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1. Motivation:

Non-

Newtonian fluids (Navier–Stokes eqs.)

Find u∼ : Ω× (0,∞)→ R3 and p : Ω× (0,∞)→ R such that

∂tu∼+(u∼ ·∇∼ x )u∼−ν∆xu∼+∇∼ x p = f
∼

+ ∇∼ x · τ≈

in Ω× (0,∞),

∇∼ x ·u∼ = 0 in Ω× (0,∞),

u∼ = 0∼ on ∂Ω× (0,∞),

u∼(x∼,0) = u∼
0(x∼) x∼ ∈Ω;

where τ≈(x∼, t) is the elastic extra stress tensor.

Example

Algebraic models: τ≈ = F (∇∼ x u∼) Quasi-Newtonian

Differential models: ∂tτ≈+(u∼ ·∇)τ≈ = F (τ≈,∇∼ x u∼) Oldroyd-B

Kinetic models for dilute polymers:
τ≈ is defined via partial differential equations from statistical physics.
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Because of the high flexibility of chemical bonds that connect atoms,
when a polymer molecule is dissolved in a solvent the entire molecule
forms a coil structure with a large number of possible folding shapes.

Random coil of polypeptide.

The presence of such large numbers of internal degrees of freedom makes it
extremely difficult to study and simulate polymers at a microscopic level.
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Coarse-graining: bead-rod chain → bead-spring chain → dumbbell

H.A. Kramers:
The viscosity of macromolecules in a streaming fluid, Physica, 11, 1944.

R.B. Bird, C.F. Curtiss, R.A. Armstrong, O. Hassager:
Dynamics of Polymeric Liquids, Vol. II: Kinetic Theory. Wiley, 1987.

H.C. Öttinger: Stochastic Processes in Polymeric Fluids. Springer, 1996.

T. Kawakatsu: Statistical Physics of Polymers. Springer, 2004.
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2. Formulation of the dumbbell model

Polymer chains, which are suspended in a solvent, are assumed not to
interact with each other; i.e. a dilute polymer.

The solvent is an incompressible, viscous, isothermal Newtonian fluid in
a bounded domain Ω⊂ Rd , d = 2 or 3, with Lipschitz boundary ∂Ω.

Define ΩT := Ω× (0,T ], ∂Ω∗T := ∂Ω× (0,T ].

Navier–Stokes equations, with the symmetric extra-stress tensor τ≈ (i.e. the
polymeric part of the Cauchy stress tensor), appearing as a source term.
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Find:
the velocity field u∼ : (x∼, t) ∈Ω× (0,T ] 7→ u∼(x∼, t) ∈ Rd

and the pressure p : (x∼, t) ∈Ω× (0,T ] 7→ p(x∼, t) ∈ R

of the fluid, such that:

∂u
∼

∂t
+(u

∼
·∇
∼

x )u
∼
−ν∆x u

∼
+∇
∼

x p = f
∼
+∇
∼

x · τ
≈

in ΩT ,

∇
∼

x ·u
∼
= 0 in ΩT ,

u
∼
= 0
∼

on ∂Ω
∗
T ,

u
∼
(x
∼
,0) = u

∼
0(x
∼
) ∀x

∼
∈Ω.

ν ∈ R>0 is the given viscosity of the solvent, and f
∼

is a given body force.
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Definition of τ≈: the dumbbell modell

x∼ (t) =
1
2(r∼1(t) + r∼2(t)) ∈ Ω

q
∼
(t) = r∼2(t)− r∼1(t) ∈ D

u∼ (x∼ , t)

Noninteracting polymer chains modelled by using dumbbells. A dumbbell is
a pair of beads connected with an elastic spring, and is characterized by its
centre of mass, x∼(t) ∈Ω, and its elongation vector q

∼
(t) ∈ D.
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ψ : Ω×D× [0,T ] 7→ ψ(x∼,q∼, t) ∈ R is a probability density function: — the
probability at time t of there being a dumbbell with centre of mass at x∼ and
elongation q

∼
— and satisfies the Fokker–Planck equation:

∂ψ

∂t
+(u∼ ·∇∼ x )ψ+∇∼ q · ((∇≈ x u∼)q

∼
ψ) =

1
2λ

∇∼ q · (∇∼ q ψ+U ′ q
∼

ψ) in ΩT ×D,

1
2λ

(∇∼ q ψ+U ′ q
∼

ψ) ·n∼∂D = (∇≈ x u∼)q
∼

ψ ·n∼∂D on ΩT ×∂D,

ψ(x∼,q∼,0) = ψ
0(x∼,q∼)≥ 0 ∀(x∼,q∼) ∈Ω×D;

where n∼∂D is ⊥ to ∂D, and
∫

D
ψ

0(x∼,q∼)dq
∼
= 1 for a.e. x∼ ∈Ω.

b.c. ⇒
∫

D
ψ(x∼,q∼, t)dq

∼
= 1 for a.e. (x∼, t) ∈ΩT .

