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Introduction

Ax = λx, λ ∈ C, x ∈ Cn

Lecture 2: Detect pure imaginary eigevalues of large sparse matrices

Seek λ near a given shift σ (good estimate eg. continuation).

A is large, sparse, nonsymmetric (discretised PDE: Ax = λMx)

Inverse Iteration:
y = (A− σI)−1x

Solve (A− σI)y = x

Preconditioned iterative solves

Extensions
Inverse Subspace Iteration

Jacobi-Davidson method

Shift-invert Arnoldi method (Melina Freitag: Tuesday lecture)
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Inexact inverse iteration

Assume x(i) is an approximate normalised eigenvector

Iterative solves (e.g. GMRES) of

(A− σI)y = x(i)

inner-outer

‖x(i) − (A− σI)yk‖ ≤ τ (i) , (τ (i) = solve tolerance)

Rescale yk to get x(i+1)

Update shift?

(Right) preconditioned solves
1 P−1 “known”

2

(A− σI)P−1ỹ = x(i) , P−1ỹ = y.

Alastair Spence University of Bath
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Convergence of inexact inverse iteration

Given x(i) and λ(i)

r(i) = Ax(i) − λ(i)x(i) Eigenvalue residual

Theorem (Convergence)

If the solve tolerance, τ (i), is chosen to reduce proportional to the norm of
the eigenvalue residual ‖r(i)‖ then we recover the rate of convergence
achieved when using direct solves.

Other options/strategies possible: For example Rayleigh quotient
iteration with a fixed tolerance converges linearly.

Alastair Spence University of Bath
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Numerical Example

Ax = λx

discretisation of convection-diffusion operator

−∆u + 5ux + 5uy = λu on (0, 1)2,

3 experiments:
1 Rayleigh quotient shift; exact solves
2 Rayleigh quotient shift; with decreasing solve tolerance in GMRES

τ (i) = min{τ, τ‖r(i)‖}, with τ = 0.3

3 Rayleigh quotient shift; with fixed tolerance τ = 0.3

In all cases solve till 



 r(i)

λ(i)





 < 10−10

Alastair Spence University of Bath
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Numerical Example

Linear and Quadratic convergence
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Inverse Power Method with and without preconditioned solves

From now on, assume σ = 0. So: Ay = x(i)

AP−1ỹ = x(i) , P−1ỹ = y.

Always assume decreasing tolerance: τ (i) = C‖Ax(i) − λ(i)x(i)‖
Convection-Diffusion Example;

1 smallest eigenvalue: λ1 ≈ 32.18560954,
2 Preconditioned GMRES with tolerance τ (i) = 0.01‖r(i)‖,
3 ILU based preconditioners.
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Convection-Diffusion problem: No Preconditioning - ‖Ayk − x(i)‖ ≤ τ (i)

Figure: Inner iterations vs outer iterations

Question

Why is there no increase in inner iterations as i increases?
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Convection-Diffusion problem: Preconditioning - ‖AP−1ỹk − x(i)‖ ≤ τ (i)

Figure: Inner iterations vs outer iterations

Question

Why is P−1
i better than P−1?

Note

Pi is a rank-one change to P
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Theory: Unpreconditioned solves to find λ1, x1

x(i) is approximation to x1

x(i) = cos θ(i)x1 + sin θ(i)x⊥

r(i) = Ax(i) − λ(i)x(i), ‖r(i)‖ ≤ C| sin θ(i)|
Parlett (1998) - ideas extend to nonsymmetric problems.
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GMRES applied to Ay = x(i)

yk after k steps

‖x(i) −Ayk‖ ≤ τ (i) = C‖r(i)‖

‖x(i) −Ayk‖ = min ‖pk(A)x(i)‖

≤ min ‖qk−1(A)(I − 1

λ1
A)(cos θ(i)x1 + sin θ(i)x⊥)‖

≤ Cρk−1| sin θ(i)|, 0 < ρ < 1.

k ≥ 1 + C1

�
log C2 + log

| sin θ(i)|
τ (i)

�

bound on k does not increase with i.

