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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold >: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.
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by an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.

0 Geometric Structures on Manifolds / 24



Deformation spaces of geometric structures
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@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold >: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
@ and can be locally modeled on Euclidean space.
@ More generally every locally homogeneous space I'\G/H (where G is
a Lie group, H C G compact, and I discrete torsionfree) is a manifold
locally modeled on the geometry (G, G/H).
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold >: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
@ and can be locally modeled on Euclidean space.
@ More generally every locally homogeneous space I'\G/H (where G is
a Lie group, H C G compact, and I discrete torsionfree) is a manifold
locally modeled on the geometry (G, G/H).

@ (lassify these structures, given a fixed topology ¥ and a geometry
(homogeneous space G/H)?
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold >: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
@ and can be Jocally modeled on Euclidean space.

@ More generally every locally homogeneous space I'\G/H (where G is
a Lie group, H C G compact, and I discrete torsionfree) is a manifold
locally modeled on the geometry (G, G/H).

@ (lassify these structures, given a fixed topology ¥ and a geometry
(homogeneous space G/H)?

o |deally would like a space whose points classify these geometries...
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold >: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
@ and can be Jocally modeled on Euclidean space.

@ More generally every locally homogeneous space I'\G/H (where G is
a Lie group, H C G compact, and I discrete torsionfree) is a manifold
locally modeled on the geometry (G, G/H).

@ (lassify these structures, given a fixed topology ¥ and a geometry
(homogeneous space G/H)?

o |deally would like a space whose points classify these geometries...
o Whatever can go wrong in defining such a space will go wrong, for
certain choices of X and (G, X).
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold >: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
@ and can be Jocally modeled on Euclidean space.

@ More generally every locally homogeneous space I'\G/H (where G is
a Lie group, H C G compact, and I discrete torsionfree) is a manifold
locally modeled on the geometry (G, G/H).

@ (lassify these structures, given a fixed topology ¥ and a geometry
(homogeneous space G/H)?

o |deally would like a space whose points classify these geometries...

o Whatever can go wrong in defining such a space will go wrong, for
certain choices of X and (G, X).

@ Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold >: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
@ and can be Jocally modeled on Euclidean space.

@ More generally every locally homogeneous space I'\G/H (where G is
a Lie group, H C G compact, and I discrete torsionfree) is a manifold
locally modeled on the geometry (G, G/H).

@ (lassify these structures, given a fixed topology ¥ and a geometry
(homogeneous space G/H)?

o |deally would like a space whose points classify these geometries...

o Whatever can go wrong in defining such a space will go wrong, for
certain choices of X and (G, X).

@ Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...

@ and then by discrete groups which don't act properly.
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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the
study of properties of an abstract space X which are invariant under a
transitive group G of transformations of X.

Library of Congress
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Examples of Klein geometries
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Examples of Klein geometries

o Euclidean geometry: X = R" and G its group of isometries.
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Examples of Klein geometries

o Euclidean geometry: X = R" and G its group of isometries.
@ Preserves distance, angle, area, straight lines, parallelism..
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Examples of Klein geometries

o Euclidean geometry: X = R" and G its group of isometries.
@ Preserves distance, angle, area, straight lines, parallelism..

o Affine geometry: X = R" and G its group of affine transformations
x — Ax + b.

0 Geometric Structures on Manifolds / 24



Examples of Klein geometries

o Euclidean geometry: X = R" and G its group of isometries.
@ Preserves distance, angle, area, straight lines, parallelism..

o Affine geometry: X = R" and G its group of affine transformations
x — Ax + b.

@ Preserves parallelism, geodesics (curves of zero acceleration).
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Examples of Klein geometries

o Euclidean geometry: X = R" and G its group of isometries.
@ Preserves distance, angle, area, straight lines, parallelism..
o Affine geometry: X = R" and G its group of affine transformations
x — Ax + b.
@ Preserves parallelism, geodesics (curves of zero acceleration).

@ Projective geometry: X = RP" and G its group of collineations.
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o Preserves (unparametrized) straight lines, incidence...
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Examples of Klein geometries

o FEuclidean geometry: X = R" and G its group of isometries.
@ Preserves distance, angle, area, straight lines, parallelism..

o Affine geometry: X = R" and G its group of affine transformations
X — Ax + b.

@ Preserves parallelism, geodesics (curves of zero acceleration).
@ Projective geometry: X = RP" and G its group of collineations.
o Preserves (unparametrized) straight lines, incidence...

o Constant curvature Riemannian geometries...
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Examples of Klein geometries

o FEuclidean geometry: X = R" and G its group of isometries.
@ Preserves distance, angle, area, straight lines, parallelism..
o Affine geometry: X = R" and G its group of affine transformations
x — Ax + b.
@ Preserves parallelism, geodesics (curves of zero acceleration).
@ Projective geometry: X = RP" and G its group of collineations.
o Preserves (unparametrized) straight lines, incidence...
o Constant curvature Riemannian geometries...

