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Model Problem

Given a bounded domain Ω ⊂ RN , N = 2, 3, find u such that

∆u + κ2u = 0 in Ω
∂u
∂n

− iκu = g on Γ := ∂Ω.

Assume κ is real.

The presentation focuses on “volume” methods for the
Helmholtz equation.
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Human hearing [Huttunen]

Investigate coupling of sound into the human ear (head related
transfer function) across the audible spectrum.
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Human hearing (continued)

Real part of the pressure field at 5kHz (using the two meshes
we can compute the audible range to 20kHz)

y (mm)

x 
(m

m
)

 Re ( p ) , f = 5000 Hz

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x (mm)

z 
(m

m
)

 Re ( p ) , f = 5000 Hz

−200 −100 0 100 200

−300

−200

−100

0

100

200

300

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2



Introduction Least Squares Plane Waves Finite Elements Maxwell’s equations Conclusion

Human hearing (continued)

y (mm)

z 
(m

m
)

 Re ( p ) , f = 5000 Hz

−200 −100 0 100 200

−300

−200

−100

0

100

200

300

−2

−1.5

−1

−0.5

0

0.5

1

1.5

y (mm)

z 
(m

m
)

log
10

 ( | p | ), f = 5000 Hz

−200 −100 0 100 200

−300

−200

−100

0

100

200

300

−2

−1.5

−1

−0.5

0

0.5



Introduction Least Squares Plane Waves Finite Elements Maxwell’s equations Conclusion

The Least Squares Method

Use the mesh Th consisting of tetrahedra or triangles Tj ,
1 ≤ j ≤ Jh, of maximum diameter h.
At first we shall consider the "exact" least squares method so
that

Define uj to be any H1(Tj) solution of the Helmholtz
equation on Tj .
To compute the exact solution we need to enforce
continuity of u and ∂u/∂n on interior faces/edges and
enforce the boundary condition.

Later we can discretize uj for each j .

Some notation:
Γj,k = ∂Tj ∩ ∂Tk and Γj = ∂Tj ∩ Γ. We denote by nj the outward
normal to Tj .
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Required continuity between elements

For the piecewise defined function (u1, u2, · · · , uJh) to be a
global solution of the Helmholtz equation we need

∂uk

∂nk
+ iκuk = −

∂uj

∂nj
+ iκuj

∂uk

∂nk
− iκuk = −

∂uj

∂nj
− iκuj

on Γj,k .
The boundary condition on Γj is then

∂uj

∂n
− iκuj = g
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Least squares functional

Let ~u = (u1, u2, · · · , uJh) where uj satisfies the Helmholtz
equation in H1(Tj). To assure a global solution fitting the
boundary condition we could minimize the functional J (~u) over
all such functions:

J (~u) =
∑

j

∑
k 6=j

∥∥∥∥(
−

∂uj

∂nj
+ iκuj

)
−

(
∂uk

∂nk
+ iκuk

)∥∥∥∥2

L2(∂Tj )

+
∑

j

∥∥∥∥(
−

∂uj

∂nj
+ iκuj

)
+ g

∥∥∥∥2

L2(Γj )

There is a unique minimizer (existence and uniqueness of the
standard boundary value problem) at least if the domain is
smooth.
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Rewriting the Least Squares Method

Let X = ΠJh
j=1L2(∂Tj) with inner product 〈·, ·〉 and norm ‖ · ‖X .

Let X ∈ X and write X = (X1, · · · ,XJh). Define
Π : X → X such that

ΠXj |Γj,k = Xk |Γj,k when Γj,k 6= φ

ΠXj |Γj = 0 when Γj 6= φ.

F : X → X so that if F (X ) = (F1(X1), · · · , FJh(YX Jh)) and
if wj ∈ H1(Tj) satisfies

∆wj + κ2wj = 0 in Tj

∂wj

∂nj
+ iκwj = Xj on ∂Tj

then Fj(Xj) = −∂wj/∂nj + iκwj on ∂Tj
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The Least Squares Method obscured

Let

Xk =

(
∂uk

∂nk
+ iκuk

)∣∣∣∣
∂Tk

, X = (X1, · · · ,XJh),

the we may write the least squares problem as the problem of
finding X ∈ X that minimizes

J (X ) = ‖FX − ΠX + g̃‖2
X .

where g̃ ∈ X is such that g̃|Γ = g and vanishes on other faces
in the mesh (we have just parametrized the solution by it’s
boundary impedance trace on each element).

Lemma (Cessenat and Després)

‖Π‖X→X ≤ 1 and F is an isometry (F ∗F = I).
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A New Method

We know that there is a unique minimizer X ∈ X such that
J (X ) = 0 so

FX − ΠX + g̃ = 0.

