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Deterministic PDEs

Galerkin mixed finite element approximation for two field PDE problems on D C R?3, leads
to variational problems of the form

find up () € V3, and py, (@) € W}, such that:

a(up,v)+b(pp,v) = gv), Vv e Vy,

b(w,up) = f(w), Yw € Wy,

and saddle point systems
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B 0
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for which the study of efficient solvers is mature.
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MANCHESTER PDEs with Random Data

Stochastic Galerkin mixed finite element approximation for two field PDE problems with
random data, on D x I, with ' ¢ RM | leads to

find upq(x, &) € Vi, ® Sg and ppq(x, §) € W), ® Sy such that:

a(upg,v) +b(Pra,v) = §(v), VYveEV,®Sy
b(w,upg) = flw), YweW,®Sy

and saddle point systems
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which are much larger and more complicated to solve.
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Solution variables:

Data:

Model Problem: Darcy Flow

—TVp = u, in D

V-u = 0, in D
p = g, on 0D p
TVp-n = 0, on0Dpyn = 0D\ODp

p = p(xe) hydraulic head (pressure)
u = wu(x) velocity field
T = T(x) transmissivity coefficients
g = g(x®) boundary data
D C R4 spatial domain
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MANCHESIER Outline

e Stochastic Galerkin methods for:

T(z,w) 'u(x,w) — Vp(z,w) =0, V- -u(x,w) =0

> Solving single very large saddle point system

e Stochastic collocation methods for:

T(z,w) tu(x,w) — Vp(z,w) =0, V- -u(x,w) =0

> Solving many small deterministic saddle point systems (see A. Gordon’s poster)
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MANCHISIER Stochastic PDE Problem

Let T'(x,w) : D x 2 — R be a correlated random field.

Approximate T~ (x, w) by a function T]\}1 (¢, &) involving a finite number of random
variables & = (&1,...,&y) taking values in ' = H,f\il I; C RM,

Find p(z, &), u(x, £) such that P-a.s.

Ty (@, &) u(x, &) —Vp(x, &) = 0,
V-u(x, &) = 0 in D x T,
p(x, &) g(x) on 0Dp x T,
u(x,§) - n = 0 on 0Dx x I
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MANCHIZER Finite-dimensional Noise Assumption

Popular choices are:

e Truncated Karhunen-Loéve expansion (linear)

M
Tos (@, &) = p(m) + > th(®) &y tr(@) = V/ Apcr ()

k=1

{\g,c(x)}, k= 1,2,... are the eigenvalues and eigenfunctions of covariance

{&1,&2, ...} are uncorrelated, with mean zero and unit variance

e Truncated Polynomial Chaos expansion (nonlinear)

N
T (@ €(w) = u(@) + > te(@) vr(€),  ti(@) = (T ()
k=1
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MANCHZER Example - KL expansion

Consider the covariance function

Cr—1(z,y) =exp (= |z —y [[1)
D = 1[0,1] x [0, 1] and Gaussian random variables.

Realisations of Ty," with M = 5,20, 50, with x(x) = 0

< o lgnt!
RS

XXX
KKK
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MANCHZER Polynomial Chaos
If the random variables are independent then the joint density function has the form:
p(€) =[] pi)

and

Bl9(€)] = (9(&) = | r(w)a()dv.
r
Orthonormal polynomials in € are constructed via

M
i (&) = || i, (&)
s=1

where ¢, (£5) is a univariate polynomial of degree i, orthonormal w.rtto (-,-) = E[].
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Weak Formulation

V = L2(T, H(div; D)) W = L2(T', L*(D))

We seek u(z, €) € V and p(x, £) € W such that:

((Tiw o)) + (@ Vo) = (90 Mar, ).
(w,V-w) = 0

Vo(e,&) e Vandw(xz, &) € W.
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Stochastic Galerkin Equations

Find upq(x, &) € Vi, ® Sq and ppq(x, £) € W), ® Sy satisfying:

<(T]\7[1’u,hd, ’U>> + <<phda V- 'U))

(0, V - upq))

VoeV,®Sgandw € W, ® Sy.

<(97'U ' n)arD> ;

0,
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Stochastic Galerkin Equations

Find upq(x, &) € Vi, ® Sq and ppq(x, £) € W), ® Sy satisfying:

<(T]\7[1’Ufhda’v>> +{((pha,V-v)) = <(97"’ ' '"’)81“1)> )
<(w,V . uhd)) — Oa

VoeV,®Sgandw € W, ® Sy.

e V), C H(div; D), W;, C L?(D) are a deterministic inf-sup stable pairing

e S, C LQ(F)
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Total degree polynomials

For S,; we choose M-variate polynomials of total degree d.

