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Preliminary Remark

In a number of situations, Galois cohomology provides a descent

algorithm for computing the set of rational points of a variety.

-Algorithms related to sophisticated refinements of the Hasse

principle. Often associated with simple varieties.

-Conjectural algorithms at the boundary of simplicity; especially,

abelian varieties.

-Conjectural algorithms for generic varieties?
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Review of descent for elliptic curves

(E, e) elliptic curve over Q.

G = Gal(Q̄/Q).

Fix a prime p (often p = 2).

We have

0→E[pn]→E(Q̄)
pn

→ E(Q̄)→0,

an exact sequence compatible with G-action.
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This leads to an long exact sequence of Galois cohomology

0→E(Q)[pn]→E(Q)
pn

→ E(Q)
κn→ H1(G, E[pn])→H1(G, E)[pn]→

and an inclusion

E(Q)/pn →֒H1(G, E[pn]).

The image is in fact severely constrained:

E(Q)/pn →֒H1
f (G, E[pn]) ⊂ H1(G, E[pn]).
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The subspace H1
f (G, E[pn]) can be defined by ‘local’ Galois theory,

and can be computed, in principle. For example, it is often realized

as a computable subspace of

HomN (C, E[pn]),

where

N = Gal(Fn/Q)

for the field

Fn = Q(E[pn])

generated by the coordinates of E[pn], and C is a suitable

generalized ideal class group of Fn.
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The maps fit into a tower:

...
... H1

f (G, E[p4])

H1
f (G, E[p3])

?

H1
f (G, E[p2])

?

E(Q)
κ1

-

κ
4

-

κ3

-

κ2
-

H1
f (G, E[p])

?

using which one can attempt to compute E(Q).
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There is in fact a decreasing sequence of subspaces

· · ·H1
f (G, E[p])4 ⊂ H1

f (G, E[p])3 ⊂ H1
f (G, E[p])2 ⊂ H1

f (G, E[p])

where

H1
f (G, E[p])i ⊂ H1

f (G, E[p])

consists of those elements that lift to H1
f (G, E[pi]). On the other

hand, there is an increasing sequence of subsets

E(Q)≤1/p ⊂ E(Q)≤3/p ⊂ E(Q)≤3/p ⊂ · · · ⊂ ∩iH
1
f (G, E[p])i,

consisting of those classes E(Q)≤i/p coming from the points in

E(Q) of height ≤ i.
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That

E(Q)≤m/p = H1
f (G, E[p])n

eventually is a consequence of the finiteness of the Tate-Shafarevich

group, which implies that

E(Q)⊗ Zp ≃ lim
←−

H1
f (G, E[pn]).

This finiteness is a key component of the conjecture of Birch and

Swinnerton-Dyer.

At this point, we would have

E(Q)≤m/p = E(Q)/p ≃ H1
f (G, E[p])n

and be able to compute the rank of E(Q) as well as a set of

rational points generating a subspace of maximal rank. It is then

straightforward to compute from these actual generators of E(Q).
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Strategy:

1. Find a computable ambient space, e.g., H1
f (G, E[p]) inside which

to encode points.

2. Carve out the space of actual points inside this ambient space

using a conjunction of a nested sequence of cohomological

constraints and searching.

A deep assertion (e.g. finiteness of Sha) provides the termination of

this algorithm.
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Non-abelian descent

(X, b), pointed projective smooth curve of genus at least 2 defined

over Q.

Approach X(Q) along two complementary paths:

1. Motivic descent;

2. Non-abelian profinite descent.
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Categorical Context

Study points x ∈ X via homotopy classes of paths

π1(X ; b, x)

as x varies. Endowed with torsor structure coming from action of

π1(X, b). Also various arithmetic structures corresponding to

different theories of π1. Thus, the study of points leads to the

study of variation inside a moduli space of torsors for π1(X, b),

realized as a non-abelian cohomology space.