Operating by F ∗ we get

X − F ∗ΠX = −F ∗g̃

This is the Ultra Weak Variational Formulation (UWVF) of the
Helmholtz equation [Cessenat & Després]. Compare to Least
Squares normal equations

(I − F ∗Π)∗(I − F ∗Π)X = −(I − F ∗Π)F ∗g̃

We expect the UWVF to be better conditioned. The UWVF can
also be seen as

An upwind discontinuous Galerkin method (see also work
of Gabard and Hiptmair, Perugia et al) using special
degrees of freedom and test functions.
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The UWVF equations

It is convenient to write a Galerkin formulation: Find X ∈ X
such that

〈X ,Y〉 − 〈ΠX , F (Y)〉 = 〈g̃, F (Y)〉.

for all Y ∈ X .

To clarify: suppose Tj is an interior tetrahedron surrounded by
four other tetrahedra∫

∂Tj

XjYj ds −
∑
k 6=j

∫
Γk,j

XkFj(Yk ) ds = 0.
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The Discrete UWVF [Cessenat & Després]

For each element Tk we choose pk directions d j on the unit
circle (or unit sphere [Sloan]) and define the solution on that
element to be a sum of traces of plane waves

X h
k =

pk∑
j=1

xk
j

(
∂ exp(iκd j · x)

∂nk
+ iκ exp(iκd j · x)

)∣∣∣∣
∂Tk

The test function is, for 1 ≤ r ≤ pk ,

Yh
k =

(
∂ exp(iκd r · x)

∂nk
+ iκ exp(iκd r · x)

)∣∣∣∣
∂Tk

In this case Fk (Yh
k ) is easy to compute:

Fk (Yh
k ) =

(
−∂ exp(iκd r · x)

∂nk
+ iκ exp(iκd r · x)

)∣∣∣∣
∂Tk
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Properties of the acoustic UWVF

Uniform mesh: Number of DoF = O(h−dpd−1).
[Cessenat/Després, 2D] Let p = 2µ + 1, µ > 0,

‖X − X h‖L2(Γ) ≤ C(κ)hµ−1/2‖u‖Cµ+1(Ω)

[Monk/Buffa] Using DG techniques, for a convex 2D
domain with uh reconstructed from X h,

‖u − uh‖L2(Ω) ≤ C(κ)hµ−1‖u‖Cµ+1(Ω)

[Hiptmair, Moiola, Perugia, 2009] General DG, 2D, 3D,
explicit constants and p-version error estimate (using
k -dependent norms):

κ‖u − uh‖L2(Ω) ≤ Chr−1
(

log(p)

p

)r−1/2

‖u‖r+1,κ,Ω

The discrete problem has the form (B − C)x = b where B
is Hermitian positive definite and the eigenvalues of B−1C
lie in the closure of the unit disk excluding 1
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Numerical results: 2D mesh refinement

We take u(x) = i
4H(1)

0 (k |x − x0|) with x0 is outside the
computational domain.
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Results for k = 20, M = 15 (p = 7)

Mesh size h L2(Ω) Error (%) Order cond(D) Order
0.50 4.38 - 0.64×102 -
0.25 0.01873 7.9 0.20× 106 -11.6
0.10 1.51×10−5 7.8 0.22× 1011 -12.7

Measured global convergence O(h7.8).

Cessenat and Després predict that the condition number of D
will increase O(h−12)
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Results for k = 40, M = 21 (p = 10).

Mesh size h L2(Ω) Error (%) Order cond(D) Order
0.50 25.2 - 8.7 -
0.25 0.0337 9.55 0.94×105 -13.4
0.1 2.32×10−6 10.5 0.14×1013 -18

Measured global convergence O(h10).

Cessenat and Després predict that the condition number of D
increases O(h−18).
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A Model Scattering Problem [Huttunen & Monk]

Let Ω ⊂ R3 (or R2) with disjoint boundaries Γ and Σ.
Approximate u which satisfies

∆u + κ2u = 0 in Ω

u = g on Γ

∂u
∂ν

− iκu = 0 on Σ

ABC

Scatterer

Ω

Σ

Γ

where g describes the incoming plane wave. The region Ω is
meshed with simplicial elements and the UWVF applied there.
ABC = Absorbing Boundary Condition
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Comparison to FEMLAB in 3D acoustics [Huttunen]

FEMLAB P2 FEM with low order ABC.
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Comparison continued

FEMLAB (two meshes):
f (kHz) h (mm) Elem. CPU (s) Error (%) Mem (GB)

100 3 101 978 448 30.88 1.4
150 1.8 478 471 4699 25.39 2.5
200 1.8 478 471 5321 20.64 2.5
300 1.8 478 471 5391 30.13 2.5

UWVF (one mesh, variable # directions):
f (kHz) h (mm) Elem. CPU (s) Error (%) Mem (GB)

100 15 16 926 275 28.56 0.2
150 15 16 926 353 23.22 0.3
200 15 16 926 449 20.07 0.4
300 15 16 926 854 18.96 1.1
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UWVF near a singularity and at low κ

Near a singularity the plane wave UWVF requires very
small elements
If κ is small the plane wave UWVF becomes poorly
conditioned.