λ = Wi > 0: elastic relaxation constant of the fluid (Weissenberg number).

8 / 45



ψ : Ω×D× [0,T ] 7→ ψ(x∼,q∼, t) ∈ R is a probability density function: — the
probability at time t of there being a dumbbell with centre of mass at x∼ and
elongation q

∼
— and satisfies the Fokker–Planck equation:

∂ψ

∂t
+(u∼ ·∇∼ x )ψ+∇∼ q · ((∇≈ x u∼)q

∼
ψ) =

1
2λ

∇∼ q · (∇∼ q ψ+U ′ q
∼

ψ) in ΩT ×D,

1
2λ

(∇∼ q ψ+U ′ q
∼

ψ) ·n∼∂D = (∇≈ x u∼)q
∼

ψ ·n∼∂D on ΩT ×∂D,

ψ(x∼,q∼,0) = ψ
0(x∼,q∼)≥ 0 ∀(x∼,q∼) ∈Ω×D;

where n∼∂D is ⊥ to ∂D, and
∫

D
ψ

0(x∼,q∼)dq
∼
= 1 for a.e. x∼ ∈Ω.

b.c. ⇒
∫

D
ψ(x∼,q∼, t)dq

∼
= 1 for a.e. (x∼, t) ∈ΩT .

λ = Wi > 0: elastic relaxation constant of the fluid (Weissenberg number).

8 / 45



ψ : Ω×D× [0,T ] 7→ ψ(x∼,q∼, t) ∈ R is a probability density function: — the
probability at time t of there being a dumbbell with centre of mass at x∼ and
elongation q

∼
— and satisfies the Fokker–Planck equation:

∂ψ

∂t
+(u∼ ·∇∼ x )ψ+∇∼ q · ((∇≈ x u∼)q

∼
ψ) =

1
2λ

∇∼ q · (∇∼ q ψ+U ′ q
∼

ψ) in ΩT ×D,

1
2λ

(∇∼ q ψ+U ′ q
∼

ψ) ·n∼∂D = (∇≈ x u∼)q
∼

ψ ·n∼∂D on ΩT ×∂D,

ψ(x∼,q∼,0) = ψ
0(x∼,q∼)≥ 0 ∀(x∼,q∼) ∈Ω×D;

where n∼∂D is ⊥ to ∂D, and
∫

D
ψ

0(x∼,q∼)dq
∼
= 1 for a.e. x∼ ∈Ω.

b.c. ⇒
∫

D
ψ(x∼,q∼, t)dq

∼
= 1 for a.e. (x∼, t) ∈ΩT .

λ = Wi > 0: elastic relaxation constant of the fluid (Weissenberg number).

8 / 45



ψ : Ω×D× [0,T ] 7→ ψ(x∼,q∼, t) ∈ R is a probability density function: — the
probability at time t of there being a dumbbell with centre of mass at x∼ and
elongation q

∼
— and satisfies the Fokker–Planck equation:

∂ψ

∂t
+(u∼ ·∇∼ x )ψ+∇∼ q · ((∇≈ x u∼)q

∼
ψ) =

1
2λ

∇∼ q · (∇∼ q ψ+U ′ q
∼

ψ) in ΩT ×D,

1
2λ

(∇∼ q ψ+U ′ q
∼

ψ) ·n∼∂D = (∇≈ x u∼)q
∼

ψ ·n∼∂D on ΩT ×∂D,

ψ(x∼,q∼,0) = ψ
0(x∼,q∼)≥ 0 ∀(x∼,q∼) ∈Ω×D;

where n∼∂D is ⊥ to ∂D, and
∫

D
ψ

0(x∼,q∼)dq
∼
= 1 for a.e. x∼ ∈Ω.

b.c. ⇒
∫

D
ψ(x∼,q∼, t)dq

∼
= 1 for a.e. (x∼, t) ∈ΩT .

λ = Wi > 0: elastic relaxation constant of the fluid (Weissenberg number).

8 / 45



D⊂ Rd , d = 2 or 3: the set of admissible elongation vectors q
∼

.

U is the potential for the elastic force F∼ : D→ Rd of the dumbbell spring
(U strictly monotonic increasing):

F∼ (q∼) :=U ′(1
2 |q∼|

2)q
∼
.

Gibbs measure dµ := M(q
∼
)dq
∼

; normalised Maxwellian:

M(q
∼
) :=

e
−U( 1

2 |q∼ |
2)

∫
D e
−U( 1

2 |q∼ |
2)

dq
∼

.

We have the following symmetrization of the Ornstein–Uhlenbeck operator:

∇∼ q · (∇∼ q ψ+U ′ q
∼

ψ)≡ ∇∼ q ·
(

M ∇∼ q

(
ψ

M

))
.

