Lecture 2: Detect pure imaginary eigevalues of large sparse matrices

Seek A near a given shift o (good estimate eg. continuation).

A is large, sparse, nonsymmetric (discretised PDE: Az = AMx)

Inverse Iteration:
oy=(A—ol) 1z

o Solve (A—ocl)y==

Preconditioned iterative solves

Extensions

o Inverse Subspace Iteration
o Jacobi-Davidson method

o Shift-invert Arnoldi method (Melina Freitag: Tuesday lecture)
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Introduction

Inexact inverse iteration

o Assume z? is an approximate normalised eigenvector
o Iterative solves (e.g. GMRES) of

(A—ol)y =2z
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Introduction

Inexact inverse iteration

Assume 2z is an approximate normalised eigenvector
Iterative solves (e.g. GMRES) of

(A—ol)y =2z

inner-outer

|z® — (A —oDyi] < 7@ , (9 = solve tolerance)

Rescale y;, to get z(*+V

Update shift?
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Introduction

Inexact inverse iteration

Assume 2z is an approximate normalised eigenvector
o Iterative solves (e.g. GMRES) of

(A—ol)y = ™

inner-outer

|z® — (A —oDyi] < 7@ , (9 = solve tolerance)
(i+1)

Rescale y, to get «

Update shift?
(Right) preconditioned solves
@ P! “known”

(2]

(A—oD)P lg=2® P lj=y.
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Convergence of inexact inverse iteration

o Given z® and A

r® = Az® — ADz®  Eigenvalue residual

Theorem (Convergence)

If the solve tolerance, T(i),_is chosen to reduce proportional to the norm of
the eigenvalue residual ||r”|| then we recover the rate of convergence
achieved when using direct solves.

o Other options/strategies possible: For example Rayleigh quotient
iteration with a fixed tolerance converges linearly.
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Tuning and J-D

>reconditioning

Introduction I

Outline

Numerical Example

Azr = \x
o discretisation of convection-diffusion operator

—Au+5uy + 5uy =M on (0,1)7,

@ 3 experiments:

© Rayleigh quotient shift; exact solves
© Rayleigh quotient shift; with decreasing solve tolerance in GMRES

7 = min{r, 7||lr@|}, with 7=0.3
© Rayleigh quotient shift; with fixed tolerance 7 = 0.3
o In all cases solve till }
(@
(@)

<107
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Introduction

Numerical Example

Linear and Quadratic convergence

Standard inverse iteration without preconditioning

Exactirverse iteration

10° || = = = Inexact inverse iteration with fixed tolerancet = 0.3

« = = Inexact inverse iteration with decreasing tolerance | .-
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© Preconditioned GMRES for Inverse Power Method
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Preconditioning

Inverse Power Method with and without preconditioned solves

o From now on, assume o = 0. So: Ay = 2
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Preconditioning

Inverse Power Method with and without preconditioned solves

o From now on, assume o = 0. So: Ay = 2

o APTlg=2" | Plj=y.

o Always assume decreasing tolerance: 7(V = C||Az® — X®z)||
o Convection-Diffusion Example;

@ smallest eigenvalue: A\ ~ 32.18560954, i )
@ Preconditioned GMRES with tolerance 7(9) = 0.01|»(* |,
@ ILU based preconditioners.
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Preconditionir

Convection-Diffusion problem: No Preconditioning - || Ay — z®| < 7(®

unpreconditioned solves.453

s5E 4
50 1

5F 4

inner iterations
%

10 L L L L

10 15
outer iterations

Figure: Inner iterations vs outer iterations

Question
Why is there no increase in inner iterations as 4 increases? m
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Preconditioning

Convection-Diffusion problem: Preconditioning - ||AP~ g, — 2@ < 7()

inner iterations
3 B 8 8 &

10 13
outer iterations

Figure: Inner iterations vs outer iterations

Question ‘

Why is P; * better than P~'?

