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A fake projective plane is a smooth compact complex surface P which is

not biholomorphic to the complex projective plane P2C, but has the same

Betti numbers as P2C, namely 1, 0, 1, 0, 1.

The first fake projective plane was constructed by Mumford in 1979. He

also showed that there could only be a finite number of these surfaces.

Two more examples were found by Ishida and Kato in 1998, and another

by Keum in 2006.
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In their 2007 Inventiones paper [PY], Gopal Prasad and Sai-Kee Yeung

almost completely classified fake projective planes. They showed that

these fall into 33 “classes”.

For 28 of the classes, they give at least one fake projective plane. These

28 classes are all defined using unitary groups associated with certain

cubic division algebras.

For each of the remaining 5 classes, they left open the question of

existence of fake projective planes in that class, but conjectured that

there are none. These 5 classes are all defined using certain unitary

matrix groups.

All the classes are associated with pairs (k, ℓ) of fields, and extra data.

It turns out that k is either Q or a real quadratic extension of Q, and ℓ

is always a totally complex quadratic extension of k.
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What Tim and I have done is

(a) found all the fake projective planes, up to isomorphism, in each of

the 28 division algebra classes, and

(b) shown that there are indeed no fake projective planes in the remaining

5 matrix algebra classes.

In (a), we find that there are, altogether, 50 fake projective planes.

This count depends on what “isomorphism” means. If it means “bi-

holomorphism”, then we should multiply this number by 2. We are in

fact classifying the fpp’s according to their fundamental groups. It fol-

lows from a result of Siu, that if two fpp’s have isomorphic fundamental

groups, then they are either biholomorphic or conjugate-biholomorphic.
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Recall that U(2,1) is the group of 3 × 3 complex matrices g such that

g∗F0g = F0, where

F0 =







1 0 0
0 1 0
0 0 −1






,

and that PU(2,1) is U(2,1), modulo scalars. This is the automorphism

group of B(C2) = {(z1, z2) : |z1|2 + |z2|2 < 1}, with the hyperbolic

metric.

Theorem (Klingler, Yeung). The fundamental group Π of a fake projec-

tive plane is a torsion-free cocompact arithmetic subgroup of PU(2,1).

So a fake projective plane is a ball quotient B(C2)/Π for such a Π. By

Hirzebruch proportionality,

3µ(PU(2,1)/Π) = χ(B(C2)/Π) = 3

So Π has covolume 1 in PU(2,1).
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If Π ⊂ Γ̄, where Γ̄ is maximal arithmetic, then µ(PU(2,1)/Γ̄) must equal

1/[Γ̄ : Π].

Prasad and Yeung work out the possibilities for maximal arithmetic sub-

groups Γ̄ of PU(2,1) such that µ(PU(2,1)/Γ̄) = 1/N for an integer N .

Theorem [PY]. The fundamental groups of the fake projective planes in

this class are the torsion-free subgroups Π of Γ̄ such that

• [Γ̄ : Π] = N , and

• Π/[Π,Π] is finite.

For the 28 cubic division algebra cases, the only possibilities for N are

1, 3, 9 and 21. In the 5 matrix algebra cases, N is one of 48, 288, 600,

and 864.

6



Our main result: For each of the Γ̄’s we have found generators (explicit

elements of the corresponding cubic division algebra or matrix algebra).

We have found a presentation of Γ̄ in each case.

This allows us to find all subgroups Π in Γ̄ (up to conjugacy) satisfying

(a), (b) and (c). The computer algebra package Magma, for example,

has a command LowIndexSubgroups(G,n) which lists all conjugacy classes

of subgroups of a given index n in a finitely presented group G.

Magma’s command Rewrite(G,H) finds a presentation of a given sub-

group H of finite index in a given finitely presented group G.