Reason for no increase? x(i) = cos θ(i)x1 + sin θ(i)x⊥

x(i) = eigenvector of A + “term” → 0

Alastair Spence University of Bath

Inexact inverse iteration with preconditioning



Outline Introduction Preconditioning Subspace Tuning and J-D Conclusions/Further Work

GMRES applied to Ay = x(i)

yk after k steps

‖x(i) −Ayk‖ ≤ τ (i) = C‖r(i)‖

‖x(i) −Ayk‖ = min ‖pk(A)x(i)‖

≤ min ‖qk−1(A)(I − 1

λ1
A)(cos θ(i)x1 + sin θ(i)x⊥)‖

≤ Cρk−1| sin θ(i)|, 0 < ρ < 1.

k ≥ 1 + C1

�
log C2 + log

| sin θ(i)|
τ (i)

�

bound on k does not increase with i.

Reason for no increase? x(i) = cos θ(i)x1 + sin θ(i)x⊥

x(i) = eigenvector of A + “term” → 0

Alastair Spence University of Bath

Inexact inverse iteration with preconditioning



Outline Introduction Preconditioning Subspace Tuning and J-D Conclusions/Further Work

GMRES applied to Ay = x(i)

yk after k steps

‖x(i) −Ayk‖ ≤ τ (i) = C‖r(i)‖

‖x(i) −Ayk‖ = min ‖pk(A)x(i)‖

≤ min ‖qk−1(A)(I − 1

λ1
A)(cos θ(i)x1 + sin θ(i)x⊥)‖

≤ Cρk−1| sin θ(i)|, 0 < ρ < 1.

k ≥ 1 + C1

�
log C2 + log

| sin θ(i)|
τ (i)

�

bound on k does not increase with i.

Reason for no increase? x(i) = cos θ(i)x1 + sin θ(i)x⊥

x(i) = eigenvector of A + “term” → 0

Alastair Spence University of Bath

Inexact inverse iteration with preconditioning



Outline Introduction Preconditioning Subspace Tuning and J-D Conclusions/Further Work

GMRES applied to AP−1ỹ = x(i)

AP−1u1 = µ1u1: (µ1, u1) eigenpair nearest zero of AP−1

x(i) = cos θ̃(i)u1 + sin θ̃(i)u⊥

k ≥ 1 + C̃1

�
log C̃2 + log

| sin θ̃(i)|
τ (i)

�

BUT sin θ̃(i) → 0 only if u1 ∈ span{x1} generally won’t hold

sin θ̃(i) 6→ 0

inner iteration costs increase with i.

Reason: x(i) = cos θ̃(i)u1 + sin θ̃(i)u⊥

x(i) = eigenvector of AP−1 + “term” 6→ 0
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Convection-Diffusion problem: Preconditioning - ‖AP−1ỹk − x(i)‖ ≤ τ (i)

Figure: Inner iterations vs outer iterations

Question

Why is P−1
i better than P−1?
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New “tuned” preconditioner Pi

Idea: recreate the good relationship between the right hand side and
the iteration matrix

x(i) = eigenvector of iteration matrix + “term” → 0

Define
Pi = P + (A− P )x(i)x(i)H

Pi is a rank one change to P (Sherman-Morrison)

Pix
(i) = Px(i) + (A− P )x(i)x(i)H

x(i)

Ax(i) = Pix
(i)

Hence
AP−1

i Ax(i) = Ax(i)

Ax(i) is an eigenvector of AP−1
i

Alastair Spence University of Bath
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GMRES with the tuned preconditioner

Recall

AP−1
i ỹ = x(i)

AP−1
i Ax(i) = Ax(i)

Is x(i) a “nice” RHS for AP−1
i ?

r(i) = Ax(i) − λ(i)x(i) ⇒ x(i) =
1

λ(i)
Ax(i) − 1

λ(i)
r(i)

Idea of tuning: change iteration matrix so that

x(i) = eigenvector of AP−1
i + “term” → 0

Analysis of GMRES is essentially the same as for unpreconditioned case

No increase in inner iterations as i increases

Alastair Spence University of Bath
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Convection-Diffusion problem: Preconditioning - ‖AP−1ỹk − x(i)‖ ≤ τ (i)

Figure: Inner iterations vs outer iterations

Question and Answer

Why is P−1
i better than P−1? P−1

i is tuned so that the rhs of the
preconditioned system is “good” for the iteration matrix AP−1

i

Alastair Spence University of Bath
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Numerical Example (Freitag/Sp./Vainikko)

Linearised Stability on Navier-Stokes: Flow past a circular cylinder
(Re=25)