This variation is entirely canonical, but involves homotopy rather

than homology, and hence, tends away from the realm of motives.
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Recall that the profinite fundamental group πet
1 (X̄, b) is

constructed from the category Cov(X̄) of étale covers of X̄ as the

automorphism group of the fiber functor

Fb : Cov(X̄)→Set,

while the space of profinite paths is defined as

πet
1 (X̄; b, x) := Isom(Fb, Fx).
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Similarly, the motivic fundamental group

U = πM
1 (X̄, b)

and path torsors

P (x) := πM
1 (X̄; b, x)

consist of various realizations constructed from fiber functors on

natural Tannakian categories over X̄.
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Category

Un(X̄, Qp)

of unipotent Qp-lisse sheaves on X̄ equipped with a fiber functor

F et
b : Un(X̄, Qp)→VectQp

taking a sheaf to its stalk at b. Then

Uet := Aut⊗(Fb);

P et(x) := Isom⊗(Fb, Fx).
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Category

Un(XQp
, DR)

of unipotent vector bundles with connection on XQp
equipped with

a fiber functor

FDR
b : Un(XQp

, DR)→VectQp

taking a bundle to its fiber at b. Then

UDR := Aut⊗(FDR
b );

P DR(x) := Isom⊗(FDR
b , FDR

x ).

These spaces also have Hodge filtrations F ∗ and crystalline

structures, that is, an action of Frobenius coming from comparison

with a crystalline fundamental group.
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The classifying map: profinite version

Grothendieck’s section conjecture:

X(Q) ≃ H1(G, πet
1 (X̄, b))

via the map

x 7→ [πet
1 (X̄; b, x)].

Non-abelian analogue of the finiteness conjecture for

Tate-Shafarevich groups.

16



The classifying map: motivic version

The motivic fundamental group lies between pro-finite

fundamental groups and homology in complexity:

π̂1(X̄, b)

|

πM
1 (X̄, b)

|

H1(X̄)
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The motivic classifying map is defined using motivic paths

X(Q)→H1
M(G, U);

x 7→ [P (x)],

except the target space needs clarification.
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Motivic descent

The most important component of the classifying map is the

Qp-étale realization:

X(Q)→H1
f (G, Uet);

x 7→ [P et(x)],
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This map is actually a tower coming from the descending central

series of U :

...
... H1

f (G, Uet
4 )

H1
f (G, Uet

3 )
?

H1
f (G, Uet

2 )
?

X(Q)
κ1

-

κ
4

-

κ 3

-

κ2
-

H1
f (G, Uet

1 )
?

= H1
f (G, TpJ ⊗Qp)

corresponding to motivic descent.

At the bottom we have the usual Tate module TpJ of the Jacobian

J of X .
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The tower has other realizations that fit into commutative diagrams

X(Q) - X(Qp)

H1
f (G, Un)

?
locp

- H1
f (Gp, Un)

?
D
- UDR

n /F 0

-

where the bottom horizontal maps occur in the category of

algebraic varieties, while the vertical maps are transcendental.

Thus, the difficult inclusion X(Q) ⊂ X(Qp) has been replaced by

the algebraic map D ◦ locp.
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The De Rham/crystalline fundamental group UDR is equipped

with a Frobenius action and a Hodge filtration

UDR ⊃ · · ·F−n ⊃ · · ·F−1 ⊃ F 0

by subgroups, so that

UDR/F 0

classifies torsors with compatible De Rham/crystalline structures.

The map

X(Qp)→UDR/F 0

sends a point x to the set P DR(x) of De Rham/crystalline paths

from b to x.
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Theorem 1 Suppose

D ◦ locp(H
1
f (G, Un)) ⊂ UDR

n /F 0

is not Zariski dense for some n. Then X(Q) is finite.

Can use this to prove finiteness of points on some families of

curves, e.g., Fermat curves.
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Idea of proof: There is a non-zero algebraic function α

X(Q) ⊂ - X(Qp)

H1
f (G, Un)

κn

?
locp

- H1
f (Gp, Un)

κp,n

?

- UDR
n /F 0

κ D
Rn

-

Qp

∃α 6=0

?

vanishing on D ◦ locp[H
1
f (G, Un)]. Hence, α ◦ κDR

n vanishes on

X(Q). But this function is a non-vanishing convergent power series

on each residue disk. 2
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The last assertion relies on an explicit computation of the map

X(Qp)→UDR/F 0

in terms of p-adic iterated integrals.

Furthermore,

the algebraic map

H1
f (G, Un)

locp
- H1

f (Gp, Un)
D
- UDR/F 0

can be computed in principle.

(Hypothesis H).
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Assuming standard motivic conjectures, e.g., the Fontaine-Mazur

conjecture on representations of geometric origin, one can

effectively compute an n such that the hypothesis is satisfied.