So the fundamental groups Π of the fpp’s can be listed, and presentations

given for each of them.
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Example. For the class we call (a = 7, p = 2, {7}), Γ̄ has the presentation

Γ̄ = 〈 b, z |
b3 = 1,

z7 = 1,

(bz−2bz−1)3 = 1,

b−1zbz2bz2b−1z−1bz2b−1z = 1,

bz2b−1z−1bz−1bz2b−1z−1bz−1bz−3 = 1,

bz2bzbz−2b−1zbz−1bz−2b−1z2 = 1〉.
In this case µ(PU(2,1)/Γ̄) = 1/21. Magma’s command

LowIndexSubgroups(Γ̄,21)

lists all (conjugacy classes of) subgroups of Γ̄ of index at most 21.
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Example (continued). It finds that there are four subgroups of index 21:

Πa = 〈bzb−1z−2, bz−1b−1z2, zbz3b−1〉

Πb = 〈zbz−1b−1, z3bzb−1, z2b−1z−1b, zb−1zbz〉

Πc = 〈zbz−1b−1, z2bz2b−1, zb−1zbz〉

Πd = 〈zb−1, z−3b, b−1zbzb〉
All are torsion-free with finite abelianization.

The group Πd is the fundamental group of Mumford’s original fake pro-

jective plane. We know this because

• NΓ̄(Πd) = Πd, which means that Aut(B(C2)/Πd) is trivial,

• There is a surjective homomorphism Γ̄ → PSL(2, F7).
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Getting back to the Prasad-Yeung classes: The 28 division algebra

classes are each associated with pairs (k, ℓ) of fields. Only 9 pairs (k, ℓ)
arise:

• For k = Q: ℓ = Q(
√−a ), a = 1, 2, 7, 15 or 23.

• k = Q
(√

5
)

, ℓ = k
(√

−3
)

. “C2 case”.

• k = Q
(√

2
)

, ℓ = k
(

√

−5+ 2
√
2
)

. “C10 case”.

• k = Q
(√

6
)

, ℓ = k
(√

−3
)

. “C18 case”.

• k = Q
(√

7
)

, ℓ = k
(√

−1
)

. “C20 case”.

For each of these 9 pairs (k, ℓ), there are at least 2 classes.
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Associated to each pair (k, ℓ) there is a division algebra D.

For each pair (k, ℓ), a particular prime p is specified. We require that

• there are exactly two p-adic places v on ℓ,

• D ⊗ ℓv is a division algebra for these two v’s, and

• D ⊗ ℓv′
∼= Mat3×3(ℓv′) for any other non-archimedean place v′ of ℓ.
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There is an involution ι of the second kind on D. Form the group

G(k) = {ξ ∈ D : ι(ξ)ξ = 1 and Nrd(ξ) = 1}.
The involution ι is chosen so that G(kv0)

∼= SU(2,1) for one archimedean

place v0 on k, and so that G(kv) is compact for the other archimedean

place (when k 6= Q).

We realize the groups Γ̄ inside the adjoint group

Ḡ(k) = {ξ ∈ D : ι(ξ)ξ = 1}/{t ∈ ℓ | t̄t = 1}.
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For the purpose of calculations, we realize each D as a “cycle simple

algebra”:

Suppose that L is a field, and that M is a degree 3 Galois extension of L,

with Galois group generated by ϕ. Let D ∈ L. Form

D = {a+ bσ + cσ2 : a, b, c ∈ M}.
We define multiplication so that σ3 = D and σxσ−1 = ϕ(x) for all x ∈ M .

Then D is a 9-dimensional simple algebra over L with centre L.

We can embed D in Mat3×3(M):

Ψ : x 7→







x 0 0
0 ϕ(x) 0

0 0 ϕ2(x)





 (for x ∈ M), and σ 7→







0 1 0
0 0 1
D 0 0






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If D is the norm NM/L(η) of an element of M , then D ∼= Mat3×3(L). We

choose a basis θ0, θ1, θ2 of M over L, let ζ0, ζ1, ζ2 be the basis of M dual

to this with respect to trace: TraceM/L(θiζj) = δij. We find that for any

ξ ∈ D, the following has entries in L:

C2C1Ψ(ξ)C−1
1 C−1

2 ,

where

C1 =







η 0 0
0 1 0
0 0 1/ϕ(η)





 and C2 =







θ0 ϕ(θ0) ϕ2(θ0)

θ1 ϕ(θ1) ϕ2(θ1)

θ2 ϕ(θ2) ϕ2(θ2)





 .