Kolmogorov (1931), Da Prato & Lunardi (2004)
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Finally, the symmetric extra stress tensor, due to the dumbbells, on the
RHS of the Navier–Stokes equations is

τ≈(ψ) := µ
(
C≈ (ψ)−ρ(ψ) I≈

)
, Kramers expression.

µ ∈ R>0 is the product of the Boltzmann constant and the temperature,

I≈ is the unit d×d tensor,

C≈ (ψ)(x∼, t) :=
∫

D
ψ(x∼,q∼, t)U ′(1

2 |q∼|
2)q
∼

q
∼

T dq
∼

and

ρ(ψ)(x∼, t) :=
∫

D
ψ(x∼,q∼, t)dq

∼
.
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Examples

Hookean model:

D = Rd ,

U(s) = s ⇒ U ′(s) = 1 and e
−U( 1

2 |q∼ |
2)
= e
− 1

2 |q∼ |
2

.

Boundary condition on ∂D replaced by decay conditions as |q
∼
| → ∞.

Note that M(q
∼
) ∝ e

− 1
2 |q∼ |

2

→ 0 as |q
∼
| → ∞.

FENE (Finitely Extensible Nonlinear Elastic) model:

D = B(0∼,b
1
2 ),

U(s) =−b
2 ln(1− 2s

b ) ⇒ U ′(s) = (1− 2s
b )
−1,

M(q
∼
) ∝ e

−U( 1
2 |q∼ |

2)
=

(
1−
|q
∼
|2

b

)b
2

⇒ M = 0 on ∂D.

Note that b→ ∞ ⇒ Hookean model.
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Remark

In the Hookean model, as U ′ = 1, one can eliminate ψ(x∼,q∼, t), leading to a

closed macroscopic model (Oldroyd-B model) for u∼(x∼, t), ρ(x∼, t), τ≈(x∼, t):

Navier–Stokes for u∼ with extra stress tensor τ≈ plus

∂ρ

∂t
+(u

∼
·∇
∼

x )ρ = 0 in ΩT ,

δτ
≈

δt
+

1
λ

τ
≈
= µρ [ (∇

≈
x u
∼
)+(∇

≈
x u
∼
)T ] in ΩT ;

where
δτ≈

δt
:=

∂τ≈

∂t
+(u∼ ·∇∼ x )τ≈− [ (∇≈ x u∼)τ≈+ τ≈ (∇≈ x u∼)

T ]

is the upper-convected time derivative.

∫
D

ψ
0(x∼,q∼)dq

∼
= 1 for a.e. x∼ ∈Ω ⇒ ρ(x∼, t)≡ 1.
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3. Analysis of Navier–Stokes/Fokker–Planck systems

We denote the above coupled Navier–Stokes/Fokker–Planck system for
u∼(x∼, t) and ψ(x∼,q∼, t) by (P): — a microscopic-macroscopic polymer model.

The term that causes all the mathematical difficulties in establishing the
existence of global weak solutions is the drag term in Fokker–Planck eq.:

∂ψ

∂t
+(u∼ ·∇∼ x )ψ+∇∼ q · ((∇≈ x u∼)q

∼
ψ)

=
1

2λ
∇∼ q ·

(
M ∇∼ q

(
ψ

M

))
in ΩT ×D .
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A mathematically simpler model is the COROTATIONAL model.

Splitting the tensor ∇≈ x u∼ = D≈ (u∼)+ω≈ (u∼)

into its symmetric and skew-symmetric parts

D≈ (u∼) =
1
2 [∇≈ x u∼+(∇≈ x u∼)

T ], ω≈ (u∼) =
1
2 [∇≈ x u∼− (∇≈ x u∼)

T ] ,

the difficult drag term is written as

∇∼ q · (σ≈ (u∼)q
∼

ψ) .

The two cases are then:

(i) the corotational case σ≈ (u∼) = ω≈ (u∼) ,

(ii) the general noncorotational case σ≈ (u∼) = ∇≈ x u∼ .

(i) is mathematically easier (... but physically justified?) :
upper-convected time derivative → Jaumann (corotational) derivative.

(ii) is the original, difficult, case.
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Existence of global weak solution

P.-L. Lions & Masmoudi (2001) have shown the existence of global-in-time
weak solutions to the COROTATIONAL Oldroyd-B model.

P.-L. Lions & Masmoudi (2007) have shown the existence of global-in-time
weak solutions to the COROTATIONAL FENE model.

In both cases σ≈ (u∼) = ω≈ (u∼) =
1
2 [∇≈ x u∼− (∇≈ x u∼)

T ] was assumed.

Our contribution:
We prove the existence of global-in-time weak solutions, for a large class
of FENE type bead-spring chain models for dilute polymers, under minimal
regularity conditions on the data, WITHOUT assuming corotationality.