Use orthonormal polynomial chaos basis

(M + d)!
Sq = span {¢1(§)7 YN (5)} : Ne¢ = A
M=1 M=5 M =10
d=1 d=2 d=3|d=1 d=2 d=3|d=1 d=2 d=3
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span {¢;(x)}

0

Saddle point systems

Wy, = span{¢;(x)}

u

p

(never assembled) of dimension N, N¢ x Ny N¢ where N, = N, + Np and

Sq = span {yy(§)
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Saddle point systems

Vi = span{g @)}y, W, =span{¢;(@)})7,  Sa = span{v(&)}s,

(50 ()-)

(never assembled) of dimension N, N¢ X Ny N¢ where N = N, + N, and

o
IS

I3
'+ I

i BT I®Ag+ Y 1Gr®A, I®BT

I® B 0

[Aolij = /D () @y -y, [Anliy = /D (@) @; - ;) da
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Linear (KL) Case

M
Thf (@, &) = p(m) + ) tr(@)&s

k=1

e N = M (the number of random variables)
e (G, matrices have at most two non-zeros entries per row.

(Grlrs = (Ex¥r(§)¥s(§) ) k=1:M
e >V | Gy is sparse so A is block sparse.

e Matrix-vector products are cheap

A O(M(NuNp))

B, BT | O(NpN¢)
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Matrix structure

M =2,d =2 (left) and M = 4, d = 2 (right)

ooooo O
oo oooo O
ooo = 0o o O ooo O
O O O O oo m]
o b o 0 o O O ] 0O oo O
O m] O
O O O O O oo m] O
o O O O
O O O O
O O O o o O
oo O O
o o O ] o o m] O
O m] O
o o o oo O O
O O O
O
o m)
O
m] O
O
O
= O
O
O m]
O
O O
O
O
o o
O
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MANCHESTER Nonlinear (PC) Case

_ (M+24d)!
* N = naar >> Ne
e (G matrices have non-trivial sparsity pattern

[Gk]TS — <¢k(€)¢r(€)¢s(€) > ) k=1:N

Z]kw:l G, is dense so A is block dense.

e Matrix-vector products are expensive

A O(N(NuNg))—O(N(NuNZ))

aéT O(Npr)
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Matrix structure

O0Ooooooooo o
O OO0 0o o oooaoao
O OO0 0o o oooaoao
O 00 0o o0ooaoaoao
O 00 0o o0ooaoaoao
O 00 0o o0ooaoaoao
O 00 0o o0ooaoaoao
O OO0 0o o oooaoao
O OO0 0o o oooaoao
O 00 0o o0ooaoaoao

Want to perform as few matrix vector products with this as possible!
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MANCHIGIER (Minres) preconditioning strategies

There are two well-known classes of block-diagonal preconditioners.

Schur-Complement Preconditioning

Augmented Preconditioning

A+~ 'BTWB 0
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(Minres) preconditioning strategies

There are two well-known classes of block-diagonal preconditioners.

Schur-Complement Preconditioning

Augmented Preconditioning

A+~ 1BTWB 0

Both require cheap, robust approximations to A
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Schur-Complement Preconditioning

Approximate A ~ L @ di ag(Ap) where L is s.p.d. A practical preconditioner is:

B L ®diag(Ap) 0
; 0 B(L ®diag(Ay) ! BT

B L ® di ag(Aop) 0
B 0 L ® (Bdiag(Ao)~'BT) |
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MANGHIZIER Schur-Complement Preconditioning

Approximate A ~ L @ di ag(Ap) where L is s.p.d. A practical preconditioner is:

b _ L ®diag(Ap) 0
; 0 B(L ®diag(Ay) ! BT

B L ® di ag(Aop) 0
B 0 L ® (Bdiag(Ao)~'BT) |

For the model problem, Bdi ag(Aq)~'B? ~ V - uV and optimal deterministic elliptic PDE
solvers (eg. AMG) can be applied.
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Schur-Complement Preconditioning

Approximate A ~ L @ di ag(Ap) where L is s.p.d. A practical preconditioner is:

P L ®diag(Ap) 0
; 0 B(L ®diag(Ay) ! BT

B L ® di ag(Aop) 0
B 0 L ® (Bdiag(Ao)~'BT) |

For the model problem, Bdi ag(Aq)~'B? ~ V - uV and optimal deterministic elliptic PDE
solvers (eg. AMG) can be applied.

Simplest choice: L = I. Approximating P~ !r requires:
e One solve with a diagonal matrix

e N¢ V-cycles of multigrid (e.g. AMG) on a deterministic matrix of dimension N,,.