@ More exotic geometries: conformal geometries, indefinite metrics,
complex, quaternionic structures, symplectic, contact structures,
incidence geometries on flag manifolds, ...
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Putting geometric structure on a topological space

0 Geometric Structures on Manifolds / 24



Putting geometric structure on a topological space

® Topology: Smooth manifold ¥ with coordinate patches U,;
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Putting geometric structure on a topological space

® Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Un 225 4ho(Un) € X
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Putting geometric structure on a topological space

® Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 2 a(Ua) € X
@ On components of U, N Uz, 3g € G such that
go wa = wﬂ-
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Putting geometric structure on a topological space

® Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 25 ta(Ua) € X
@ On components of U, N Uz, 3g € G such that
go wa = wﬁ-
o Local (G, X)-geometry independent of patch.
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Putting geometric structure on a topological space

® Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 2 a(Ua) € X
@ On components of U, N Uz, 3g € G such that
go wa = wﬁ-

o Local (G, X)-geometry independent of patch.
@ (Ehresmann 1936): Geometric manifold M modeled on X.
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Geometrization in 2 and 3 dimensions
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
@ Spherical geometry (if x(X) > 0);
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@ Dimension 2: every surface has exactly one of:
@ Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
@ Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
@ Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).
@ Equivalently, Riemannian metrics of constant curvature +1, 0, —1.
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
@ Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).
@ Equivalently, Riemannian metrics of constant curvature +1, 0, —1.
@ Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
@ Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).
@ Equivalently, Riemannian metrics of constant curvature +1, 0, —1.
@ Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
@ (Thurston 1976): 3-manifolds canonically decompose into locally
homogeneous Riemannian pieces (8 types). (proved by Perelman)
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Classification of geometric structures
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Classification of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).
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Classification of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).

@ Example: The 2-sphere admits no Euclidean structure:
A metrically accurate world atlas.
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Classification of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).

@ Example: The 2-sphere admits no Euclidean structure:
A metrically accurate world atlas.
o Example: The 2-torus admits a moduli space of Euclidean structures.
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Quotients of domains
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.
@ Convex RP"-structures: 2 C RP" convex domain.

0 Geometric Structures on Manifolds / 24



Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.
@ Convex RP"-structures: 2 C RP” convex domain.
@ Projective geometry inside a quadric Q is hyperbolic geometry.
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.

@ Convex RP"-structures: 2 C RP" convex domain.

@ Projective geometry inside a quadric Q is hyperbolic geometry.
@ Hyperbolic distance is defined by cross-ratios: d(x,y) = log[A, x,y, B].

B
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.
@ Convex RP"-structures: 2 C RP" convex domain.

@ Projective geometry inside a quadric Q is hyperbolic geometry.
@ Hyperbolic distance is defined by cross-ratios: d(x,y) = log[A, x,y, B].

B

@ Projective geometry contains hyperbolic geometry.
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.

@ Convex RP"-structures: 2 C RP" convex domain.

@ Projective geometry inside a quadric Q is hyperbolic geometry.
@ Hyperbolic distance is defined by cross-ratios: d(x,y) = log[A, x,y, B].

B

@ Projective geometry contains hyperbolic geometry.
@ Hyperbolic structures are convex RP"-structures.
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Example: Projective tiling of RP? by equilateral
60°-triangles

This tesselation of the open triangular region is equivalent to the tiling of
the Euclidean plane by equilateral triangles.
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Example: A projective deformation of a tiling of the

hyperbolic plane by (60°,60°,45°)-triangles.

\%@sy AN AV/4

Both domains are tiled by triangles, invariant under a Coxeter group
(3,3,4). First domain bounded by a conic (hyperbolic geometry), second
domain bounded by C**-convex curve where 0 < o < 1. Second domain
invariant under Zariski dense surface group in SL(3,R).
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Example: A hyperbolic structure on a surface of genus two
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Example: A hyperbolic structure on a surface of genus two

@ ldentify sides of an octagon to form a closed genus two surface.

)
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Example: A hyperbolic structure on a surface of genus two

@ ldentify sides of an octagon to form a closed genus two surface.

)

£ a)
(O
by

@ Realize these identifications isometrically for a regular 45°-octagon.