J.W. Barrett & E. Süli (Submitted to M3AS; March 2010)
http://arxiv.org/abs/1004.1432
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Two relevant remarks

1 We consider FENE type models with centre-of-mass diffusion,

ε∆xψ = ε∇∼ x ·
(

M∇∼ x

(
ψ

M

))
in the Fokker–Planck equation, with no-flux boundary condition.
The term does appear in the derivation of the model, but is usually
dropped because ε is very small (∈ [10−9,10−7]) for typical molecules.

We shall retain the centre-of-mass diffusion term in the model.

2 Motivated by the above, we change variable from ψ to ψ̂ := ψ/M.J. Schieber (J. Non-Newtonian Fluid Fluid. Mech., (2006))

J.W. Barrett & E. Süli (Multiscale Model. Simul., (2007))

P. Degond, H. Liu (Networks & Heterogenous Media, (2009))

P. Degond, A. Lozinski, R. Owens (J. Non-Newtonian Fluid Mechanics, (2010))
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(P) Find u∼ :(x∼, t) ∈Ω× [0,T ] 7→ u∼(x∼, t) ∈ Rd , p :(x∼, t) ∈Ω× (0,T ] 7→ p(x∼, t) ∈ R:

∂u
∼

∂t
+(u

∼
·∇
∼

x )u
∼
−ν∆x u

∼
+∇
∼

x p

= f
∼
+∇
∼

x · τ
≈
(M ψ̂) in ΩT ,

∇
∼

x ·u
∼
= 0 in ΩT ,

u
∼
= 0
∼

on ∂Ω
∗
T ,

u
∼
(x
∼
,0) = u

∼
0(x
∼
) ∀x

∼
∈Ω;

where

τ
≈
(M ψ̂) = µ

(
C
≈
(M ψ̂)−ρ(M ψ̂) I

≈

)
;
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and ψ̂ : (x∼,q∼, t) ∈Ω×D× [0,T ] 7→ ψ̂(x∼,q∼, t) ∈ R is s.t.

M
∂ψ̂

∂t
+(u∼ ·∇∼ x )(M ψ̂)+∇∼ q · (σ≈ (u∼)q

∼
M ψ̂)

= 1
2λ

∇∼ q · (M ∇∼ q ψ̂) + εM ∆x ψ̂ in ΩT ×D,

M
[

1
2λ

∇∼ q ψ̂− [σ≈ (u∼)q
∼
] ψ̂
]
·n∼∂D = 0 on ΩT ×∂D,

εM ∇∼ x ψ̂ · n∼∂Ω = 0 on ∂Ω
∗
T ×D,

M ψ̂(x∼,q∼,0) = ψ
0(x∼,q∼)≥ 0 ∀(x∼,q∼) ∈Ω×D ;

where n∼∂D is ⊥ to ∂D, and n∼∂Ω is ⊥ to ∂Ω.
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Formal Energy Bounds for (P):

Testing the Navier–Stokes equation with u∼, integrating over Ω⇒

1
2

d
dt

[∫
Ω

|u∼|2 dx∼

]
+ν

∫
Ω

|∇≈ x u∼|2 dx∼−
∫

Ω

f
∼
·u∼ dx∼

=−
∫

Ω

τ≈(M ψ̂) : ∇≈ x u∼ dx∼

=−µ
∫

Ω

C≈ (M ψ̂) : ∇≈ x u∼ dx∼

≤ ν

2

∫
Ω

|∇≈ x u∼|2 dx∼ +
µ2

2ν

∫
Ω

|C≈ (M ψ̂)|2 dx∼ .
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Maxwellian-weighted Sobolev norm (degenerate weight M)

‖ϕ̂‖H1(Ω×D;M) :=
{∫

Ω×D
M
[
|ϕ̂|2 +

∣∣∇∼ q ϕ̂
∣∣2 + ∣∣∇∼ x ϕ̂

∣∣2 ] dq
∼

dx∼

} 1
2

,

and Maxwellian-weighted H1 space:

X̂ ≡ H1(Ω×D;M).

Lemma

H1
M(D) ↪→→ L2

M(D) and H1(Ω×D;M) ↪→→ L2(Ω×D;M).
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For all ϕ̂ ∈ X̂ , we have that∫
Ω

|C≈ (M ϕ̂)|2 dx∼

=
∫

Ω

d

∑
i=1

d

∑
j=1

(∫
D

M ϕ̂U ′ qi q j dq
∼

)2

dx∼

≤ d
(∫

D
M |U ′|2 |q

∼
|4 dq

∼

)(∫
Ω×D

M |ϕ̂|2 dq
∼

dx∼

)

≤C
(∫

Ω×D
M |ϕ̂|2 dq

∼
dx∼

)
< ∞ .
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Multiplying the Fokker–Planck equation with ψ̂, integrating over Ω×D:

1
2

d
dt

[∫
Ω×D

M |ψ̂|2 dq
∼

dx∼

]
+

1
2λ

∫
Ω×D

M |∇∼ q ψ̂|2 dq
∼

dx∼

+ ε

∫
Ω×D

M |∇∼ x ψ̂|2 dq
∼

dx∼

=
∫

Ω×D
M (σ≈ (u∼)q

∼
ψ̂) · ∇∼ q ψ̂ dq

∼
dx∼ .
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3.1. The corotational case (skew-symmetric σ≈ )

σ≈ (v∼) = ω≈ (v∼) ⇒ q
∼

T
ω≈ (v∼)q

∼
= 0 ∀q

∼
∈ Rd .

