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Deterministic PDEs

Galerkin mixed finite element approximation for two field PDE problems on D ⊂ R
2,3, leads

to variational problems of the form

find uh(x) ∈ Vh and ph(x) ∈ Wh such that:

a (uh, v) + b (ph, v) = g (v) , ∀v ∈ Vh

b (w, uh) = f (w) , ∀w ∈ Wh

and saddle point systems





A BT

B 0









u

p



 =





g

f





for which the study of efficient solvers is mature.
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PDEs with Random Data

Stochastic Galerkin mixed finite element approximation for two field PDE problems with
random data, on D × Γ, with Γ ⊂ R

M , leads to

find uhd(x, ξ) ∈ Vh ⊗ Sd and phd(x, ξ) ∈ Wh ⊗ Sd such that:

â (uhd, v) + b̂ (phd, v) = ĝ (v) , ∀v ∈ Vh ⊗ Sd

b̂ (w, uhd) = f̂ (w) , ∀w ∈ Wh ⊗ Sd

and saddle point systems





Â B̂T

B̂ 0









u

p



 =





g

f





which are much larger and more complicated to solve.
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Model Problem: Darcy Flow

−T∇p = u, in D

∇ · u = 0, in D

p = g, on ∂DD

T∇p · n = 0, on ∂DN = ∂D\∂DD

Solution variables:

p = p(x) hydraulic head (pressure)

u = u(x) velocity field

Data:

T = T (x) transmissivity coefficients

g = g(x) boundary data

D ⊂ R
d spatial domain

Efficient Solvers for Stochastic Finite Element Saddle Point Problems – p. 5/39



Outline

• Stochastic Galerkin methods for:

T (x, ω)−1 u(x, ω) −∇p (x, ω) = 0, ∇ · u(x, ω) = 0

⊲ Solving single very large saddle point system

• Stochastic collocation methods for:

T (x, ω)−1 u(x, ω) −∇p (x, ω) = 0, ∇ · u(x, ω) = 0

⊲ Solving many small deterministic saddle point systems (see A. Gordon’s poster)
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Stochastic PDE Problem

Let T (x, ω) : D × Ω → R be a correlated random field.

Approximate T−1 (x, ω) by a function T−1
M (x, ξ) involving a finite number of random

variables ξ = (ξ1, . . . , ξM ) taking values in Γ =
∏M

i=1 Γi ⊂ R
M .

Find p(x, ξ), u(x, ξ) such that P -a.s.

T−1
M (x, ξ)u(x, ξ) −∇p (x, ξ) = 0,

∇ · u(x, ξ) = 0 in D × Γ,

p (x, ξ) = g(x) on ∂DD × Γ,

u(x, ξ) · n = 0 on ∂DN × Γ.
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Finite-dimensional Noise Assumption

Popular choices are:

• Truncated Karhunen-Loève expansion (linear)

T−1
M (x, ξ) = µ(x) +

M
∑

k=1

tk(x) ξk, tk(x) =
√

λkck(x)

{λk, ck(x)}, k = 1, 2, . . . are the eigenvalues and eigenfunctions of covariance

{ξ1, ξ2, . . .} are uncorrelated, with mean zero and unit variance

• Truncated Polynomial Chaos expansion (nonlinear)

T−1
M (x, ξ(ω)) = µ(x) +

N
∑

k=1

tk(x) ψk(ξ), tk(x) =
〈

T−1ψk(ξ)
〉
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Example - KL expansion

Consider the covariance function

CT−1 (x, y) = exp (− ‖ x− y ‖1)

D = [0, 1] × [0, 1] and Gaussian random variables.

Realisations of T−1
M with M = 5, 20, 50, with µ(x) = 0
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Polynomial Chaos

If the random variables are independent then the joint density function has the form:

ρ(ξ) =
∏

i

ρi(ξi)

and

E [g(ξ)] = 〈g(ξ)〉 =

∫

Γ
ρ(y)g(y) dy.