/4/\"

7
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Example: CP!-structures
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Example: CP!-structures

@ Hyperbolic geometry extends to complex projective geometry.
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Example: CP!-structures

@ Hyperbolic geometry extends to complex projective geometry.
@ H? embeds in CP! as the complex hyperbolic line:
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Example: CP!-structures

@ Hyperbolic geometry extends to complex projective geometry.
@ H? embeds in CP! as the complex hyperbolic line:
o CH! is a component of the complement of circle in CP! ~ 52,
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Example: CP!-structures

@ Hyperbolic geometry extends to complex projective geometry.
@ H? embeds in CP! as the complex hyperbolic line:
o CH! is a component of the complement of circle in CP! ~ S2,
o PU(1,1) is the subgroup of PGL(2,C) stabilizing CH! C CP*.
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Example: CP!-structures

@ Hyperbolic geometry extends to complex projective geometry.
@ H? embeds in CP! as the complex hyperbolic line:
o CH! is a component of the complement of circle in CP! ~ S2,
o PU(1,1) is the subgroup of PGL(2,C) stabilizing CH! C CP*.
o Hyperbolic structures on surfaces deform as CP!-structures, through
“bending” or “grafting” constructions (Thurston)
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Modeling structures on representations of
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Modeling structures on representations of

@ Marked (G, X)-structure on X: diffeomorphism X L. M where M is a
(G, X)-manifold.
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Modeling structures on representations of

@ Marked (G, X)-structure on X: diffeomorphism X L. M where M is a
(G, X)-manifold.
@ Define deformation space

Dex)(X) = {Marked (G, X)-structures on Z}/Isotopy
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Modeling structures on representations of

@ Marked (G, X)-structure on X: diffeomorphism X L. M where M is a
(G, X)-manifold.

@ Define deformation space
Dex)(X) = {Marked (G, X)-structures on Z}/Isotopy

@ Mapping class group
Mod(X) = wo(DifF(Z))

acts on D¢ x)(X).
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Representation varieties
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Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
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Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
@ The set Hom(m, G) of homomorphisms

T— G

enjoys the natural structure of an affine algebraic variety
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Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
@ The set Hom(m, G) of homomorphisms

T— G

enjoys the natural structure of an affine algebraic variety
o Invariant under Aut(m) x Aut(G).
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Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
@ The set Hom(m, G) of homomorphisms

T— G

enjoys the natural structure of an affine algebraic variety

o Invariant under Aut(m) x Aut(G).
o Action of Out(w) := Aut(r)/Inn(7) on

Hom(m, G)/G := Hom(m, G)/({1} x Inn(G))
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Holonomy
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@ A marked structure determines a developing map Y — X anda
holonomy representation m1 — G.
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@ A marked structure determines a developing map Y — X anda
holonomy representation m1 — G.

@ Globalize the coordinate charts and coordinate changes respectively.
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@ A marked structure determines a developing map Y — X anda
holonomy representation m1 — G.

@ Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

D (6,%(E) 2= Hom(m, G)/G
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@ A marked structure determines a developing map Y — X anda
holonomy representation m1 — G.

@ Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

D (6,%(E) 2= Hom(m, G)/G

o Equivariant respecting

Mod() — Out(mi (X))

0 Geometric Structures on Manifolds / 24



@ A marked structure determines a developing map Y — X anda
holonomy representation m1 — G.

@ Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

D (6,%(E) 2= Hom(m, G)/G

o Equivariant respecting

Mod() — Out(mi (X))

@ (Thurston): The mapping hol is a local homeomorphism.
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@ A marked structure determines a developing map Y — X anda
holonomy representation m1 — G.

@ Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

D (6,%(E) 2= Hom(m, G)/G

o Equivariant respecting

Mod() — Out(mi (X))

@ (Thurston): The mapping hol is a local homeomorphism.
@ For quotient structures, hol is an embedding.
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@ A marked structure determines a developing map Y — X anda
holonomy representation m1 — G.

@ Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

D (6,%(E) 2= Hom(m, G)/G

o Equivariant respecting

Mod() — Out(mi (X))

@ (Thurston): The mapping hol is a local homeomorphism.

@ For quotient structures, hol is an embedding.
@ Discrete cocompact embeddings m < G form open set (Weil 1960).
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Example: Euclidean structures
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Example: Euclidean structures

o Euclidean geometry: When X = R? and G = Isom(R?), every only
closed orientable Euclidean surface ~ T2.
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Example: Euclidean structures

o Euclidean geometry: When X = R? and G = Isom(R?), every only
closed orientable Euclidean surface ~ T2.

@ The deformation space D (g x)(X) identifies with H? x R*.
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Example: Euclidean structures

o Euclidean geometry: When X = R? and G = Isom(R?), every only
closed orientable Euclidean surface ~ T2.