Hence we have for all ϕ̂ ∈ X̂ and v∼ ∈ [W1,∞(Ω)]d that∫
Ω×D

M (ω≈ (v∼)q
∼

ϕ̂) · ∇∼ q ϕ̂ dq
∼

dx∼

= 1
2

∫
Ω×D

M (ω≈ (v∼)q
∼
) · ∇∼ q (ϕ̂

2) dq
∼

dx∼

= 1
2

∫
Ω×∂D

M (ω≈ (v∼)q
∼
) · n∼∂D ϕ̂

2 dsdx∼

+ 1
2

∫
Ω×D

M (q
∼

T
ω≈ (v∼)q

∼
)U ′ ϕ̂2 dq

∼
dx∼= 0 ,

since n∼∂D =
q
∼
|q
∼
| , ∇∼ q M =−MU ′ q

∼
and q

∼
Tω≈ (v∼)q∼ = 0.
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Hence in the corotational case, we have the formal estimates:

d
dt

[∫
Ω

|u∼|2 dx∼

]
+ν

∫
Ω

|∇≈ x u∼|2 dx∼−2
∫

Ω

f
∼
·u∼ dx∼

≤ µ2

ν

∫
Ω

|C≈ (M ψ̂)|2 dx∼ ≤C
∫

Ω×D
M |ψ̂|2 dq

∼
dx∼ ;

d
dt

[∫
Ω×D

M |ψ̂|2 dq
∼

dx∼

]
+

1
λ

∫
Ω×D

M |∇∼ q ψ̂|2 dq
∼

dx∼

+ 2ε

∫
Ω×D

M |∇∼ x ψ̂|2 dq
∼

dx∼ = 0.

Further formal estimates are needed on the time derivatives of u∼ and ψ̂.

Aubin–Lions Compactness Theorem: Let B0, B and B1 be Banach spaces,
Bi, i = 0,1, reflexive, with B0 ↪→→ B ↪→ B1. Then, for αi > 1, i = 0,1,

{η ∈ Lα0(0,T ;B0) :
∂η

∂t
∈ Lα1(0,T ;B1)} ↪→→ Lα0(0,T ;B).
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3.2. The general noncorotational case

The trick is to choose the testing procedure so as to cancel the extra stress
term in the Navier–Stokes eq. with the drag term in the Fokker–Planck eq;

Barrett, Schwab & Süli (2005);
Jourdain, Lelièvre, Le Bris & Otto (2006); Lin, Liu & Zhang (2007).

As before, for the Navier–Stokes equations tested with u∼, we have that

1
2

d
dt

[∫
Ω

|u∼|2 dx∼

]
+ν

∫
Ω

|∇≈ x u∼|2 dx∼

=
∫

Ω

f
∼
·u∼ dx∼ − µ

∫
Ω

C≈ (M ψ̂) : ∇≈ x u∼ dx∼ .
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Let F (s) := s(lns−1)+1 ∈ R≥0 for s≥ 0.

Multiplying the Fokker–Planck equation with F ′(ψ̂)≡ ln ψ̂,

assuming that ψ̂ > 0, integrating over Ω×D ⇒

d
dt

[∫
Ω×D

M F (ψ̂)dq
∼

dx∼

]
+

1
2λ

∫
Ω×D

M ∇∼ q ψ̂ ·∇∼ q [F ′(ψ̂)]dq
∼

dx∼

+ ε

∫
Ω×D

M ∇∼ x ψ̂ ·∇∼ x [F ′(ψ̂)]dq
∼

dx∼

=
∫

Ω×D
M ψ̂ [(∇≈ x u∼)q

∼
] ·∇∼ q [F ′(ψ̂)]dq

∼
dx∼ .