This is because C−1
2 has (i, j)th entry ϕi(ζj), and so for each x ∈ M ,

(

C2C1Ψ(x)C−1
1 C−1

2

)

i,j
= TraceM/L(θixζj) ∈ L,

(

C2C1Ψ(σ)C−1
1 C−1

2

)

i,j
= TraceM/L(θiηϕ(ζj)) ∈ L.
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Example: the case k = Q, ℓ = Q(
√
−7). There are 6 classes in this

case. We use the field m = Q(ζ), where ζ = ζ7, which is a degree 3

extension of ℓ with Galois group Gal(m/ℓ) = 〈ϕ〉, where ϕ(ζ) = ζ2, and

let D = 3+
√
−7

4 . Note that
√
−7 = 1+ 2ζ +2ζ2 +2ζ4, so ℓ ⊂ m. Thus

D =
{

a+ bσ + cσ2 : • a, b, c ∈ m,

• σxσ−1 = ϕ(x) for all x ∈ m,

• σ3 =
3+

√
−7

4
.
}

The special prime here is 2.

• D ⊗ ℓv is a division algebra for the two 2-adic valuations on ℓ.

• D ⊗ ℓv′
∼= Mat3×3(ℓv′) for all the other v′’s.

The reason is: v′(D) = 0, and so D = Nmv′′/ℓv′
(η) for some η ∈ mv′′.
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There is an involution ι0 on D which maps σ to σ−1 and ζ to ζ−1, but this

needs to be modified. In terms of the embedding Ψ : D → Mat3×3(m),

we have

Ψ(ι0(σ)) = Ψ(σ−1) = Ψ(σ)−1 =







0 0 D̄
1 0 0
0 1 0






= Ψ(σ)∗,

and in general ι0(ξ)ξ = 1 means that Ψ(ξ)∗Ψ(ξ) = I. So G(R) would

be SU(3), not the desired SU(2,1). We replace ι0 by ι : ξ 7→ w−1ι0(ξ)w,

where w = ζ + ζ−1. Now

Ψ(ι(σ)) = Ψ(w−1σ−1w) = Ψ(w)−1Ψ(σ)∗Ψ(w) = F−1Ψ(σ)F

for

F =







w 0 0
0 ϕ(w) 0

0 0 ϕ2(w)






,

and in general, ι(ξ)ξ = 1 means that F−1Ψ(ξ)∗FΨ(ξ) = I, that is,

Ψ(ξ)∗FΨ(ξ) = F . So G(R) ∼= SU(2,1) because the real numbers w,

ϕ(w) and ϕ2(w) do not all have the same sign.
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Returning to the general situation, we know that for a particular prime p,

there is a unique p-adic valuation v on k, and that D ⊗ ℓṽ is a division

algebra for the two valuations ṽ on ℓ extending v.

For the other archimedean valuations v on k, either

Ḡ(kv)
∼=







PGL(3, kv) if v splits in ℓ,

PU(hv) if v does not split in ℓ.

Here hv is a nondegenerate hermitian form on ℓ3v .

We need to describe the maximal parahoric subgroups P̄v ≤ Ḡ(kv).