@ The deformation space D (g x)(X) identifies with H? x R*.
@ The coordinate in R™ corresponds to the area of the structure.
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Example: Euclidean structures

o Euclidean geometry: When X = R? and G = Isom(R?), every only
closed orientable Euclidean surface ~ T2,

@ The deformation space D (g x)(X) identifies with H? x R*.

@ The coordinate in R™ corresponds to the area of the structure.

@ Mod(X) = PSL(2,Z) acts properly discretely,
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Example: Euclidean structures

o Euclidean geometry: When X = R? and G = Isom(R?), every only
closed orientable Euclidean surface ~ T2,
@ The deformation space D (g x)(X) identifies with H? x R*.
@ The coordinate in R™ corresponds to the area of the structure.
@ Mod(X) = PSL(2,Z) acts properly discretely,
@ with quotient the moduli space of elliptic curves.
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Example: hyperbolic structures

0 Geometric Structures on Manifolds / 24



Example: hyperbolic structures

@ The deformation space of hyperbolic structures on ¥4 is the Fricke
space, §(Xg)
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Example: hyperbolic structures

@ The deformation space of hyperbolic structures on ¥4 is the Fricke
space, §(Xg)
@ hol embeds (%) as a connected component of Hom(m1(X,z), G)/G.
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Example: hyperbolic structures

@ The deformation space of hyperbolic structures on ¥4 is the Fricke
space, §(Xg)
@ hol embeds (%) as a connected component of Hom(m1(X,z), G)/G.
o §(T,) ~ RO
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Example: hyperbolic structures

@ The deformation space of hyperbolic structures on ¥4 is the Fricke
space, §(Xg)
@ hol embeds (%) as a connected component of Hom(m1(X,z), G)/G.
o F(X,) ~Roe-°
@ Mod(X,) acts properly discretely on F(X;).
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Example: hyperbolic structures

@ The deformation space of hyperbolic structures on ¥4 is the Fricke
space, §(Xg)
@ hol embeds (%) as a connected component of Hom(m1(X,z), G)/G.
o F(X,) ~Roe-°
@ Mod(X,) acts properly discretely on F(X;).
@ Since every isometry of H? is conformal, underlying every hyperbolic
surface is a Riemann surface.
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Example: hyperbolic structures

@ The deformation space of hyperbolic structures on ¥4 is the Fricke
space, §(Xg)
@ hol embeds (%) as a connected component of Hom(m1(X,z), G)/G.
o F(X,) ~Roe-°
@ Mod(X,) acts properly discretely on F(X;).
@ Since every isometry of H? is conformal, underlying every hyperbolic
surface is a Riemann surface.

@ Uniformization theorem identifies §(Xz) with Teichmiiller space
T(Xg) of marked conformal structures on ¥g.
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Example: hyperbolic structures

@ The deformation space of hyperbolic structures on ¥4 is the Fricke
space, §(Xg)
@ hol embeds (%) as a connected component of Hom(m1(X,z), G)/G.
o F(X,) ~Roe-°
@ Mod(X,) acts properly discretely on F(X;).
@ Since every isometry of H? is conformal, underlying every hyperbolic
surface is a Riemann surface.

@ Uniformization theorem identifies §(Xz) with Teichmiiller space
T(Xg) of marked conformal structures on ¥g.

® Quotient F(Xz)/Mod(X,) identifies the Riemann moduli space
T(Xg)/Mod(X,) of curves of genus g.
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Example: CP!-manifolds
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Example: CP!-manifolds

@ Underlying every CP-manifold is Riemann surface.
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Example: CP!-manifolds

@ Underlying every CP-manifold is Riemann surface.

o Therefore the deformation space CP!(X) of marked CP!-structures on
Y maps to Teichmiiller space T(X).
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Example: CP!-manifolds

@ Underlying every CP-manifold is Riemann surface.
o Therefore the deformation space CP!(X) of marked CP!-structures on
Y maps to Teichmiiller space T(X).
o (Poincaré) Fiber of CP!(X) — T(X) over marked Riemann surface
M identifies with vector space H°(M, (Kp)?) of holomorphic
quadratic differentials.
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Example: CP!-manifolds

@ Underlying every CP-manifold is Riemann surface.

o Therefore the deformation space CP!(X) of marked CP!-structures on
Y maps to Teichmiiller space T(X).

o (Poincaré) Fiber of CP!(X) — T(X) over marked Riemann surface
M identifies with vector space H°(M, (Kp)?) of holomorphic
quadratic differentials.