Orthonormal polynomials in ξ are constructed via

ψi(ξ) =

M
∏

s=1

ψis (ξs)

where ψis (ξs) is a univariate polynomial of degree is, orthonormal w.r.t to 〈·, ·〉 = E [·] .
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Weak Formulation

V = L2
ρ(Γ, H(div; D)) W = L2

ρ(Γ, L2(D))

We seek u(x, ξ) ∈ V and p(x, ξ) ∈ W such that:

〈(

T−1
M u, v

)〉

+ 〈(p,∇ · v)〉 =
〈

(g, v · n)∂ΓD

〉

,

〈(w,∇ · u)〉 = 0,

∀ v(x, ξ) ∈ V and w(x, ξ) ∈ W.
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Stochastic Galerkin Equations

Find uhd(x, ξ) ∈ Vh ⊗ Sd and phd(x, ξ) ∈ Wh ⊗ Sd satisfying:

〈(

T−1
M uhd, v

)〉

+ 〈(phd,∇ · v)〉 =
〈

(g, v · n)∂ΓD

〉

,

〈(w,∇ · uhd)〉 = 0,

∀ v ∈ Vh ⊗ Sd and w ∈ Wh ⊗ Sd.
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Stochastic Galerkin Equations

Find uhd(x, ξ) ∈ Vh ⊗ Sd and phd(x, ξ) ∈ Wh ⊗ Sd satisfying:

〈(

T−1
M uhd, v

)〉

+ 〈(phd,∇ · v)〉 =
〈

(g, v · n)∂ΓD

〉

,

〈(w,∇ · uhd)〉 = 0,

∀ v ∈ Vh ⊗ Sd and w ∈ Wh ⊗ Sd.

• Vh ⊂ H(div; D), Wh ⊂ L2(D) are a deterministic inf-sup stable pairing

• Sd ⊂ L2(Γ)
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Total degree polynomials

For Sd we choose M-variate polynomials of total degree d.

Use orthonormal polynomial chaos basis

Sd = span
{

ψ1(ξ), . . . , ψNξ
(ξ)

}

, Nξ =
(M + d)!

M !d!

M = 1 M = 5 M = 10

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

2 3 4 6 21 56 11 66 286
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Saddle point systems

Vh = span {ϕi(x)}Nu
i=1 , Wh = span {φj(x)}Np

j=1 , Sd = span {ψk(ξ)}Nξ

k=1





Â B̂T

B̂ 0









u

p



 =





g

f





(never assembled) of dimension NxNξ × NxNξ where Nx = Nu + Np and
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Saddle point systems

Vh = span {ϕi(x)}Nu
i=1 , Wh = span {φj(x)}Np

j=1 , Sd = span {ψk(ξ)}Nξ

k=1





Â B̂T

B̂ 0









u

p



 =





g

f





(never assembled) of dimension NxNξ × NxNξ where Nx = Nu + Np and





Â B̂T

B̂ 0



 =









I ⊗ A0 +
∑N

k=1 Gk ⊗ Ak I ⊗ BT

I ⊗ B 0









[A0]ij =

∫

D

µ(x) ϕi · ϕj dx, [Ak]ij =

∫

D

tk(x) ϕi · ϕj dx.
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Linear (KL) Case

T−1
M (x, ξ) = µ(x) +

M
∑

k=1

tk(x)ξk

• N = M (the number of random variables)

• Gk matrices have at most two non-zeros entries per row.

[Gk]rs = 〈 ξkψr(ξ)ψs(ξ) 〉 , k = 1 : M

• ∑N
k=1 Gk is sparse so Â is block sparse.

• Matrix-vector products are cheap

Â O(M(NuNξ))

B̂, B̂T O(NpNξ)
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Matrix structure

M = 2, d = 2 (left) and M = 4, d = 2 (right)
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Nonlinear (PC) Case

T−1
M (x, ξ) = µ(x) +

N
∑

k=1

tk(x)ψk

• N =
(M+2d)!
M !(2d)!

>> Nξ

• Gk matrices have non-trivial sparsity pattern

[Gk]rs = 〈ψk(ξ)ψr(ξ)ψs(ξ) 〉 , k = 1 : N

•
∑M

k=1 Gk is dense so Â is block dense.

