Transported Probability Density Function (PDF) Methods for Multiscale and Uncertainty Problems - Part I

Patrick Jenny

Institute of Fluid Dynamics Swiss Federal Institute of Technology; ETH Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation for PDF Modeling

- interested in statistical description
- joint PDF's are arbitrary
- non-linear terms in fine-scale equations
- spatial and temporal correlations

Examples:

- turbulent combustion
- multi-phase flow
 - turbulent sprays
 - miscible and immiscible transport in porous media
- uncertainty assessment of contaminant transport
- non-equilibrium gas flow
- light scattering
- ...

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Basic Background First Illustrative Example: Brownian Motion

Particle evolves according to Brownian motion:

$$dX_i = (2\Gamma)^{1/2} dW_i, \qquad (1)$$

where $W_i(t)$ is a Wiener process with $dW_i = W_i(t+dt) - W_i(t)$ being independent normal distributed random variables with

$$\langle dW_i \rangle \equiv 0 \text{ and } \langle dW_i dW_j \rangle = dt \delta_{ij}.$$
 (2)

A statistically exact integration of the position is achieved with

$$\Delta X_i = (2\Gamma \Delta t)^{1/2} \xi_i, \qquad (3)$$

where ξ_i are independent normal distributed random variables and Δt is the time step size.

Question: how dies the probability density function (PDF) f_X of the particle position X evolve?

ETH		
Eidgenössische Technische Hochschule Zürich	Patrick Jenny	Institute of Fluid Dynamics
Swiss Federal Institute of Technology Zurich		

Basic Background

Answer:

$$\frac{\partial f_{\mathbf{X}}}{\partial t} = \frac{\partial^2}{\partial x_i \partial x_i} \left(\Gamma f_{\mathbf{X}} \right), \tag{4}$$

where x_i is the sample space coordinate of the stochastic variable X_i .

If a huge number M of particles is considered, then the local particle number density C represents Mf_X , i.e. for constant M on obtains

$$\frac{\partial C}{\partial t} = \frac{\partial^2}{\partial x_i \partial x_i} \left(\Gamma C \right). \tag{5}$$

Eitigenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Patrick Jenny	Institute of Fluid Dynamics

Basic Background

General PDF Evolution Equations

<u>Next</u>: we derive the general form of an evolution equation for $f_X(x;t)$, where $x \in \mathbb{R}$:

$$f_{X}(x;t) = \langle \delta(X(t) - x) \rangle$$

$$f_{X}(x;t + \Delta t) = \langle \delta(X(t) - x + \Delta X) \rangle$$

$$= f_{X}(x;t) + \sum_{k=1}^{\infty} \frac{1}{k!} \left\langle \left(-\frac{\partial}{\partial x} \right)^{k} \delta(X(t) - x) \Delta X^{k} \right\rangle$$

$$= f_{X}(x;t) + \sum_{k=1}^{\infty} \left(-\frac{\partial}{\partial x} \right)^{k} \left\{ \frac{\langle \Delta X^{k} | x; t \rangle}{k!} f_{X}(x;t) \right\}$$
(6)

from which follows the Kramers Moyal equation:

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$\frac{\partial f_X(x;t)}{\partial t} = \sum_{k=1}^{\infty} \left(-\frac{\partial}{\partial x} \right)^k \left\{ \underbrace{\lim_{\Delta t \to 0} \frac{\langle \Delta X^k | x; t \rangle}{k! \Delta t}}_{D^{(k)}} f_X(x;t) \right\}.$$
(7)
Patrick Jenny Institute of Fluid Dynamics

Basic Background Kramers-Moyal Equation

<u>Problem</u>: ∞ many terms!

<u>Next:</u> show that only two terms (k = 1, 2) are required, if $\lim_{\Delta t \to 0} \Delta x / \Delta t$ is bounded

Patrick Jenny

Basic Background

Theorem of Pawula

Theorem 1 If $\exists m > 1 : D^{(2m)} = 0$, then $\forall k > 2 : D^{(k)} = 0$.