Costis O(N¢(Ny + Np)).
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Convergence analysis

I ® di ag(Aop) 0
0 I ® ang(Bdi ag(Ag) 1 BT)

Theorem

Let 0 < 1 ... < Uy be the eigenvalues of di ag(A) ! A. The eigenvalues of the
preconditioned saddle-point matrix lie in the union of the bounded intervals,

1/ R 1/ R
{5 <I/1—\/V%—|—4@2) 75 <VN—\/V]2\7+492)]
1
> _ 2
[1/1, 5 (I/N—I—\/ + 406 )] :

When L = I, this preconditioner is ‘mean-based’.

Efficient Solvers for Stochastic Finite Element Saddle Point Problems — p. 22/:



MANCHESTER
1824

Linear (KL) case

Theorem

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of di ag(fl)—lfl lie
in the bounded interval [2 — c47, 2 + c47] where

30 M —
=273 VA k(@) oo
=1

o and p are the standard deviation and mean of 7! (x,w), and ¢, is a constant (possibly)
depending on d.
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Linear (KL) case

Theorem

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of di ag(fl)—lfl lie
in the bounded interval [2 — c47, 2 + c47] where

30 M —
=273 VA k(@) oo
=1

o and p are the standard deviation and mean of 7! (x,w), and ¢, is a constant (possibly)
depending on d.

When T, is a KL expansion this is OK because

° % Is small for well-posed problem.

e cg = O(1) (bounded rvs), cq = O(V/d) (Gaussian rvs)
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MANCHESTER Examp|e - KL case

Let D = [0, 1] x [0, 1], f = 0 with mixed bcs. We choose a Bessel covariance function for
the random input with u(x) = 1 and A = 1 = M = 6 random variables capture 98% of the

variance.

ulh=0

p=1 p=0

ulh=0
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Pressure (left), Flux (right)
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Preconditioned minres iterations

d 2 3 4 5
Ng(Nu + Np) 344,064 1,032,192 2,580,480 5,677,056
% — 0.1 total iters 45 46 48 48
Ny 1,260 3,864 10,080 22,176
total solve time 14.0s 45.35s 119.01s 262.04s
% — 0.2 total iters 55 59 62 63
Ny 1,540 4 956 13,020 29,106
total solve time 17.18s 58.51s 154.82s 379.01
% — 0.3 total iters 66 74 80 86
Ny 1,848 6,216 16,800 39,732
total solve time 20.66s 72.97s 199.75s 486.74
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Nonlinear (PC case)

Theorem

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of di ag(A) 1 A lie

in the bounded interval [% — CyT, % + ch] where, for lognormal diffusion coefficients in
particular,

e 7 depends nonlinearly on o

e cg = O (exp(dM))

The Schur-complement preconditioner is too weak for large d and o requiring an excessive
number of matrix-vector products.
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Preconditioned minres iterations

Previous test problem. T (x, &) = exp(Gus (2, £)) where underlying Gaussian field
G(x,w) has Bessel covariance function. M = 5.

d 1 2 3 4
N¢(Ny + Np) 31,104 108,864 290,304 653,184
N 21 126 462 1287
oa = 0.2  total iters 47 o/ 65 74
total solve time 2s 22s 245s 2979s
o = 0.4  total iters 61 89 121 148
total solve time 3s 35s 534s 6321s
oa = 0.6 total iters 77 139 225 345
total solve time 3s 53s 1369s 13794s
oa = 0.8  total iters 99 219 425 47

total solve time 4s 84s 2604s 29808s
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Augmented Preconditioning

Consider the ‘ideal’ preconditioner

Theorem

Let W =TI ® M, where w” (I ® M) w =|| w 132 2(py) - The eigenvalues of the

preconditioned saddle-point matrix are bounded and lie in

1 — Bthin
v+ Bthz’n

U{1}

where 3 is the inf-sup constant and Ty > tmin a.€.
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MANCHZER Augmented Preconditioning

Suppose we approximate A by L ® Ay where L is any s.p.d N¢ x N¢g matrix and replace 4%
with L—1 ® M then,

L® (Ao +~ 'B'M~1B) 0
0 L= '®~M

v
|

Efficient Solvers for Stochastic Finite Element Saddle Point Problems — p. 31/:



MANCHZER Augmented Preconditioning

Suppose we approximate A by L ® Ay where L is any s.p.d N¢ x N¢g matrix and replace 4%
with L—1 ® M then,

L® (Ao +~ 'B'M~1B) 0
0 L= '®~M

For this model problem,

vl (AO + fy_lBTM_lB)y = (T];Ilfv,'v> + fy_l (V-v,V-v).