• Matrix-vector products are expensive

Â O(N(NuNξ))—O(N(NuN2
ξ ))

B̂, B̂T O(NpNξ)
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Matrix structure

Want to perform as few matrix vector products with this as possible!
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(Minres) preconditioning strategies

There are two well-known classes of block-diagonal preconditioners.

Schur-Complement Preconditioning





Â 0

0 B̂Â−1B̂T





Augmented Preconditioning





Â + γ−1B̂T Ŵ−1B̂ 0

0 γŴ




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(Minres) preconditioning strategies

There are two well-known classes of block-diagonal preconditioners.

Schur-Complement Preconditioning





Â 0

0 B̂Â−1B̂T





Augmented Preconditioning





Â + γ−1B̂T Ŵ−1B̂ 0

0 γŴ





Both require cheap, robust approximations to Â
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Schur-Complement Preconditioning

Approximate Â ≈ L ⊗ diag(A0) where L is s.p.d. A practical preconditioner is:

P =





L ⊗ diag(A0) 0

0 B̂ (L ⊗ diag(A0))−1 B̂T





=





L ⊗ diag(A0) 0

0 L ⊗
(

Bdiag(A0)−1BT
)



 .
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Schur-Complement Preconditioning

Approximate Â ≈ L ⊗ diag(A0) where L is s.p.d. A practical preconditioner is:

P =





L ⊗ diag(A0) 0

0 B̂ (L ⊗ diag(A0))−1 B̂T





=





L ⊗ diag(A0) 0

0 L ⊗
(

Bdiag(A0)−1BT
)



 .

For the model problem, Bdiag(A0)−1BT ≈ ∇ · µ∇ and optimal deterministic elliptic PDE
solvers (eg. AMG) can be applied.
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Schur-Complement Preconditioning

Approximate Â ≈ L ⊗ diag(A0) where L is s.p.d. A practical preconditioner is:

P =





L ⊗ diag(A0) 0

0 B̂ (L ⊗ diag(A0))−1 B̂T





=





L ⊗ diag(A0) 0

0 L ⊗
(

Bdiag(A0)−1BT
)



 .

For the model problem, Bdiag(A0)−1BT ≈ ∇ · µ∇ and optimal deterministic elliptic PDE
solvers (eg. AMG) can be applied.

Simplest choice: L = I. Approximating P−1r requires:

• One solve with a diagonal matrix

• Nξ V-cycles of multigrid (e.g. AMG) on a deterministic matrix of dimension Np.

Cost is O(Nξ(Nu + Np)).
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Convergence analysis

P =





I ⊗ diag(A0) 0

0 I ⊗ amg(Bdiag(A0)−1BT )





Theorem

Let 0 < ν̂1 . . . ≤ ν̂N be the eigenvalues of diag(Â)−1Â. The eigenvalues of the
preconditioned saddle-point matrix lie in the union of the bounded intervals,

[

1

2

(

ν̂1 −
√

ν̂2
1 + 4Θ2

)

,
1

2

(

ν̂N −
√

ν̂2
N + 4θ2

)]

∪
[

ν̂1,
1

2

(

ν̂N +
√

ν̂2
N + 4Θ2

)]

.

When L = I, this preconditioner is ‘mean-based’.
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Linear (KL) case

Theorem

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of diag(Â)−1Â lie
in the bounded interval

[

1
2
− cdτ, 3

2
+ cdτ

]

where

τ =
3σ

2µ

M
∑

k=1

√

λk ‖ tk(x) ‖∞,

σ and µ are the standard deviation and mean of T−1(x, ω), and cd is a constant (possibly)
depending on d.
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Linear (KL) case

Theorem

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of diag(Â)−1Â lie
in the bounded interval

[

1
2
− cdτ, 3

2
+ cdτ

]

where

τ =
3σ

2µ

M
∑

k=1

√

λk ‖ tk(x) ‖∞,

σ and µ are the standard deviation and mean of T−1(x, ω), and cd is a constant (possibly)
depending on d.

When T−1
M is a KL expansion this is OK because

• σ
µ

is small for well-posed problem.