Note that F ′′(s) = s−1 > 0 for s > 0.
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Noting that

ψ̂∇∼ q [F ′(ψ̂)] = ∇∼ q ψ̂ , ∇∼ q M =−MU ′ q
∼

, M = 0 on ∂D, ∇∼ x ·u∼ = 0:

∫
Ω×D

M ψ̂ [(∇≈ x u∼)q
∼
] ·∇∼ q [F ′(ψ̂)]dq

∼
dx∼

=
∫

Ω×D
M [(∇≈ x u∼)q

∼
] ·∇∼ q ψ̂dq

∼
dx∼

=
∫

Ω×D
MU ′ q

∼
· [(∇≈ x u∼)q

∼
] ψ̂dq

∼
dx∼

=+
∫

Ω

C≈ (M ψ̂) : ∇≈ x u∼ dx∼ ,

on recalling that

C≈ (M ψ̂)(x∼, t) =
∫

D M ψ̂(x∼,q∼, t)U ′(1
2 |q∼|

2)q
∼

q
∼

T dq
∼
.
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We deduce the following formal energy identity:

d
dt

∫
Ω

A(u∼, ψ̂)dx∼+
∫

Ω

B(u∼, ψ̂)dx∼ =
∫

Ω

f
∼
·u∼ dx∼,

where

A(u∼, ψ̂) :=
1
2
|u∼|2 +µ

∫
D

M F (ψ̂)dq
∼
,

B(u∼, ψ̂) := ν |∇x u∼|2 +
2µ
λ

∫
D

M
∣∣∣∣∇q

√
ψ̂

∣∣∣∣2 dq
∼
+4εµ

∫
D

M
∣∣∣∣∇x

√
ψ̂

∣∣∣∣2 dq
∼
,

with ψ̂≥ 0 and F (s) := s(lns−1)+1.
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Remark

Consider the strictly convex function

F (s) := s(lns−1)+1 ∈ R≥0 for s≥ 0.

Note that
MF (ψ̂) = MF

(
ψ

M

)
= ψ log

ψ

M
−ψ+M.

The Kullback–Leibler relative entropy of ψ with respect to M is:

S(ψ | M) :=
∫

D

(
ψ log

ψ

M
−ψ+M

)
dq
∼
=

∫
D

MF (ψ̂)dq
∼
.

The Fisher information:

I(ψ̂) :=
∫

D

∣∣∇q log ψ̂
∣∣2 ψ̂(q

∼
)M(q

∼
)dq
∼
= 4

∫
D

∣∣∣∣∇q

√
ψ̂

∣∣∣∣2 M(q
∼
)dq
∼
.

The two are related by a log-Sobolev inequality.
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Making it all rigorous...

... is a difficult exercise.

STEP 1.
We discretize the system with respect to t, using a time step ∆t.Has to
be done in a way that retains the special cancellation property between
the Navier–Stokes and Fokker–Planck equations.

STEP 2.
We define an upper-truncated entropy F L, using a cut-off parameter L > 1,
as we need to cut off ψ̂, from above, in the drag term.

STEP 3.
We use Schauder’s fixed point theorem to show that the nonlinear elliptic
system resulting at each time step has a solution.

In the course of the Schauder argument, we are forced to truncate the
upper-truncated entropy F L from below also, using another positive cut-off
parameter δ ∈ (0,1); ditto for ψ̂ in the drag term. Call it: F L

δ
.
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STEP 4.
We test the Fokker–Planck equation using the derivative [F L

δ
]′ of the

doubly-truncated entropy function, and use a weak-compactness argument
to pass to the limit δ→ 0+ with the lower cut-off, with ∆t and L kept fixed.

STEP 5.
We would like to pass to the limits ∆t→ 0+ and L→+∞. But...

(a) We need special energy estimates, with r.h.s. independent of L and ∆t.
These can be got by testing the Fokker–Planck equation with a shifted
version of F L: viz. F L(·+α), 0 < α < 1, L > 1, to avoid division by 0. We
let α→ 0+ — with ∆t and L kept fixed.

(b) We get bounds, independent of L and ∆t, on the L∞(0,T ;L2) and
L2(0,T ;H1) norms of the velocity; and on the L∞(0,T ) norm of the relative
entropy and the L2(0,T ) norm of the Fisher information.

(c) We use these, and the time-discrete equations, to derive L and ∆t
independent bounds on the sequences of approximate time derivatives.
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STEP 6.
New problems arise: the set of functions with finite relative entropy and
finite Fisher information is not a linear space.

We circumvent this by appealing to a generalization by Dubinskii (1965),
in seminormed sets, of the Aubin–Lions compactness theorem.

STEP 7.
We want to pass to the limit with ∆t→ 0 and L→ ∞, but it turns out that
the limits are linked and one needs to understand how to connect them.

We choose ∆t = o(L−1) and let L→ ∞.

STEP 8.
A further problem is that passage to the limit requires specially prepared
initialization of the Fokker–Planck equation, with finite relative entropy and
finite Fisher information. We use de la Valée-Poussin’s theorem and the
Dunford–Pettis theorem to generate the correct initialization.
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STEP 9.
We pass to the weak limits in the time-discrete equations with L→ ∞ and
∆t = o(L−1).

We use a weak lower-semicontinuity argument to pass to the limit in the
time-discrete energy estimate...

... and obtain the following Theorem.