NOte ‘VERS!TYOF
P; is a rank-one change to P m
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Preconditioning

Theory: Unpreconditioned solves to find Ay, 21

oz is approximation to x1

G NG
Qx 0 (sin 6 ) ) measure for the error

o 29 = cos0Wx; +sind Vx|
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Preconditio:

Theory: Unpreconditioned solves to find Ay, 21

oz is approximation to x1

G NG
Qx 0 (sin 6 ) ) measure for the error

o 2 =cos0Dzy +sin 0Pz,
o 7 = Az _ N\ g® ||r(i)|| < C|sin 0(”|

o Parlett (1998) - ideas extend to nonsymmetric problems.
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Preconditio:

GMRES applied to Ay = z(®

o y. after k steps
o [|z — Agi|| <7 = C[Ir?||
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Preconditioning

GMRES applied to Ay = z(®

o y. after k steps

o [|lz — Ay <7 = ClIr?||
o
12 — Ayell = min|lpe(A)2"|
< min||gr-1(A)I — )\%A)(cos@@wl +sin0Dz) )|
< Cp" Y sine?|, 0<p<1.

o)
E>14Ch (long + log m)

()

@ bound on k does not increase with 4.
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Preconditioning

GMRES applied to Ay = z(®

o y. after k steps

o [|lz — Ay <7 = ClIr?||
o
12 — Ayell = min|lpe(A)2"|
< min||gr-1(A)I — )\%A)(cos@(i)ml +sin0Dz) )|
< Cp" Y sine?|, 0<p<1.

o)
E>14Ch (long + log %)

(@)
@ bound on k does not increase with 4.

Reason for no increase? = = cos 0@z +sin @z,

@ = | eigenvector of A +  “term” — 0
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Preconditior

GMRES applied to AP~1j = z(®

o AP lu; = piut: (u1,u1) eigenpair nearest zero of APt

o (M = cos é(i)ul + siné(i)uJ_
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tioning

GMRES applied to AP~1j = z(®

o AP lu; = piut: (u1,u1) eigenpair nearest zero of APt

o (M = cos é(i)ul + siné(i)uJ_

- - in 0@
o k>1+C (logCg —l—log%)
7@

e BUT sin ) — 0 only if u; € span{z;} generally won’t hold
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tioning

GMRES applied to AP~1j = z(®

APy = piut: (u1,u1) eigenpair nearest zero of AP~

2 = cos é(i)ul -+ sin é(i)ul

- - in )
k>1+Ch (10gC2 + log |Sl7_n(7?)|)

BUT sin® — 0 only if u; € span{z;} generally won’t hold
sin 6@ #0

@ inner iteration costs increase with 7.

e Reason: z(¥ = cos é(i)ul + sin é(i)UJ_

W =|eigenvector of AP™!' + “term” 40
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Preconditioning

Convection-Diffusion problem: Preconditioning - ||AP~ ', — z®| < 7()

inner iterations
8 R 8 8 &

0 15 20 F3
outer iterations

Figure: Inner iterations vs outer iterations

Question

Why is P; ' better than P~'?
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Preconditior

New “tuned” preconditioner P;

o Idea: recreate the good relationship between the right hand side and
the iteration matrix

2" = eigenvector of iteration matrix 4+  “term” — 0
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Preconditioning

New “tuned” preconditioner P;

o Idea: recreate the good relationship between the right hand side and
the iteration matrix

2" = eigenvector of iteration matrix 4+  “term” — 0

o Define oy
P; = P+ (A — P)z®z®

o P; is a rank one change to P (Sherman-Morrison)
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Preconditioning

New “tuned” preconditioner P;

o Idea: recreate the good relationship between the right hand side and
the iteration matrix

z@ = eigenvector of iteration matrix + “term” — 0
o Define
P; = P+ (A— P)a®z®"
o P; is a rank one change to P (Sherman-Morrison)
o Piz® = Pz® 4 (A — P)x(i)x(i)Hx(i)
o Az® =P;z®
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Preconditioning

New “tuned” preconditioner P;

o Idea: recreate the good relationship between the right hand side and
the iteration matrix

2" = eigenvector of iteration matrix 4+  “term” — 0

o Define oy
P; = P+ (A — P)z®z®

o P; is a rank one change to P (Sherman-Morrison)
o Piz® = Pz® 4 (A — P)x(i)x(i)Hx(i)
o Az =Piz®

e Hence
AP Az = Ag®

o Az is an eigenvector of AP;*




Preconditioning

GMRES with the tuned preconditioner

Recall
o AP 'j=2®
o AP 1Az = Az
Is 2 a “nice” RHS for AP;'?
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tioning

GMRES with the tuned preconditioner

Recall
o AP 'j=2®
o AP 1Az = Az
Is 2 a “nice” RHS for AP;'?