• cd = O(1) (bounded rvs), cd = O(
√

d) (Gaussian rvs)
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Example - KL case

Let D = [0, 1] × [0, 1], f = 0 with mixed bcs. We choose a Bessel covariance function for
the random input with µ(x) = 1 and λ = 1 ⇒ M = 6 random variables capture 98% of the
variance.

p=1 p=0

u ⋅ n =0

u ⋅ n =0
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Mean of numerical solution

Pressure (left), Flux (right)

0

1 0

1
0

1

0 1
0

1
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Variance of numerical solution

Pressure (left), y component (middle) and x component (right) of the Flux

0

1

0

1
0

x 10
−3

0

1

0

1
0

1.2

x 10
−3

0

1

0

1
0.031

0.036
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Preconditioned minres iterations

d 2 3 4 5

Nξ(Nu + Np) 344,064 1,032,192 2,580,480 5,677,056

σ
µ

= 0.1 total iters 45 46 48 48

NV 1,260 3,864 10,080 22,176

total solve time 14.0s 45.35s 119.01s 262.04s

σ
µ

= 0.2 total iters 55 59 62 63

NV 1,540 4,956 13,020 29,106

total solve time 17.18s 58.51s 154.82s 379.01

σ
µ

= 0.3 total iters 66 74 80 86

NV 1,848 6,216 16,800 39,732

total solve time 20.66s 72.97s 199.75s 486.74
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Nonlinear (PC case)

Theorem

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of diag(Â)−1Â lie
in the bounded interval

[

1
2
− cdτ, 3

2
+ cdτ

]

where, for lognormal diffusion coefficients in
particular,

• τ depends nonlinearly on σG

• cd = O (exp(dM))

The Schur-complement preconditioner is too weak for large d and σG requiring an excessive
number of matrix-vector products.
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Preconditioned minres iterations

Previous test problem. TM (x, ξ) = exp(GM (x, ξ)) where underlying Gaussian field
G(x, ω) has Bessel covariance function. M = 5.

d 1 2 3 4

Nξ(Nu + Np) 31,104 108,864 290,304 653,184

N 21 126 462 1287

σG = 0.2 total iters 47 57 65 74

total solve time 2s 22s 245s 2979s

σG = 0.4 total iters 61 89 121 148

total solve time 3s 35s 534s 6321s

σG = 0.6 total iters 77 139 225 345

total solve time 3s 53s 1369s 13794s

σG = 0.8 total iters 99 219 425 747

total solve time 4s 84s 2604s 29808s
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Augmented Preconditioning

Consider the ‘ideal’ preconditioner

P =





Â + γ−1B̂T Ŵ−1B̂ 0

0 γŴ





Theorem

Let Ŵ = I ⊗ M, where wT (I ⊗ M) w =‖ w ‖2
L2(Γ,L2(D))

. The eigenvalues of the

preconditioned saddle-point matrix are bounded and lie in

(

−1, − β̂2tmin

γ + β̂2tmin

]

∪ {1}

where β̂ is the inf-sup constant and TM ≥ tmin a.e.

Efficient Solvers for Stochastic Finite Element Saddle Point Problems – p. 30/39



Augmented Preconditioning

Suppose we approximate Â by L ⊗ A0 where L is any s.p.d Nξ × Nξ matrix and replace Ŵ

with L−1 ⊗ M then,

P =





L ⊗
(

A0 + γ−1BT M−1B
)

0

0 L−1 ⊗ γM




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Augmented Preconditioning

Suppose we approximate Â by L ⊗ A0 where L is any s.p.d Nξ × Nξ matrix and replace Ŵ

with L−1 ⊗ M then,

P =





L ⊗
(

A0 + γ−1BT M−1B
)

0

0 L−1 ⊗ γM





For this model problem,

vT
(

A0 + γ−1BT M−1B
)

v =
(

T−1
M v, v

)

+ γ−1 (∇ · v,∇ · v) .

The matrix in red is a discretisation of a weighted H(div) operator on the velocity space.

Optimal deterministic solvers (geometric multigrid) can be exploited.
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Augmented Preconditioning

Simplest choice: L = I (‘mean-based’ preconditioner)

P =





L ⊗
(

A0 + γ−1BT M−1B
)

0

0 L ⊗ γM





Approximating P−1r requires:

• Nξ solves with M and Np multiplications with L.