J.W. Barrett & E. Süli (Submitted to M3AS; March, 2010)
http://arxiv.org/abs/1004.1432
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Existence of global weak solutions:bead-spring chain model

Theorem

Suppose that

∂Ω ∈C0,1; u
∼

0 ∈ H
∼

; ψ̂
0 :=

ψ0

M
≥ 0 a.e. on Ω×D with

F (ψ̂0) ∈ L1
M(Ω×D) and

∫
D

M(q
∼
) ψ̂

0(x
∼
,q
∼
) dq

∼
= 1 for a.e. x

∼
∈Ω;

and f
∼
∈ L2(0,T ;V

∼
′) .

Then, there exists a pair of functions (u∼, ψ̂), such that

u∼ ∈ L∞(0,T ;L∼
2(Ω))∩L2(0,T ;V∼ )∩H1(0,T ;V∼

′
σ), σ≥ 1

2 d, σ > 1,

and

ψ̂ ∈ L1(0,T ;L1
M(Ω×D))∩H1(0,T ;M−1Hs(Ω×D)′), s > 1+ 1

2(K +1)d,

with ...
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Theorem (Continued)

... ψ̂≥ 0 a.e. on Ω×D× [0,T ],∫
D

M(q
∼
) ψ̂(x∼,q∼, t)dq

∼
= 1 for a.e. (x, t) ∈Ω× [0,T ],

and finite relative entropy and Fisher information, with

F (ψ̂) ∈ L∞(0,T ;L1
M(Ω×D)) and

√
ψ̂ ∈ L2(0,T ; X̂),

such that the pair of functions (u∼, ψ̂) is a global weak solution to the
problem in the sense that

∫ T

0

〈
∂u
∼

∂t
,w
∼

〉
V

dt +
∫ T

0

∫
Ω

[[
(u
∼
·∇
∼

x )u
∼

]
· w
∼
+ν∇

≈
x u
∼

: ∇
≈

x w
∼

]
dx
∼

dt

=
∫ T

0

[
〈 f
∼
,w
∼
〉V −µ

K

∑
i=1

∫
Ω

C
≈

i(M ψ̂) : ∇
≈

x w
∼

dx
∼

]
dt

∀w
∼
∈ L2(0,T ;V

∼
σ), σ≥ 1

2 d, σ > 1;
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Theorem (Continued)

∫ T

0

〈
M

∂ψ̂

∂t
, ϕ̂

〉
X̂

dt

+
∫ T

0

∫
Ω×D

M
[
ε∇
∼

x ψ̂−u
∼

ψ̂

]
· ∇
∼

x ϕ̂ dq
∼

dx
∼
∆t

+
1

2λ

∫ T

0

∫
Ω×D

M
K

∑
i=1

K

∑
j=1

Ai j ∇
∼

q j ψ̂ · ∇
∼

qi ϕ̂ dq
∼

dx
∼
∆t

−
∫ T

0

∫
Ω×D

M
K

∑
i=1

[σ
≈
(u
∼
)q
∼

i] ψ̂ · ∇
∼

qi ϕ̂ dq
∼

dx
∼
∆t = 0

∀ϕ̂ ∈ L2(0,T ;Hs(Ω×D)) with s > 1+ 1
2(K +1)d.

The initial conditions u∼(·,0) = u∼
0(·) and ψ̂(·, ·,0) = ψ̂0(·, ·) are satisfied

in the sense of weakly continuous functions, in the function spaces
Cw([0,T ];L∼

2(Ω)) and Cw([0,T ];L1
M(Ω×D)), respectively.
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Theorem (Continued)

The weak solution (u∼, ψ̂) obeys the following energy inequality for t ∈ [0,T ]:

‖u∼(t)‖2 +
ν

2

∫ t

0
‖∇≈ x u∼(s)‖2 ds+ µ

∫
Ω×D

MF (ψ̂(t))dq
∼

dx∼

+4µε

∫ t

0

∫
Ω×D

M |∇∼ x

√
ψ̂|2 dq

∼
dx∼ds+

a0µ
λ

∫ t

0

∫
Ω×D

M |∇∼ q

√
ψ̂|2 dq

∼
dx∼ds

≤ ‖u∼0‖2 +
1
ν

∫ t

0
‖ f
∼
(s)‖2

V ′ ds+µ
∫

Ω×D
MF (ψ̂0)dq

∼
dx∼,

with F (s) = s(logs−1)+1, s≥ 0.
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Equilibration of global weak solutions

Theorem

Under the assumptions of the previous theorem and if M satisfies the
Bakry–Émery condition: Hess(− logM(q

∼
))≥ κ Id, with κ > 0; then,

‖u∼(T )‖2 +
µ
|Ω|‖ψ̂(T )−1‖2

L1
M(Ω×D)

≤ e−γ0T
[
‖u∼0‖2 +2µ

∫
Ω×D

MF (ψ̂0)dq
∼

dx∼

]
+

1
ν

∫ T

0
‖ f
∼
‖2

V ′ ds, ∀T > 0,

where γ0 := min
(

ν

C2
P
, κa0

2λ

)
. In particular if f

∼
≡ 0, then

‖u∼(T )‖2 +
µ
|Ω|‖ψ̂(T )−1‖2

L1
M(Ω×D)

≤ e−γ0T
[
‖u∼0‖2 +2µ

∫
Ω×D

MF (ψ̂0)dq
∼

dx∼

]
.
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Proof.