Ax = λMx

Both Rayleigh Quotient and fixed shifts

Mixed FEM Q2 −Q1 elements with n = 6734, 27294, 61678

FGMRES with block preconditioner of Elman

seek “dangerous” complex eigenvalue near imaginary axis (≈ 10i)

stop when residual ≤ 10−11

Alastair Spence University of Bath
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Numerics for Navier-Stokes example, Ax = λMx

Figure: Rayleigh Quotient shift and
decreasing tolerance

Figure: Fixed shift and decreasing
tolerance

Conclusions

Savings of 30% for variable shift: over 50% for fixed shift

Alastair Spence University of Bath
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Inexact subspace iteration

Repeated solve of p-dimensional block system

AY = X(i),

which is preconditioned as

APiỸ = X(i)

The tuned preconditioner, Pi is a rank p update:

Pi = P + (A− P )X(i)X(i)H

Alastair Spence University of Bath
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Numerical Example

matrix market library qc2534

complex symmetric (non-Hermitian)

n = 2534, nz = 463360

ILU preconditioner

subspace dimension 16

seek first 10 eigenvalues

Alastair Spence University of Bath
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Preconditioned GMRES

Figure: Inner iterations vs outer iterations
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Preconditioned GMRES

Figure: Residual norms vs total number of iterations

Alastair Spence University of Bath
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RQI and J-D: Exact solves (x(i) → x)

Rayleigh quotient iteration

At each iteration a system of the
form

(A− ρ(x)I)y = x

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

(I − xxH)(A− ρ(x)I)(I − xxH)s = −r

has to be solved, where r = (A− ρ(x)I)x
is the eigenvalue residual and s ⊥ x.

Exact solves

Sleijpen and van der Vorst (1996):

y = α(x + s)

for some constant α

Alastair Spence University of Bath
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RQI and J-D: Inexact solves

Rayleigh quotient iteration

At each iteration a system of the
form

(A− ρ(x)I)y = x

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

(I − xxH)(A− ρ(x)I)(I − xxH)s = −r

has to be solved, where r = (A− ρ(x)I)x
is the eigenvalue residual and s ⊥ x.

Galerkin-Krylov Solver

Simoncini and Eldén (2002):

yk+1 = β(x + sk)

for some constant β if both systems are solved using a Galerkin-Krylov
subspace method

Alastair Spence University of Bath
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RQI and J-D: Preconditioned Solves

Preconditioning for RQ iteration

At each iteration a system of the
form

(A− ρ(x)I)P−1ỹ = x,

(with y = P−1ỹ) has to be solved.

Preconditioning for JD method

At each iteration a system of the form

(I − xxH)(A− ρ(x)I)(I − xxH)P̃ †s̃ = −r

(with s = P̃ †s̃) has to be solved. Note
the restricted preconditioner

P̃ := (I − xxH)P (I − xxH).

Equivalence does not hold!

Alastair Spence University of Bath
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Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

Figure: Convergence history of the
eigenvalue residuals; no
preconditioner

Figure: Convergence history of the
eigenvalue residuals; standard
preconditioner

Alastair Spence University of Bath
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Tuned RQI ≡ preconditioned JD

Tuning condition:
Px = x

Implement tuning condition by:

P = P + (I − P )xxH

Rethink as:
P = xxH + P (I − xxH)

Alastair Spence University of Bath
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Equivalence for inexact solves

Theorem

Let both
(A− ρ(x)I)P−1ỹ = x, y = P−1ỹ

and
(I − xxH)(A− ρ(x)I)(I − xxH)P̃ †s̃ = −r, s = P̃ †s̃

be solved with the same Galerkin-Krylov method. Then

yRQ
k+1 = γ(x + sJD

k ).

Proof.

Based on Simoncini and Eldén (2002).

Alastair Spence University of Bath
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Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

Figure: Convergence history of the
eigenvalue residuals; no
preconditioner

Figure: standard preconditioner for
JD, tuned preconditioner for II

Alastair Spence University of Bath
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Conclusions

When using Krylov solvers for shifted systems (A− σI)y = x(i) in
eigenvalue computations then one should “tune” the preconditioner so
that the iteration matrix has a “good relationship” with the right hand
side,

For any preconditioner “tuning” is achieved by a small rank change,

Plenty of unanswered questions arise from PDE eigenvalue problems
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