• Nξ V-cycles of multigrid (e.g. Arnold-Falk-Winther) on a deterministic matrix of
dimension Nu and Nu solves with L.

Even if L is dense, still cheaper than a matrix-vector product with saddle point matrix!
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Convergence analysis

P =





L ⊗
(

A0 + γ−1BT M−1B
)

0

0 L ⊗ γM





Spectral bounds for preconditioned system matrix depend on choice of L and the efficiency
of the approximation Â ≈ L ⊗ A0 and γ.
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Convergence analysis

P =





L ⊗
(

A0 + γ−1BT M−1B
)

0

0 L ⊗ γM





Spectral bounds for preconditioned system matrix depend on choice of L and the efficiency
of the approximation Â ≈ L ⊗ A0 and γ.

However, asymptotically, as γ → 0, we can show

• all NξNp negative eigenvalues cluster at −1.

• NξNp positive eigenvalues cluster at +1

• Nξ(Nu − Np) positive eigenvalues lie in [ν̂1, ν̂n] where

ν̂1 ≤ vT Âv

vT (L ⊗ A0) v
≤ ν̂n
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Preconditioned minres iterations

Previous test problem. Now TM (x, ξ) = exp(GM (x, ξ)) where underlying Gaussian field
G(x, ω) has Bessel covariance function. M = 5. Choose L = I and γ = 10−3.

d 1 2 3 4

Nξ(Nu + Np) 31,104 108,864 290,304 653,184

N 21 126 462 1287

σG = 0.2 total iters 24 19 16 16

total solve time 3s 9s 65s 399s

σG = 0.4 total iters 28 24 24 27

total solve time 3s 12s 97s 668s

σG = 0.6 total iters 33 32 35 43

total solve time 4s 17s 140s 1063s

σG = 0.8 total iters 39 42 51 67

total solve time 5s 19s 203s 1658s
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Improved choice ofL

Could use Pitsianis-Van Loan so-called ‘best Kronecker product approximation’:

L = argmin{H ∈ R
Nξ×Nξ : ||Â − H ⊗ A0||F }

L is the symmetric and positive definite matrix

L = I +
N

∑

k=1

tr(AT
k A0)

tr(AT
0 A0)

Gk
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Preconditioned minres iterations

Previous test problem. Now TM (x, ξ) = exp(GM (x, ξ)) where underlying Gaussian field
G(x, ω) has Bessel covariance function. M = 5.

d 1 2 3 4

Nξ(Nu + Np) 31,104 108,864 290,304 653,184

N 21 126 462 1287

σG = 0.2 total iters 21 15 13 13

total solve time 3s 8s 54s 328s

σG = 0.4 total iters 24 19 18 17

total solve time 3s 11s 73s 429s

σG = 0.6 total iters 26 21 21 23

total solve time 4s 12s 86s 576s

σG = 0.8 total iters 28 24 26 29

total solve time 4s 14s 106s 723s
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Average time in seconds per minres iteration and (av. mat-vec time + av. preconditioner time)

d=2 d=3 d=4

L = I 0.58 (0.33 + 0.22) 4.00 (3.40 + 0.50) 24.80 (23.30 + 1.09)

Improved L 0.59 (0.33 + 0.23) 4.08 (3.40 + 0.53) 25.02 (23.30 + 1.23)
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Summary

If random inputs are KL expansions:

• Mean-based preconditioners are cheap and robust within the range of statistical
parameters where the problem is well-posed.

• Schur-complement preconditioners are OK as matrix-vector products are cheap.
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If the random inputs are PC expansions

• Mean-based preconditioners are still cheap but are inadequate as σ and d increase.

• Augmented preconditioners are promising because fewer matrix-vector products are
required
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Summary

If random inputs are KL expansions:

• Mean-based preconditioners are cheap and robust within the range of statistical
parameters where the problem is well-posed.

• Schur-complement preconditioners are OK as matrix-vector products are cheap.

If the random inputs are PC expansions

• Mean-based preconditioners are still cheap but are inadequate as σ and d increase.

• Augmented preconditioners are promising because fewer matrix-vector products are
required

But:

• Also need to look at stopping criteria for iteration.
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