When Ḡ(kv)
∼= PGL(3, kv), the maximal parahorics are the conjugates of

PGL(3,Ov), where Ov is the valuation ring of kv. PGL(kv) acts on the

homothety classes of Ov-lattices in k3v and PGL(3,Ov) is the stabilizer

of [O3
v ]. The building involved is of type Ã2.
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When Ḡ(kv)
∼= PU(hv), we write v for the unique place of ℓ over v. Let

Ov denote the valuation ring of ℓv, and πv a uniformizer of ℓv. If L ⊂ ℓ3v
is an Ov-lattice, define its dual to be the lattice

L′ = {y ∈ ℓ3v : hv(x, y) ∈ Ov for all x ∈ L}.
A type 1 maximal parahoric is the stabilizer of a self-dual lattice L1.

A type 2 maximal parahoric is the stabilizer of a lattice L2 such that

πvL2 $ L′
2 $ L2.

The building involved here is a tree, with L1 adjacent to L2 if πvL2 ⊂
L1 ⊂ L2.

When ℓv is a ramified extension of kv, this tree is homogeneous, with

each vertex having qv+1 neighbours. When ℓv is a unramified extension

of kv, this tree is semihomogeneous, with each type 1 vertex having q3v+1

neighbours, and each type 2 vertex having qv +1 neighbours.
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Return to our example k = Q and ℓ = Q(
√
−7 ). If a prime p 6= 2 splits

in ℓ, let P̄p be the stabilizer of [Z3
p]. For the primes p which do not split

in ℓ, arrange the isomorphisms Ḡ(Qp)
∼= PU(hp) so that Lp = Zp(

√
−7 )3

is self-dual, and let P̄p be its stabilizer. Prasad and Yeung tell us that

Γ̄ = Ḡ(Q) ∩
∏

p
P̄p

has covolume 1/21 in PU(2,1).

If we replace the parahoric P̄7 by the stabilizer of a type 2 neighbour of

L7 = Z7(
√
−7 )3 we get the same covolume, because the 7-adic building

is a homogeneous tree. If for some prime q 6= 7 which does not split in ℓ

we replace Lq = Zq(
√
−7 )3 by a type 2 neighbour, then the covolume of

the corresponding Γ̄ is

1

21
× q3 +1

q +1
.

So if q = 3, the covolume is 1/3; if q = 5, the covolume is 1; otherwise

we do not get a covolume of the form 1/N .

19



In general, if

Γ̄ = Ḡ(k) ∩
∏

v
P̄v

has covolume 1/N , we denote by T1 the set of non-archimedean places

of k which do not split in ℓ, and for which P̄v is of type 2.

In our example, the possibilities for T1 are

∅, {3}, {5}, {7}, {3,7} and {5,7}.
There are 6 classes of fake projective places corresponding to the pair

(k, ℓ) = (Q,Q(
√
−7 )). we denote them (a = 7, p = 2, T1) for the above

T1’s. The covolumes of the corresponding Γ̄’s are, respectively,

1

21
,
1

3
,
1

1
,

1

21
,
1

3
, and

1

1
.
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Finding generators and relations for the groups Γ̄. Let’s consider the

example Γ̄(a=7,p=2,{7}). We are looking for elements ξ ∈ D which fix the

“standard” vertex in the p-adic building for all primes p 6= 2,7, and which

fix a type 2 vertex of the 7-adic building. We need to look for elements

ξ =
5
∑

i=0

1
∑

j=−1

cijζ
iσj,

of D such that (a) ι(ξ)ξ = 1, as well as

(b) the coefficients cij are in Z[1/2,1/7],

(c) Nrd(ξ) is a power of (3 +
√
−7)/4, and

(d) the vector c of coefficients cij satisfies a condition of the form

Mc has entries in Z7 (for a certain 18× 18 matrix M .)
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Our main method of finding elements ξ with these properties is the

Cayley transform: for S ∈ D,

ι(S) = −S ⇒ ξ = (1+ S)(1− S)−1 satisfies ι(ξ)ξ = 1.

Writing

S =
5
∑

i=0

1
∑

j=−1

sijζ
iσj,

the condition ι(S) = −S is linear in the sij’s, and reduces the number of

free variables from 18 to 9 rational numbers.