Again, very technical. Lower-semicontinuity argument based on:

Logarithmic Sobolev inequality:

∫
D

ϕ̂(q
∼
) log

ϕ̂(q
∼
)

‖ϕ̂‖L1
M(D)

M(q
∼
)dq
∼
≤ 2

κ

∫
D

∣∣∣∇∼ q

√
ϕ̂(q
∼
)
∣∣∣2 M(q

∼
)dq
∼
,

for all ϕ̂ such that ϕ̂≥ 0 on D and
√

ϕ̂ ∈ H1
M(D).

Arnold, Bartier & Dolbeault (2007)

Csiszár–Kullback inequality w.r.t. the Gibbs measure dµ := M(q
∼
)dq
∼

:

‖ψ̂(x∼, ·,T )−1‖L1
M(D) ≤

[
2
∫

D
F (ψ̂(x∼,q∼,T ))M(q

∼
)dq
∼

] 1
2

.

J.W. Barrett & E. Süli (Submitted to M3AS; March 2010)
http://arxiv.org/abs/1004.1432
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Heterogeneous ADI method for Fokker–Planck equation

For single time step update, solve series of reduced-dimension problems
– similar to alternating direction iteration (ADI).

3D dumbbell case: series of 3D solves, rather than one 6D solve.
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Overall algorithm

1 Initialise: u∼(x∼,0) = u∼
0(x∼), ψ(x∼,q∼,0) = ψ0(x∼,q∼), and τ≈(x∼,0) := 0≈.

2 Impose BCs on u∼. Update velocity/pressure by FEM-based NS solver.

3 Update ψ(x∼, ·, tn+1/2) in D by iterating over the physical space mesh
points x∼ ∈Ω and updating each configuration space cross-section.

4 Update ψ(·,q
∼
, tn+1) in Ω by iterating over the configuration space

mesh points in q
∼
∈ D and updating each physical space cross-section.

5 Compute the extra stress tensor τ≈ based on updated FP solution.

6 Update u∼ using the updated stress field.
Return to Step 3 and loop until the final time is reached or a

termination condition, such as
‖u∼n+1−u∼n‖∞

∆t < TOL, is met.
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termination condition, such as
‖u∼n+1−u∼n‖∞

∆t < TOL, is met.
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Numerical Results

Algorithm implemented in C++ using open source finite element
library, libMesh: http://libmesh.sourceforge.net

Computations performed on Lonestar, a Linux cluster at the Texas
Advanced Computing Centre (TACC): http://www.tacc.utexas.edu

Computations by David Knezevic (Oxford, now MIT).

Lonestar has 5400 processors, 11 TB of memory,
peak performance 62 TFLOPS (= 62×1012 FLOPS/s).

D. Knezevic & E. Süli (M2AN, 2009)
Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift

D. Knezevic & E. Süli (M2AN, 2009)
A heterogeneous alternating-direction method for a micro-macro dilute polymeric
fluid model
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3D/6D: Flow past a ball in a channel

Pressure-drop-driven flow past a ball in hexahedral channel.
P2/P1 mixed FEM for (Navier–)Stokes equation on a mesh with
3045 tetrahedral elements and 51989 Gaussian quadrature points.
Fokker–Planck equation solved using heterogenous ADI method in 6D
domain Ω×D. 51989 3D solves per time step in q

∼
= (q1,q2,q3) ∈ D

and 1800 3D solves per time-step in x∼ = (x,y,z) ∈Ω.
Computed using 120 processors; 45s/time step; 10 time steps;
∆t = 0.05; λ = Wi = 0.5.
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3D/6D: Flow past a ball in a channel: extra stress tensor

τ11 τ12 τ13

τ22 τ23 τ33
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5. Conclusions

1 We showed the existence of global-in-time weak solutions to a general
class of finitely extensible nonlinear bead-spring chain models for dilute
polymers, and their exponential convergence to an equilibrium.

2 We have developed a numerical algorithm for the associated 6D
Fokker–Planck equation coupled to the 3D Navier–Stokes equation.

L. Figueroa & E. Süli (2010):
Greedy algorithms for high-dimensional Fokker–Planck equations with
unbounded drift

3 We have now also shown the existence of global-in-time weak solutions
to a general class of kinetic models with Hookean springs:

J.W. Barrett & E. Süli (2010, in preparation):
Existence and equilibration of global weak solutions to Hookean
bead-spring chain models
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