The matrix in red is a discretisation of a weighted H (div) operator on the velocity space.

Optimal deterministic solvers (geometric multigrid) can be exploited.
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Augmented Preconditioning

Simplest choice: L = I (‘mean-based’ preconditioner)

L® (Ao+~y 'BTM~1B) 0
0 L®~vyM

P =

Approximating P~ !r requires:

e N¢ solves with M and N, multiplications with L.

e N¢ V-cycles of multigrid (e.g. Arnold-Falk-Winther) on a deterministic matrix of
dimension N,, and N, solves with L.

Even if L is dense, still cheaper than a matrix-vector product with saddle point matrix!
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MANCHZER Convergence analysis

L® (Ao +~'BTM~1B) 0
0 L&QyM

P =

Spectral bounds for preconditioned system matrix depend on choice of L and the efficiency
of the approximation A ~ L ® Ag and ~.
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Convergence analysis

L® (Ao +~'BTM~1B) 0
0 L&QyM

P =

Spectral bounds for preconditioned system matrix depend on choice of L and the efficiency
of the approximation A ~ L ® Ag and ~.

However, asymptotically, as v — 0, we can show

e all N¢ N, negative eigenvalues cluster at —1.
e N¢N, positive eigenvalues cluster at +1

e N¢(Ny — Np) positive eigenvalues lie in [0y, D, | where

A

v Av
1 <

< In
T (LA
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Preconditioned minres iterations

Previous test problem. Now T (x, £) = exp(Gs (@, €)) where underlying Gaussian field
G(x,w) has Bessel covariance function. M = 5. Choose L. = [ and v = 10~ 3.

d 1 2 3 4
N¢(Ny + Np) 31,104 108,864 290,304 653,184
N 21 126 462 1287
oc = 0.2  total iters 24 19 16 16
total solve time 3s Os 65s 399s
oa = 0.4  total iters 28 24 24 27
total solve time 3s 12s 97s 668s
oa = 0.6 total iters 33 32 35 43
total solve time 4s 17s 140s 1063s
oa = 0.8  total iters 39 42 51 67

total solve time 5s 19s 203s 1658s
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MANCHIGIER Improved choice of L

Could use Pitsianis-Van Loan so-called ‘best Kronecker product approximation’:

L = argmin{ H € RNe*Ne . HA—H(X)AOHF}

L is the symmetric and positive definite matrix
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Preconditioned minres iterations

Previous test problem. Now T (x, £) = exp(Gs (@, €)) where underlying Gaussian field
G(x,w) has Bessel covariance function. M = 5.

d 1 2 3 4
N¢(Ny + Np) 31,104 108,864 290,304 653,184
N 21 126 462 1287
oc = 0.2  total iters 21 15 13 13
total solve time 3s 8s 54s 328s
o = 0.4  total iters 24 19 18 17
total solve time 3s 11s 73s 429s
oa = 0.6 total iters 26 21 21 23
total solve time 4s 12s 86s 576s
oa = 0.8  total iters 28 24 26 29

total solve time 4s 14s 106s 723s
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Average time in seconds per minres iteration and (av. mat-vec time + av. preconditioner time)

d=2 d=3 d=4
L=1 0.58 (0.33 + 0.22) | 4.00 (3.40 + 0.50) | 24.80 (23.30 + 1.09)

Improved I | 0.59 (0.33 + 0.23) | 4.08 (3.40 + 0.53) | 25.02 (23.30 + 1.23)

Efficient Solvers for Stochastic Finite Element Saddle Point Problems — p. 37/:



MANCHESTER Summary

If random inputs are KL expansions:

e Mean-based preconditioners are cheap and robust within the range of statistical
parameters where the problem is well-posed.

e Schur-complement preconditioners are OK as matrix-vector products are cheap.
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Summary

If random inputs are KL expansions:

e Mean-based preconditioners are cheap and robust within the range of statistical
parameters where the problem is well-posed.

e Schur-complement preconditioners are OK as matrix-vector products are cheap.

If the random inputs are PC expansions

e Mean-based preconditioners are still cheap but are inadequate as o and d increase.

e Augmented preconditioners are promising because fewer matrix-vector products are
required
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Summary

If random inputs are KL expansions:

e Mean-based preconditioners are cheap and robust within the range of statistical
parameters where the problem is well-posed.

e Schur-complement preconditioners are OK as matrix-vector products are cheap.

If the random inputs are PC expansions

e Mean-based preconditioners are still cheap but are inadequate as o and d increase.

e Augmented preconditioners are promising because fewer matrix-vector products are
required

But:

e Also need to look at stopping criteria for iteration.
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