C programs were written which ran through 10 integer variables looking

for S’s such that ξ = (1+S)(1−S)−1 satisfies the integrality conditions

(b) and (d). Two separate searches were done imposing the conditions

Nrd(ξ) = 1 and Nrd(ξ) = (3+
√
−7)/4.
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We ordered the list of ξ’s produced by these C programs according to how

far they moved the origin for the hyperbolic distance on the ball B(C2).

Fact. The Hilbert-Schmidt norm ‖g‖HS =
(

∑

i,j |gij|2
)1/2

of g ∈ U(2,1)

satisfies

‖g‖2HS = 3+ 4sinh2(dH(g(0),0)).

This allows us to simply work with the Hilbert-Schmidt norm of the

images of the ξ’s under an explicit isomorphism Ḡ(R) ∼= PU(2,1).

We list our output ξ’s in order of increasing Hilbert-Schmidt norm, then

form products of these, and add a product to the list if its Hilbert-

Schmidt norm is small. Reorder the list and repeat.
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At a certain point, two (small) elements b and z appear on the list, and

we checked that all output is in the group generated by these two.

The element z is just the image of ζ7. The element b is the image of

1

7

5
∑

i=0

1
∑

j=−1

bijζ
iσj,

where the coefficients bij are the 18 numbers

−9,−3,6,−4,1,−2,1,−2,−3,−1,−5,3,−3,−8,2,2,−4,−6

in the order

b0,−1, b0,0, b0,1, b1,−1, . . . , b5,−1, b5,0, b5,1.

How do we show that b and z really generate Γ̄?
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To show that these two elements really do generate Γ̄, we embed Γ̄ into

PU(2,1):

As mentioned, [PY] tell us that the covolume of the embedded lattice is

1/21. So the normalized hyperbolic volume of the fundamental domain

F = {z ∈ B2
C : d(0, z) ≤ d(g(0), z) for all g ∈ Γ̄}

is 1/21. Let Γ′ be the subgroup of Γ̄ generated by b and z. Tim has

written a program to estimate the hyperbolic volume of

F ′ = {z ∈ B2
C : d(0, z) ≤ d(g(0), z) for all g ∈ Γ′}

The idea of the program is to consider, for a large set of z = (z1, z2)

such that |z1|2 + |z2|2 = 1,

tz = sup{t ∈ [0,1) : d(0, tz) ≤ d(g(0), tz) for all g ∈ Γ′ s.t. d(g(0),0) ≤ M}.
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The program also estimates (correct to several decimal places) the radius

r0 = max{d(z,0) : z ∈ F}
of the fundamental domain. We then use a standard theorem to obtain

a presentation for Γ̄.

Theorem. The elements g satisfying d(g(0),0) ≤ 2r0 generate Γ̄, and the

relations of the form g1g2g3 = I, where d(gi(0),0) ≤ 2r0 for i = 1,2,3,

are sufficient to give a presentation of Γ̄.

So the presentation initially involves hundreds of relations. This can be

given to Magma, which has a command Simplify, which resulted in the

presentation given above.

Probably human intervention can further simplify this presentation.
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In terms of matrices, z and b are the images of






ζ 0 0

0 ζ2 0

0 0 ζ4







and 1/14 times




−8ζ5−16ζ4−10ζ3−4ζ2+2ζ−6 −12ζ5+4ζ4+6ζ3−6ζ2−4ζ+12 10ζ5+6ζ4+2ζ3+12ζ2+8ζ−10

2ζ5+4ζ4+6ζ3−6ζ2−4ζ−16 10ζ5+6ζ4+2ζ3+12ζ2−6ζ+4 −6ζ5−12ζ4−18ζ3−10ζ2−2ζ+6

10ζ5+13ζ4+2ζ3+19ζ2+ζ+18 −6ζ5−12ζ4−4ζ3−10ζ2−2ζ−22 −2ζ5+10ζ4+8ζ3−8ζ2+4ζ+2

respectively.
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Checking that a subgroup Π of Γ̄ is torsion-free.

