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M. Makkai, R. Paré 1989:

Definition. A category K is called λ-accessible,

where λ is a regular cardinal, provided that

(1) K has λ-filtered colimits,

(2) K has a set A of λ-presentable objects such

that every object of K is a λ-filtered colimit of

objects from A.

An object A is λ-presentable if its hom-functor

hom(A,−) : K → Set

preserves λ-filtered colimits.

A category is accessible if it is λ-accessible for some

regular cardinal λ. A cocomplete λ-accessible cat-

egory is called locally λ-presentable. A category is

locally presentable is it is locally λ-presentable for

some regular cardinal λ.
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A formula in an infinitary many-sorted logic Lαβ is

called

(a) positive-primitive if it has the form (∃y)ψ(x, y)

where ψ(x, y) is a conjunction of atomic formu-

las,

(b) positive-existential if it is a disjunction of po-

sitive-primitive formulas,

(c) basic it it has the form

(∀x)(ϕ(x) → ψ(x))

where ϕ(x) and ψ(x) are positive-existential

formulas.

Theorem 1. Accessible categories are precisely the

categories equivalent to categories of models of basic

theories.

Theorem 2. For each theory T of Lαβ , the cate-

gory of T -models and Lαβ-elementary embeddings is

accessible.
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Given morphisms f : A → B and g : C → D in a

category K, we write

f�g

if in each commutative square

A
u //

f

��

C

g

��
B v

// D

there is a diagonal d : B → C with df = u and

gd = v.

For a class H of morphisms of K we put

H� = {g|f�g for each f ∈ H},

�H = {f |f�g for each g ∈ H}.
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The relation f�g can be interpreted as

f |= g

i.e., that the morphism g is a model of a morphism

f . Then

H = ModH

is the class of models of H while

�H = ThH

is the theory of H.

The passage to the dual category interchanges mod-

els and theories.

An object K is H-injective iff K → 1 belongs to

ModH. This means that K is a model of H. Analo-

gously, K is H-projective iff 0 → K belongs to ThH.
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Given two classes L and R of morphisms of K, the

pair (L,R) is called a weak factorization system if

1. R = L�, L = �R

and

(2) any morphism h of K has a factorization h =

gf with f ∈ L and g ∈ R.

A transfinite composition is the component f0 of a

colimit cocone fi : Ki → K of a smooth chain of

morphisms (fij : Ki → Kj)i<j<λ (i.e., λ is a limit

ordinal, fjk · fij = fik for i < j < k and fij : Ki →

Kj is a colimit cocone for any limit ordinal j < λ).

The smallest class of morphisms of K containing iso-

morphisms and being closed under transfinite com-

positions, pushouts of morphisms from H and re-

tracts (in the category K→ of morphisms of K) is

denoted cof(H). This class can be interpreted as the

deductive closure of H.
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Theorem 3. Let K be a locally presentable category

and C a set of morphisms of K. Then (cof(C), C�) is

a weak factorization system in K.

Such weak factorization systems are called cofibrantly

generated. In homotopy theory, Theorem 4 is called

a small object argument.

A weak factorization

K → K → 1

yields that K has enough L-injectives. Analogously,

it has enough R-projectives. One also gets that L-

injectives form a weakly reflective full subcategory of

K. Dually, R-projectives form a weakly coreflective

full subcategory.

(Flat monomorphisms, cotorsion epimorphisms) is a

weak factorization system in the category of R-mo-

dules responsible for the existence of flat (pre)covers

and cotorsion (pre)envelopes.
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Vopěnka’s principle says that no accessible category

has a large rigid class of objects.

It is a large cardinal axiom – it implies the exis-

tence of a proper class of supercompact (even of ex-

tendible) cardinals and its consistency follows from

the existence of a huge cardinal.

Vopěnka’s principle implies (J. Adámek, J. R., 1994)

(R) Every full subcategory L of a locally presentable

category closed under limits is reflective.

(WR) Every full subcategory L of a locally presentable

category closed under products and retracts is

weakly reflective.

Both (R) and (WR) are set-theoretical and

V P ⇒ (WR) ⇒ (R)

The equivalence of (VP) and (R) is an open problem.
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Set-theoretical counterexamples to (R) or (WR) are

artificial and it is natural to know what happens for

“reasonable” L. For such subcategories one might

need less set-theory.

J. Bagaria, C. Casacuberta, A. Matthias, J. R. (2009):

Theorem 4. Assume the existence of a proper class

of supercompact cardinals. Then (R) and (WR) hold

for each Σ2-definable L.