Proof 1 Consider the two random variables $\alpha = \Delta X^a$ and $\beta = \Delta X^b$ with $a, b \in \mathbb{N} \land a, b \ge 1$. Schwarz inequality \Rightarrow

$$\begin{array}{l} \displaystyle \underset{M}{\text{Basic Background}}{\text{Basic Population}} \\ \displaystyle \underset{M}{\frac{\partial f_X(x;t)}{\partial t}}{\frac{\partial f_X(x;t)}{\partial t}} = \sum_{k=1}^{\infty} \left(-\frac{\partial}{\partial x} \right)^k \left\{ \underbrace{\underset{\Delta t \to 0}{\underset{D^{(k)}}{\frac{\Delta t \times \Delta t}{k!\Delta t}}}_{D^{(k)}} f_X(x;t) \right\} \end{array}$$
There exist two possibilities:
1. only $D^{(1)}$ and $D^{(2)}$ are unequal zero, or
2. $D^{(2k)} \neq 0$ for all $k \geq 1$.
Gradiner showed that option one is true, if $\lim_{\Delta t \to 0} \Delta X / \Delta t$ is bounded.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Patrick Jenny

Basic Background Fokker-Planck Equation

From the theorem of Pawula it follows that the Fokker-Planck equation

$$\frac{\partial f_X(x;t)}{\partial t} = -\frac{\partial D^{(1)} f_X(x;t)}{\partial x} + \frac{\partial^2 D^{(2)} f_X(x;t)}{\partial x^2}$$
(9)

with

$$D^{(1)} = \lim_{\Delta t \to 0} \frac{\langle \Delta X | x; t \rangle}{\Delta t}$$
$$D^{(2)} = \lim_{\Delta t \to 0} \frac{\langle \Delta X^2 | x; t \rangle}{2\Delta t}$$

describes the evolution of PDF's based on continuous processes. Note that the PDF equation allows to "link" stochastic processes (or rules) with a deterministic description.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Basic Background Fokker-Planck Equation

More general for high dimensional probability (sample) spaces with X(t) being a realization in the *x*-space at time *t*:

$$\frac{\partial f_{\mathbf{X}}(\boldsymbol{x};t)}{\partial t} = -\frac{\partial D_{i}^{(1)} f_{\mathbf{X}}(\boldsymbol{x};t)}{\partial x_{i}} + \frac{\partial^{2} D_{ij}^{(2)} f_{\mathbf{X}}(\boldsymbol{x};t)}{\partial x_{i} \partial x_{j}}$$
(10)

with with

$$egin{array}{rcl} D_i^{(1)}&=&\lim_{\Delta t o 0}rac{\langle\Delta X_i|m{x};t
angle}{\Delta t}\ D_{ij}^{(2)}&=&\lim_{\Delta t o 0}rac{\langle\Delta X_i\Delta X_j|m{x};t
angle}{2\Delta t}. \end{array}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Patrick Jenny

Basic Background Fokker-Planck Equation

Remember Brownian motion example with

. . .

$$\Delta X_i = (2\Gamma \Delta t)^{1/2} \xi_i \tag{11}$$

from which follows that

$$D_i^{(1)} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} (2\Gamma \Delta t)^{1/2} \langle \xi_i \rangle = 0$$

and $D_{ij}^{(2)} = \lim_{\Delta t \to 0} \frac{1}{2\Delta t} 2\Gamma \Delta t \langle \xi_i \xi_j \rangle = \Gamma \delta_{ij}.$

and therefore

$$\frac{\partial f}{\partial t} = \frac{\partial^2 \Gamma f}{\partial x_i \partial x_i} \tag{12}$$

as presented earlier.

ETTH Eidgenössische Technische Hochschule Zürich	Patrick Jenny	Institute of Fluid Dynamics
Swiss Federal Institute of Technology Zurich		

Consider reactive single phase flow in a porous medium. The incompressible fluid is composed of the components $\alpha \in \{1, ..., n_c\}$ with mass fractions Φ_{α} . Each fluid element of mass m has a position $\boldsymbol{X}(t) \in \mathbb{R}^3$, a velocity $\boldsymbol{U}(t) \in \mathbb{R}^3$ and a composition vector $\boldsymbol{\Phi}(t) \in \mathbb{R}^{n_c}$, which are modeled as

$$\begin{aligned} dX_i &= U_i dt \\ dU_i &= -|\boldsymbol{U}|/L_U (U_i - \langle U_i \rangle) dt + (2\sigma^2 |\boldsymbol{U}|/L_U)^{1/2} dW_i + F_i dt \\ d\Phi_\alpha &= -|\boldsymbol{U}|/L_\Phi (\Phi_\alpha - \langle \Phi_\alpha \rangle) dt + S_\alpha(\boldsymbol{\Phi}) dt. \end{aligned}$$