We now examine a way of using standard piecewise polynomial
basis functions on each element within UWVF framework.
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Recall the (slightly modified) definition of F

Fj : L2(∂Tj) → L2(∂Tj) is defined using an auxiliary function
wj ∈ H1(Tj) that satisfies

∆wj + κ2wj = 0 in Tj ,

1
iκ

∂wj

∂nj
+ wj = Xj on ∂Tj ,

then
Fj(Xj) = − 1

iκ
∂wj

∂nj
+ wj on ∂Tj

Basic idea: Approximate Fj by a finite element method inside
each element
Joint work with J. Schoeberl and A. Sinwel
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Computing Fj by a mixed method

Let Xj ∈ L2(∂Tj) and define (wj , v j) ∈ L2(Tj)× H(div; Tj) such
that

−iκwj = ∇ · v j in Tj

−iκv j = ∇wj in Tj

−v j · nj + wj = Xj on ∂Tj

where nj is the unit outward normal to Tj then Fj is given by

Fj(Xj) = v j · nj + wj = Xj + 2nj · v j on ∂Tj .
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Raviart-Thomas elements

We use Raviart-Thomas subspaces U ⊂ L2(Tj) and
V ⊂ H(div; Tj):

Uh := degree p polynomials on Tj

Vh := vector-valued polynomials of degree p + 1 on Tj

for which the normal component on ∂Tj is of degree p
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A discrete approximation to Fj using RTp

We can compute (uh, vh) ∈ Uh × Vh such that∫
Tj

(∇ · v j,h + iκwj,h) ξ dV = 0 for all ξ ∈ Uh∫
Tj

wj,h∇ · τ − iκv j,h · τ dV =

∫
∂Tj

(Xj + v j,h · nj) τ · nj dA

for all τ ∈ Vh.

Then we define FTj ,h : L2(∂Tj) → L2(∂Tj) by

FTj ,h(Xj) = Xj + 2v j,h · nj on ∂K .

Lemma

If h is small enough, FK ,h : L2(∂K ) → L2(∂K ) is an isometry.
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FE basis on the edges

The basis functions on each element used to construct Uh and
Vh are the standard Raviart-Thomas RTp elements. The fully
discrete finite element UWVF is obtained by letting

Xh,j =
{

nj · v j |∂K | ∀v j ∈ Vh
}

and using Fj,h on each element.

Lemma
If p is fixed on all elements and h is small enough, the discrete
FE-UWVF has a unique solution. Furthermore the local
solution computed from Xh coincides with the solution of the
standard Raviart-Thomas method for this problem.

Remark: We have thus accomplished a hybridization of the RT
system. This turns out to be exactly equivalent to an HDG
method (see our paper).
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Meshes

Exact solution: u = exp(iκd · x) with κ = 10 and
d = (cos(1), sin(1)).
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Introduction Least Squares Plane Waves Finite Elements Maxwell’s equations Conclusion

Dependence on mesh width h for RT0

Mesh size Relative L2(Ω) Number of
h error (%) biCG iterations
1 100 5

1/2 100 26
1/4 28 61
1/8 5.8 95
1/16 1.4 188
1/32 0.35 371
1/64 8.7× 10−2 742

The error is computed by quadrature at the centroid of each
element. Error is O(h2), number of iterations is O(1/h).
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Distribution of eigenvalues
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Dependence on wave number

Fixed mesh
with h = 1/16.

Iteration count as a func-
tion of k for biCGStab
and QMR applied to solve

~X − D−1
h Ch ~X = D−1

h
~G.
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BiCGStab is faster in wall-clock time also.
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L-shaped domain - RTp elements

Dirichlet boundary condition at the reentrant corner produces a
singularity that requires a refined mesh near that point.