Let L be the closure of groups Z
κ/Z<κ, where κ is a

cardinal, under products and retracts in the category

of Abelian groups. Then the weak reflectivity of L

lies between the existence of a supercompact cardinal

and the existence of a measurable cardinal.
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A model category is a complete and cocomplete cat-

egory K together with three classes of morphisms

F , C and W called fibrations, cofibrations and weak

equivalences such that

(1) W has the 2-out-of-3 property, i.e., with any

two of f , g, gf belonging to W also the third

morphism belongs to W , and W is closed under

retracts in K→, and

(2) (C,F ∩W) and (C ∩W,F) are weak factoriza-

tion systems.

Morphisms from F ∩ W are called trivial fibrations

while morphisms from C ∩W trivial cofibrations.

A model category K is called cofibrantly generated

provided that the both weak factorization systems

above are cofibrantly generated. A cofibrantly gen-

erated model category is called combinatorial if K is

locally presentable.
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HoK = K[W−1]

is called the homotopy category of a model category

K.

Two distinct model categories K1 and K2 can have

equivalent homotopy categories. If the equivalence

of HoK1 and HoK2 is induced by a suitable adjoint

pair on model categories K1 and K2, we say that K1

and K2 are Quillen equivalent.

The model category Top of topological spaces is cofi-

brantly generated but not combinatorial. It is Quillen

equivalent to the combinatorial model category SSet

of simplicial sets.

Theorem 5. (VP) is equivalent to the fact that

every cofibrantly generated model category is Quilen

equivalent to a combinatorial one.

The implication ⇒ was proved by G. Raptis (2008),

the converse is due to me (2009).
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Almost all important model categories have a com-

binatorial model. Combinatorial model categories

were introduced by J. H. Smith; the following basic

result is due to him.

Theorem 6. Let X be a set of morphisms in a

locally presentable category K. Then C = cof(X )

and W make K a combinatorial model category if

and only if

(1) W has the 2-out-of-3 property and is closed

under retracts in K→,

(2) X� ⊆ W ,

(3) cof(X )∩W is closed under pushout and trans-

finite composition, and

(4) W satisfies the solution set-condition at X .
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(4) can be replaced by W being accessible (as a full

subcategory of K→). This was also claimed by J. H.

Smith; the proofs were independently obtained by J.

Lurie and me.

(VP) is equivalent to deleting (4) in Theorem 6.

We have the functor P : K → HoK.

HoK has products and coproducts (preserved by P )

but only weak pullbacks and weak pushouts. Hence

HoK has weak limits and weak colimits.
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Weak pushouts are constructed in K as homotopy

pushouts. Given

B

A

f

OO

g
// D

a homotopy pushout is a pushout

B1
g // E

A

f1

OO

g1

// D1

f

OO

where f = f2f1 and g = g2g1 are (cofibration, trivial

fibration) factorizations.
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Let K be a pointed model category. Homotopy pushouts

0 // ΣA

A

OO

// 0

OO

yield the suspension functor Σ : K → K. A pointed

model category is called stable if Σ is an equivalence

in HoK. HoK is then triangulated (and thus addi-

tive).

A triangulated category has triangles

A→ B → C → ΣA

playing the role of short exact sequences.

Examples of stable model categories are spectra or

chain complexes over a ring R. As homotopy cat-

egories one gets the classical stable homotopy cate-

gory or derived categories of R.
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A full subcategory L of a triangulated category T

is called localizing if it is closed under triangles, co-

products and retracts. Dually, it is called colocalizing

if it is closed under triangles, products and retracts.

These subcategories correspond to torsion and tor-

sion free subcategories in abelian categories.

The following results (partially) solve open problems

from M. Hovey, J. H. Palmieri and N. P. Strickland,

Axiomatic Stable Homotopy theory (1997). There

are due to C. Casacuberta, J. Gutiérrez, J. R.

Theorem 7. Let K be a locally presentable sta-

ble model category. Under (VP), every colocalizing

subcategory of HoK is reflective.

Theorem 8. Let K be a combinatorial stable mo-

noidal model category. Under (VP), every localizing

subcategory of HoK is coreflective.

We do not know whether these results are really set-

theoretical.
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Let L be a category with coproducts and λ a cardi-

nal. An object A of L is called λ-small if for every

morphism f : A →
∐
i∈I

Li there is a subset J of I of

cardinality less than λ such that f factorizes as

A→
∐

j∈J

Lj →
∐

i∈I

Li

where the second morphism is the subcoproduct in-

jection.