Extracted: $\langle \boldsymbol{\Phi} \rangle$ Specified: $\langle \boldsymbol{U} \rangle, \sigma^2, L_U, L_{\Phi} \text{ and } \boldsymbol{S}(\boldsymbol{\Phi})$

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$dX_i = U_i dt$$

$$dU_i = -|U|/L_U(U_i - \langle U_i \rangle) dt + (2\sigma^2 |U|/L_U)^{1/2} dW_i + F_i dt$$

$$d\Phi_\alpha = -|U|/L_\Phi(\Phi_\alpha - \langle \Phi_\alpha \rangle) dt + S_\alpha(\Phi) dt.$$

From this follows for joint PDF $f(V, \Psi, x; t)$:

$$\frac{\partial f}{\partial t} + V_{i} \frac{\partial f}{\partial x_{i}} + \frac{\partial}{\partial V_{i}} \left\{ \left(\frac{|\mathbf{V}| (\langle U_{i} \rangle - V_{i})}{L_{U}} + F_{i} \right) f \right\}
+ \frac{\partial}{\partial \Psi_{\alpha}} \left\{ \left(\frac{|\mathbf{V}| (\langle \Phi_{\alpha} \rangle - \Psi_{\alpha})}{L_{\Phi}} + S_{\alpha}(\Psi) \right) f \right\}
= \frac{\partial^{2}}{\partial V_{i} \partial V_{i}} \left\{ \frac{|\mathbf{V}| \sigma^{2}}{L_{U}} f \right\}.$$
(13)

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The total mass is M and $\langle \rho \rangle(\boldsymbol{x};t) = M \int_{\mathbb{R}^{3+n_c}} f d\boldsymbol{V} d\boldsymbol{\Psi}$ is the mean fluid density, which is constant here (equal ρ), since incompressible. Multiplying the PDF equation with $(1, V_j, \Psi_\beta)^T$ and integrating over the V- Ψ -space leads to

$$\frac{\partial \langle U_i \rangle}{\partial x_i} = 0$$

$$\frac{\partial \langle U_j \rangle}{\partial t} + \frac{\partial \langle U_i \rangle \langle U_j \rangle}{\partial x_i} = -\frac{\partial \langle u_i' u_j' \rangle}{\partial x_i} - \frac{1}{L_U} \langle |U| u_j' \rangle + F_j$$

$$\frac{\partial \langle \Phi_\beta \rangle}{\partial t} + \frac{\partial \langle U_i \rangle \langle \Phi_\beta \rangle}{\partial x_i} = -\frac{\partial \langle u_i' \Phi_\beta' \rangle}{\frac{\partial x_i}{\text{unclosed}}} - \frac{1}{L_{\Phi}} \frac{\langle |U| \Phi_\beta' \rangle}{\text{unclosed}} + \frac{\langle S_\beta(\Phi) \rangle}{\text{unclosed}},$$
where $U = \langle U \rangle + u'$ and $\Phi = \langle \Phi \rangle + \Phi'$. Note that $F = \langle |U| u' \rangle / L_U$ if homogeneous.

E

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions:

- Moment equations can be derived from PDF equation, but typically new closure problems arise. Tradeoff: high dimensional scalar PDF equation without closure problems vs. system of low dimensional moment equations with closure problems.
- Presumed PDF approach can be a good compromise: parametrization of PDF leads to closed set of moment equations.
- General approach: due to high dimensionality evolve many particles and extract desired statistics *Rightarrow* computational challenges.
- Note: here the reactive dispersive transport problem is closed, if Lagrangian velocity statistics can be specified (stochastic rules).
- For these stochastic small scale rules one can derive deterministic (but typically unclosed) large scale moment equations.

Eidgenössische Technische Hochschule Zürich	Patrick Jenny	Institute of Fluid Dynamics
Swiss Federal Institute of Technology Zurich		

<u>Note</u>: for low Mach numbers $\delta p \ll p \Rightarrow \rho(\Phi) \wedge T(\Phi)$ and the enthalpy h can be treated as a component, e.g. $h = \Phi_1$, $J_1 = -\lambda \nabla T$ and S_1 =heat release due to reactions.

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	enny Institute of Fluid Dynamics
--	----------------------------------