) ) N ) 1 . 1
(@) — Ap® _ )@ () @) — @ _ (@)
o r'" = Ax A = ag¥= )\(i)Am oM
o Idea of tuning: change iteration matrix so that

z@ = eigenvector of AP;' 4+  “term” — 0
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tioning

GMRES with the tuned preconditioner

Recall
o AP 'j=2®
o AP 1Az = Az
Is 2 a “nice” RHS for AP;'?

) ) N ) 1 . 1
(@) — Ap® _ )@ () @) — @ _ (@)
o r'" = Ax A = ag¥= )\mAm oM
o Idea of tuning: change iteration matrix so that

z@ = eigenvector of AP;' 4+  “term” — 0

o Analysis of GMRES is essentially the same as for unpreconditioned case

@ No increase in inner iterations as ¢ increases
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Preconditioning

Convection-Diffusion problem: Preconditioning - || AP~ g, — z@| < 7()

8

®

B 8

inner iterations
3

0 5 10 13 20 F3
outer iterations

Figure: Inner iterations vs outer iterations

Question and Answer

Why is P; ' better than P~'? P; ! is tuned so that the rhs of the
preconditioned system is “good” for the iteration matrix A]P’i_1 veRsiTy oF
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Preconditioning

Numerical Example (Freitag/Sp./Vainikko)

o Linearised Stability on Navier-Stokes: Flow past a circular cylinder
(Re=25)

o Az = \Mzx

Both Rayleigh Quotient and fixed shifts

Mixed FEM Q2 — Q1 elements with n = 6734,27294,61678

FGMRES with block preconditioner of Elman

seek “dangerous” complex eigenvalue near imaginary axis (= 107)

stop when residual < 107!
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Numerics for Navier-Stokes example, Ax = A\Mx

sso| | —*—Untuned preconditioner - total terations: 1348
—=—Tuned preconditioner - total iterations: 1351

450

Inner iteration

25 3 a5 4 45§
Outer teration

Figure: Rayleigh Quotient shift and
decreasing tolerance

Conclusions

S50
—+— Untuned preconditioner - total Iterations: 3383
S00 1 | —&—Tyned preconditioner - total iterations: 1303

Quter iteration

Figure: Fixed shift and decreasing

tolerance

Savings of 30% for variable shift: over 50% for fixed shift
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@ Inexact Subspace iteration
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Inexact subspace iteration

o Repeated solve of p-dimensional block system
Ay = X9
which is preconditioned as
APY = X
o The tuned preconditioner, P; is a rank p update:

P, =P+ (A—P)x®x®
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Subspace

Numerical Example

o matrix market library qc2534

complex symmetric (non-Hermitian)
n = 2534, nz = 463360
ILU preconditioner

subspace dimension 16

seek first 10 eigenvalues
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Preconditioned GMRES

400 . .
350 T |
-
y
/

300 i 4

! Tuned preconditioner

;
2501 ‘ ILU precorditioner |

inner itertaions k
o
2
3
T
L

50 1

outer iterations i

Figure: Inner iterations vs outer iterations
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Preconditioned GMRES

10 T T T T T
Lined precorditioner]
LU preconditioner
1067 E

W0\ E

10 - E

Iz
,

1677 - E

. . L . .
0 1000 2000 3000 4000 5000 8000
sum of inner iterations, T,_, k.
o

Figure: Residual norms vs total number of iterations
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Outline Introduction Preconditioning Subspac Tuning and J-D

RQI and J-D: Exact solves (z(9 — z)

. . . . Jacobi-Davidson method
Rayleigh quotient iteration
. . At each iteration a system of the form
At each iteration a system of the

form (I —zz™)(A = p(@))(I — zz™)s = —r
(A=p(@))y =2

has to be solved. has to be solved, where r = (A — p(z)I)x

is the eigenvalue residual and s L z.