We have formed a list g1, . . . , gm of all g ∈ Γ̄ such that d(g(0), 0) ≤ 2r0.

Let γ1, . . . , γN be a set of coset representatives of Π in Γ̄.

Fact: If g ∈ PU(2,1) has finite order, then it fixes a point of B(C2).

Suppose that there is a non-trivial g ∈ Π of finite order.

If g fixes z, choose a γ ∈ Γ̄ such that z′ = γ(z) lies in our fundamental

domain. Then g′ = γgγ−1 fixes z′, and d(z′,0) ≤ r0. Hence d(g′(0),0) ≤
2r0. So γgγ−1 is one of the gi, and it fixes the coset γΠ, which equals

γjΠ for some j.

Thus γ−1
j giγj ∈ Π for some i, j.

So to check that Π is torsion-free, we check that it contains no such

element.
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Our calculations give us a list of conjugacy classes of elements of finite

order in each case.

This helps us give some interesting singular surfaces XG corresponding

to groups G such that Π < G ≤ Γ̄, because then

• π1(XG)
∼= G/〈 torsion elements in G 〉.

For the above example, Γ̄ is generated by the elements b and z, which

have finite order. So π1(XΓ̄) is trivial.

Also, the subgroup

G = 〈Γ̄ | z, bzb−1〉
has index 3 in Γ̄. For three of the above Π’s, Π < G ≤ Γ̄. Also, G is

clearly generated by elements of finite order, and so π1(XG) is trivial.
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There are several examples of this sort in our list. Most arise from

examples with [G : Π] = 3, and then the π1(XG)’s (coming from various

classes) are:

{1}, C2, C3, C4, C7, C13, C2 × C3, C2 × C7,

C2 × C2, C2 × C4, S3, D8, Q8.

We also have examples of G’s with π1(XG) trivial and examples with

π1(XG) = C2 for [G : Π] = 7, 9 and 21.
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By knowing a presentation for each Π, we can easily determine whether

Π can be lifted to SU(2,1).

In geometric terms, this is equivalent to asking whether the canonical

line bundle of B2
C/Π is divisible by 3.

This was proved in [PY] to be true for most cases, but in the C2 and C18
cases this issue was left open.

In the C18 classes, it turns out that there are Π’s which do not lift

to SU(2,1).

In the above example, the generators b and z are initially realized as

elements of reduced norm (3+
√
−7)/4 and 1 respectively. Replacing b by

tb, where t3 = (3−
√
−7)/4, one checks the relations in the presentation

hold in SU(2,1), and gets a lift of all of Γ̄ to SU(2,1).
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Most of the Π are congruence subgroups, but some are not. For sim-

plicity, let us consider the cases k = Q. Let

V = {ξ ∈ D : ι(ξ) = ξ and Trace(ξ) = 0}.
This is an 8-dimensional vector space over Q. The group Ḡ(Q) acts on V

by conjugation, giving a representation Ḡ(Q) → SL(8,Q). If we fix one

of the Γ̄’s contained in Ḡ(Q), then a basis of V can be chosen so Γ̄ maps

into SL(8,Z).

We can then reduce modulo n for various n, and check whether a given

Π ≤ Γ̄ contains the kernel of

Γ̄ → SL(8,Z) → SL(8,Z/nZ).

In some of the (a = 7, p = 2, ∅) cases, there is no such n. This is shown

by reducing to the case n prime.
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A matrix group example. Consider the class we call (C11, ∅). It is one of

the 5 classes for which we have shown that there is no fake projective

plane, confirming Gopal and Sai-Kee’s conjecture.

The fields k, ℓ involved here are k = Q(
√
3) and ℓ = Q(ζ), where ζ = ζ12

is e2πi/12. Notice that 2ζ − ζ3 =
√
3, so that k ⊂ ℓ. Let

Γ̄ = {ξ ∈ M3×3(Z[ζ]) : ξ∗Fξ = F}
modulo scalars. The possible determinants are the powers of ζ. Here

F =







−
√
3− 1 1 0

1 1−
√
3 0

0 0 1






,

The form here could be replaced by a diagonal one, but then the inte-

grality condition is more complicated.