Thus, the F-M conjecture provides an explicit α such that α ◦ κDR
n

vanishes on X(Q) ⊂ X(Qp).

With a sufficiently accurate knowledge of α, we can compute a

lower bound for the distance between the zeros of α on the residue

disks of X(Qp) = X(Zp). Use this to find m such that the zeros of

α are separated modulo pm, leaving us with an injection

X(Q)→֒X(Z/pm).
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From this, we get an injection

X(Q)→֒J(Z/pm)

and hence, an injection

X(Q)→֒J(Q)/NJ(Q)

for N = |J(Z/pm)|.
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Thus, we have also an injection

X(Q)→֒H1
f (G, J [N ]) ⊂ H1(GT , J [N ]),

where T = S ∪ {p} ∪ {l : l|N} with S the set of primes of bad

reduction for X , and GT = Gal(QT /Q) for the maximal extension

QT of Q unramified outside T . Therefore, the motivic theory has

provided us with an ambient space

H1(GT , J [N ])

inside which to start the descent.
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Non-abelian profinite descent

J [N ] ≃ πet,ab(X̄, b)/N

is a quotient of πet
1 (X̄, b). Let Ai be a cofinal system of finite

quotient groups of πet
1 (X̄, b), so that A0 = J [N ] and having the

property that

H1(G, πet
1 (X̄, b)) = lim

←−
H1(Gi, Ai)

for some inverse system of restricted ramification Galois groups Gi

with G0 = GT .
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Eventually, we have maps

· · · H1(Gi+2, Ai+2) → H1(Gi+1, Ai+1) → H1(Gi, Ai) · · ·

↓ ↓ ↓

· · · Imi+2 →֒ Imi+1 →֒ Imi · · ·

leading to a decreasing sequence of subsets Imi of

H1(GT , J [N ]).

Since we are dealing with finite Galois cohomology, everything is in

principle computable.
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Meanwhile, there is also an increasing sequence of subsets

· · ·X(Q)≤i ⊂ X(Q)≤i+1 ⊂ X(Q)≤i+2 ⊂ · · ·

coming from points of increasing height.

The section conjecture implies that the two nested sequence of

subsets have to meet eventually, i.e.,

X(Q)m = H1(GT , J [N ])n

for some m and n, at which point we can conclude

X(Q)m = X(Q).

Thus, we have a a terminating algorithm of non-abelian descent.

Completes the analogy between the section conjecture and BSD.
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Main input of motivic theory, in particular, non-archimedean,

non-abelian Hodge theory:

effective lower bound for distances between all points at one

non-Archimedean place.

Compare with usual approach to effective Mordell, where one seeks

effective upper bound for heights

or equivalently,

an effective lower bound for the distance from one fixed

point at all places.
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Remark on base-points: The original section conjecture considers

the exact sequence

0→πet
1 (X̄, b)→πet

1 (X)→G→0

and proposes that conjugacy classes of splittings for this sequence

should correspond exactly to the rational points of X . Our

discussion assumed that we have one rational base-point b to start

with. But Ambrus Pal shows that the original section conjecture

also gives an algorithm for determining the existence of a point.

That is, we have

Section conjecture+ Fontaine-Mazur conjecure+hypothesis H ⇒

X(Q) is computable for curves of genus ≥ 2.
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(Non-)Example

Let (E, e) be the Weierstrass minimal model for an elliptic curve

over Q of analytic rank 1.

Let X = E \ {e}. Assume we have an integral point b ∈ X(Z)

already and let

log1(z) :=

∫ z

v

dx/y,

log2(z) :=

∫ z

v

xdx/y

D(z) =

∫ z

v

(dx/y)(xdx/y),

where v is a tangential base-point at the origin.
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Then the set of integral points

X(Z) ⊂ X(Zp)

lies inside the zero set of the analytic function

(log1(b))
2(D2(z)− (1/2) log1(z) log2(z))

−(log1(z))2(D2(b)− (1/2) log1(b) log2(b)).
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Philosophical summary

Galois theory according to Galois proposes group theory to encode

Diophantine geometry in dimension zero. (Polynomials in one

variable.)

Need to extend Galois theory include categorical structures

relevant to Diophantine geometry in dimension one. (Polynomials

in two variables.)

Arithmetic fundamental groups, moduli space of torsors, . . .
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