Exact solves

Sleijpen and van der Vorst (1996):
y=a(z+s)

for some constant «
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Outline Preconditioning Subspace Tuning and J-D

RQI and J-D: Inexact solves

. . . . Jacobi-Davidson method
Rayleigh quotient iteration
. . At each iteration a system of the form
At each iteration a system of the

form (I —zz™) (A = p(a))(I — zz™)s = —r
(A—p(x))y =2

has to be solved. has to be solved, where r = (A — p(x)I)x

is the eigenvalue residual and s L z.

Galerkin-Krylov Solver
o Simoncini and Eldén (2002):

Yry1 = B(x + si)
for some constant 3 if both systems are solved using a Galerkin-Krylov
subspace method
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Tuning and J-D

RQI and J-D: Preconditioned Solves

Preconditioning for JD method

(e xevsmdhitonng o S(0) fieriion At each iteration a system of the form

At each iteration a system of the 5
form (I = zz™)(A = p(x))(I — 2z™)P'5 = —r

(A— p(x)[)Pflg =z, (with s = ]5T§) has to be solved. Note
the restricted preconditioner
(with y = P~'%) has to be solved.

P := (I — zz™)P(I — zz™).

Equivalence does not hold! \
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g and J-D

Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

10° 10°
—@— simplified Jacobi—Davidson without pi | —@— simplified Jacobi-Davidson with standard preconditoner|J
— % — Irverse iteration without preconditioner : — % — Inverse iteration with standard preconditioner
10 3
a— ”" 3 p—
g g 10° ]
S T
8 w0l B 10 1
; ; ok ¥ ke — Kk ok Kk Ak A
E 3 0* q
T, 5}
> 107 E >
% E, 107 J
> 2
(7] [
107 107 E
10° 4
107
o 2 4 & & 10 12 14 16 18 20 2 4 3 8 10 12 14 16 18 20
outer iteration outer iteration
Figure: Convergence history of the Figure: Convergence history of the
eigenvalue residuals; no eigenvalue residuals; standard
preconditioner preconditioner
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Tuning and J-D

Tuned RQI = preconditioned JD

Tuning condition:
Pr =2«
o Implement tuning condition by:
P=P+ (I - P)zz"

o Rethink as:
P = zz™ + P(I — z2™)

UNIVERSITY OF

of Bath




Tuning and J-D

Equivalence for inexact solves

Theorem
Let both

(A=p@) P 'j==2, y=P'§
and B ~

(I —zz™) (A - p(a)I)(I — 22™)P'5 = —r, s=P'5
be solved with the same Galerkin-Krylov method. Then
ylljfl =y(z+ SI{D)

Proof.
Based on Simoncini and Eldén (2002). O
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g and J-D

Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

10
—6— simplified Jacobi—Davidson without p | 10° T T T T T T T T T
— + — Inverse _iteration without precoritioner —6— simplified Jacobi~Davidson with standard preconditorer|]
— + — Inverse feration with standard preconditionier
10k 10' —— Inverse iteration with tuned H
™
S T
5 g 1o 4
W o p
o 10 5
o 10 4
) ; R R e i e et o e e o |
© 3 10* E
20 ol
>
(3] =
> © 10 ]
o R
10°L o
10 E
107 10~ E|
o 2z 4 & & 10 12 14 16 18 20 . . . . , , , , ,
outer iteration 2 4 6 8 1 12 14 1B 18 20

outer iteration

Figure: Convergence history of the
eigenvalue residuals; no
preconditioner

Figure: standard preconditioner for
JD, tuned preconditioner for II
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@ Conclusions/Further Work
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ns/Further V

Conclusions

o When using Krylov solvers for shifted systems (A — ol)y = z® in
eigenvalue computations then one should “tune” the preconditioner so
that the iteration matrix has a “good relationship” with the right hand
side,

o For any preconditioner “tuning” is achieved by a small rank change,

o Plenty of unanswered questions arise from PDE eigenvalue problems
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