A. Neeman (2001):

Consider classes S of λ-small objects of A such for

every morphism f : S →
∐
i∈I

Li with S ∈ S there are

morphisms gi : Si → Li where Si ∈ S for each i ∈ I

such that f factorizes through
∐
i∈I

gi :
∐
i∈I

Si →
∐
i∈I

Li.

Since these classes are closed under unions, there is

the greatest class S with this property. Its objects

will be called λ-compact.
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J.R. (2005):

Theorem 9. Let K be a combinatorial model cate-

gory. Then there are arbitrarily large regular cardi-

nals λ such that the composition

K
P

−−→ HoK
EP (Kλ)

−−−−−−→ SetP (Kλ)op .

preserves λ-filtered colimits.

Here, Kλ denotes the full subcategory of K consisting

of λ-presentable objects.

Theorem 10. Let K be a locally λ-presentable

model category such that the functor EP (Kλ)P pre-

serves λ-filtered colimits. Then PK is λ-compact for

each λ-presentable object K of K.
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Let L be a category with a zero object. We say that

a set G of objects weakly generates L if whenever

hom(G,L) = {0} for each G ∈ G then L = 0.

A. Neeman (2001):

Let L be a category with coproducts and a zero ob-

jects. L is called well generated if it has a weakly

generating set of λ-compact objects for some cardi-

nal λ.

Theorem 11. Let K be a combinatorial pointed

model category. Then HoK is well generated.

The existence of a weakly generating set in HoK is

due to M. Hovey (1999). The result is important for

stable model categories whose homotopy categories

are triangulated.
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Let λ be a regular cardinal. A λ-pure monomor-

phism is a morphism f : K → L such that given a

commutative square

A
g //

u

��

B

v

��
K

f
// L

withA andB λ-presentable, then u factorizes through

g, i.e., u = tg for some t : B → K.

λ-pure monomorphisms correspond to submodels el-

ementary with respect to positive-primitive formulas

of Lλλ.

Let C be a set of morphisms of a category K having

λ-presentable domains and codomains. The full sub-

category C△ consisting of all C-injective objects K of

K is called a λ-injectivity class.

20



J. Adámek, F. Borceux, J.R. (2002):

Theorem 12. Let K be a locally λ-presentable cat-

egory. A full subcategory of K is a λ-injectivity class

iff it is closed under products, λ-filtered colimits and

λ-pure subobjects.

For λ = ω, the result immediately follows from the

compactness theorem.

If, in the definition of f�g, we require a unique di-

agonal, we get the relation

f ⊥ g

It leads to factorization systems and orthogonality

in the place of weak factorization systems and in-

jectivity. Given a set C of morphisms of a category

K, the full subcategory consisting of all C-orthogonal

objects K of K is called a small-orthogonality class.
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Theorem 13. Let K be a locally presentable cate-

gory and C a set of morphisms of K. Then (colim(C), C⊥)

is a factorization system in K.

Here, colim C denotes the closure of C under all col-

imits in K→.

Consequently, small-orthogonality classes in locally

presentable categories are reflective.

E. R. Fisher (1977):

Theorem 14. (VP) is equivalent to the fact that

every limit-closed full subcategory of a locally pre-

sentable category is a small-orthogonality class.
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An object C of a category K is orthogonal to a mor-

phism f : A→ B iff

hom(f, C) : hom(B,C) → hom(A,C)

is a bijection.

Let K be a model category. An object C is homotopy

orthogonal to f : A→ B if

map(f, C) : map(B,C) → map(A,C)

is a weak equivalence of simplicial sets.

Here, map(A,C) is the homotopy function com-

plex. It is a simplicial set whose points form hom(A,C).

We denote homotopy orthogonality by ⊥h. Homo-

topy orthogonality implies orthogonality in the ho-

motopy category.

We say that a reflective full subcategory L of HoK

is strict if its reflector HoK → L can be strictified,

i.e., it equals to Ho(L) where L : K → K.
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C. Casacuberta, D. Scevenels, J. H. Smith (2005):

Theorem 15. Under (VP), every strict reflective

subcategory of HoSSet is a homotopy small-ortho-

gonality class.

The statement is set-theoretical: it implies the exis-

tence of a measurable cardinal.

C. Casacuberta, B. Chorny (2006):

Theorem 16. Let K be a left proper, combinatorial,

simplicial model category. Under (VP), every strict

reflective subcategory of HoK is a homotopy small-

orthogonality class.

One can consider homotopy locally presentable cate-

gories in the context of simplicial categories (J. R.

2007) or quasicategories (J. Lurie 2003, 2006, A.

Joyal 2008).
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