In [PY], it is shown that µ(PU(2,1)/Γ̄) = 1/864. So to exclude fpp’s in

this case we proved:
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Theorem. This Γ̄ does not contain a torsion-free subgroup of index 864

having finite abelianization.

The index 864 is well beyond the capabilities of Magma’s LowIndexSubgroups

command. So we had to use special methods.
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Theorem. This Γ̄ does not contain a torsion-free subgroup of index 864

having finite abelianization.

In showing this, we discovered a subgroup Π of Γ̄ which is the funda-

mental group of a surface with interesting properties:

Theorem. This Γ̄ does contain a torsion-free subgroup Π of index 864

having abelianization Z2. It is unique up to conjugation.

So the Euler-Poincaré characteristic of M = B(C2)/Π is 3, but its first

Betti number is 2. So its Betti numbers are 1, 2, 5, 2, 1. For each

integer n ≥ 1, there is a normal subgroup Πn of index n. So Mn =

B(C2)/Πn satisfies c1(Mn)2 = 3c2(Mn) = 9n.
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Example (continued). We first find matrix generators and a presentation

for Γ̄. To find elements in Γ̄, and finally a short list of generators, we

used the Cayley transform search method.

In this case, Γ̄ is generated by the following four matrices:

u =







1 0 0

−ζ3 − ζ2 + ζ +1 ζ3 0
0 0 1






, v =







ζ3 +1 ζ3 − ζ2 − ζ +1 0

ζ2 + ζ −ζ3 − 1 0
0 0 1






,

j =







ζ 0 0
0 ζ 0
0 0 1






and b =







ζ3 + ζ2 −ζ2 ζ2 − 1

ζ3 +2ζ2 + ζ −ζ ζ3 + ζ2

−ζ3 − ζ2 + ζ +1 ζ3 −ζ3 + ζ +1






.

The group K generated by u, v and j is finite, of order 288. It has a

presentation given by these generators and the relations

u4 = v8 = [u, j] = [v, j] = j−3v2 = uvuv−1uv−1 = 1.
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A presentation of Γ̄ is obtained using these, the extra generator b, and

the extra relations (the last four of which are perhaps not needed):

bjbju2v−1 = 1, [b, vu2] = 1, b3 = 1, and (bvu3)3 = 1,

(buj)4 = 1, (bu2buj)3 = 1, (bu2vuj−1buj)3 = 1, (bu3vj−1buj)3.

Suppose that Γ̄ has a torsion-free subgroup Π of index 864. If T is

a transversal, there is an action of Γ̄ on T with the property that if

g ∈ Γ̄ \ {1} has finite order, then g acts on T without fixed points:

gtΠ = tΠ ⇒ t−1gt ∈ Π has finite order.

In particular, this is true for the elements g ∈ K \ {1}, and for the el-

ement b. We know the action of each g ∈ K explicitly: we can write

T = Kt0 ∪Kt1 ∪Kt2, and k(k′ti) = (kk′)ti.
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We have a homomorphism ϕ : Γ̄ → Perm(T), and it is completely deter-

mined by the permutation B = λ(b), which must have special properties.

In particular, it turns out that bk−1 has finite order for 76 of the ele-

ments k of K. For no t ∈ T can B(t) = kt hold for such a k — otherwise

ϕ(bk−1)(kt) = ϕ(b)(t) = kt, and the finite order element bk−1 fixes an

element of T . All possible B’s were found by a back-track search.

Using a specific permutation B of {1, . . . ,864} the following subgroup

was found:

Π = 〈vubju−1, u−1j−1bj2, u2vbuj−2〉,
and checked to have index 864, be torsion-free, and have abelianiza-

tion Z2.
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