Solved via NETGEN
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L-shaped domain - PW - UWVF without refinement
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L-shaped domain - combined PW-FE UWVF

Using RT elements near the re-entrant corner and classical PW
UWVF further away gives the “best” of both worlds.
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Maxwell’s equations: Cavity problem

E , H: Unknown electric/magnetic field
k : Wave-number
εr : Relative permittivity (piecewise constant)
µr : Relative permeability (piecewise constant)
Ω: Bounded domain

−ikεr E −∇× H = 0 in Ω

−ikµr H +∇× E = 0 in Ω

H × n − ηET = Q(H × n + ηET )−
√

2ηg on Γ = ∂Ω
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Variational Problem

Let ξk ,ψk satisfy the adjoint Maxwell system on Ωk

−ikεrξk −∇×ψk = 0, −ikµrψk +∇× ξk = 0,

The unknown traces are

Xk = Ek × nKk − η(Hk )T

∣∣∣
∂Ωk

and ifYk = ξk × nKk − η(ψk )T

∣∣∣
∂Ωk

then
Fk (Yk ) = −ξk × nKk − η(ψk )T

∣∣∣
∂Ωk

then, for a tetrahedron surrounded by four other tetrahedra∫
∂Ωk

1
η
XkYk ds = −

∑
j

∫
Σk,j

1
η
XjFk (Yk ) ds.

Vector plane waves are used to discretize on each element.
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Maxwell’s equations:
Typical Application [thanks to Tomi Huttunen]

Example: Simulate mi-
crowave interaction with
wood.

A transmitting and receiving
antenna are shown.
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Modeling

Truncation by a suitable. Discretization using
layer and boundary condition. tetrahedra.
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Typical Results at 5GHz
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Scattering from a sphere (electromagnetic!)

Sphere of radius 0.25 inside cube [−.5, .5]3, κ = 100, ε = µ = 1
(λ = 0.06). PML width 0.1 (uses 3,474,770 degrees of
freedom).
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Iterative solution
The UWVF linear system can be solved by simple iterative
scheme. We use BiCGStab.
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BiCGStab convergence for a problem having 3,474,770
degrees of freedom using a 24 processor cluster (2.8GHz P4,
48Gb memory total, 1000BaseT). Solution time is 451s using
25.3 GB memory (109 iterations).
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A model scattering problem

The unknown total field E and scattered field Es satisfy

∇×
(
µ−1

r ∇× E
)
− k2εr E = F in R3 \ D,

E = E i + Es in R3 \ D,

E × ν = 0 on Γ,

lim
ρ→∞

ρ
((
∇× Es)× x̂ − ikEs) = 0 as r →∞.

For ease of exposition εr = µr = 1. D is bounded, simply
connected with simply connected complement.
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How to truncate the problem?

Introduce a surface Σ containing the scatterer in it’s interior.

ν

ν

Ω

Σ

D

Γ

Scatterer

Imperfect
ConductingConducting

Computational Domain

Let Ω be the region inside
Σ and outside D

Need an appropriate bound-
ary condition on the artificial
boundary Σ.

In the method of Hazard& Lenoir this is provided by an integral
representation of the solution.
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Hazard and Lenoir overlapping formulation

The integral representation outside Γ is provided by an
extension of the Stratton-Chu formula. Let

G(x , y) = Φ(x , y)I + k−2Hess(Φ)(x , y),

where I is the identity matrix. For x outside C

Es(x , y) =

∫
Γ
(G(x , y))Tνy × (∇× Es(y))

+(∇×G(x , y))T (νy × Es(y)) dA(y)

= : I(Es).

Using the fact I(E i) = 0, E = E i + I(E) in the neighborhood Σ
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An iterative scheme

We use the Ultra Weak Variational Formulation in the
computational domain. Note:

Both fields are available on Γ.
Solving the resulting coupled problem by a biConjugate
Gradient method (biCGStab) requires to evaluate I(E) and
this can be done using the multilevel fast multipole method.

This algorithm is described in a paper with Eric Darrigrand.
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Unit Sphere: k = 3, λ = 2.1

The finite element grid is
chosen approximately two ele-
ments think, and each element
is approximately λ/10 in diame-
ter. This does not exercise the
high order capability of UWVF.
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Mie Series solution
UWVF+IR+MLFMM
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Unit Sphere: k = 10, λ = 0.63

The mesh becomes finer but
still only two elements thick.
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Mie Series solution
UWVF+IR+MLFMM
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Two Spheres: k = 4, λ = 1.6

When objects are close to-
gether (in terms of wave-
lengths), the space between
must be meshed.
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Four Spheres: k = 4, λ = 1.6

When objects are sufficiently far
apart (in terms of wavelengths),
the meshes can be disjoint.
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Conclusions

Accuracy can be obtained if the complete family is well
matched to the problem
Robustness is an issue (particularly ill-conditioning)
These techniques can help with the numerical linear
algebra aspects. But a better solver would be useful.
Need to choose plane wave directions carefully.
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