) Q(G,X)(Z) ~ R1%-12,
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Example: CP!-manifolds

@ Underlying every CP-manifold is Riemann surface.
o Therefore the deformation space CP!(X) of marked CP!-structures on
Y maps to Teichmiiller space T(X).

o (Poincaré) Fiber of CP!(X) — T(X) over marked Riemann surface
M identifies with vector space H°(M, (Kp)?) of holomorphic
quadratic differentials.

o D x)(X) = RZ12,
@ Mod(X) acts properly discretely.
o (Gallo-Kapovich-Marden) Image of hol consists of representations
m1(X) — PSL(2, C) which lift to absolutely irreducible unbounded
representations in SL(2, C).
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Example: RP?-structures

@ When X = RP? and G = PGL(3,R), the deformation space
@(va)(Z) ~ R165-16
@ |dentifies with a vector bundle over F(X) whose fiber over a Riemann

surface R is the vector space HO(R, K3) of holomorphic cubic
differentials (Labourie, Loftin)

@ This is the “Teichmiiller” component discovered for general R-split
groups by Hitchin (1990), for PGL(3,R). (Choi-G 1999)
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Example: RP?-structures

@ When X = RP? and G = PGL(3,R), the deformation space
@(va)(Z) ~ R165-16

@ |dentifies with a vector bundle over F(X) whose fiber over a Riemann
surface R is the vector space HO(R, K3) of holomorphic cubic
differentials (Labourie, Loftin)

@ This is the “Teichmiiller” component discovered for general R-split
groups by Hitchin (1990), for PGL(3,R). (Choi-G 1999)

@ (Choi-G 1990) Deformation space of all RP%-structures on &
homeomorphic to R—8x(®) x 7.
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Example: Closed RP!-manifolds

o Classified by Kuiper (1954): Quotients of
o Universal covering of RP!

@ “Elliptic” holonomy
o Affine line R C RP?

@ “Parabolic” holonomy
o Positive ray (or open interval) R, 22 (—1,1) C RP!
@ “Hyperbolic” holonomy

o Deformation space RP1(S!) is non-Hausdorff noncompact 1-manifold

(SL@R)\ {1}) /tnn
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Example: Complete affine structures on the 2-torus

@ A complete affine manifold is a quotient
M" =R"/T

where [ C Aff(n,R) is a discrete subgroup acting properly and freely.
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@ A complete affine manifold is a quotient
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@ Kuiper (1954): Complete affine closed orientable 2-manifold is either:
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Example: Complete affine structures on the 2-torus

@ A complete affine manifold is a quotient
M" =R"/T

where [ C Aff(n,R) is a discrete subgroup acting properly and freely.
@ Kuiper (1954): Complete affine closed orientable 2-manifold is either:

o Euclidean: R?/N, where A C R? lattice (all affinely equivalent);
o non-Riemannian: Polynomial deformation R?/(f o Ao f~1) where

f(x,y) = (x+y%y).
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Example: Complete affine structures on the 2-torus

@ A complete affine manifold is a quotient
M" =R"/T

where [ C Aff(n,R) is a discrete subgroup acting properly and freely.
@ Kuiper (1954): Complete affine closed orientable 2-manifold is either:

o Euclidean: R?/N, where A C R? lattice (all affinely equivalent);
o non-Riemannian: Polynomial deformation R?/(f o Ao f~1) where

F(x,y) = (x+y2 ).
@ Translation conjugated to affine transformation:

(x,y) & (x+uy+v)

forofl
——

(x,y) (x = 2yv + (V2 4+ u),y + v).
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Polynomial deformations of lattices

/ / / / /
/ / / S S
/ /
/ ~
Z 7
S e /
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Chaotic dynamics of the mapping class group

o (Baues) Deformation space homeomorphic to R?.
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Chaotic dynamics of the mapping class group

o (Baues) Deformation space homeomorphic to R?.
@ Origin {(0,0} corresponds to Euclidean structure.
@ Mapping class group action is the linear action of GL(2,Z) on R2.

o The orbit space — the moduli space of complete affine compact
orientable 2-manifolds is non-Hausdorff and intractable.
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Chaotic dynamics of the mapping class group

o (Baues) Deformation space homeomorphic to R?.
@ Origin {(0,0} corresponds to Euclidean structure.
@ Mapping class group action is the linear action of GL(2,Z) on R2.
o The orbit space — the moduli space of complete affine compact
orientable 2-manifolds is non-Hausdorff and intractable.
@ Contrast with the moduli space of Euclidean structures — the
quotient of H2 x R, by PGL(2,Z) acting properly discretely.
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Classification of Ehresmann structures

@ For fixed topology X and geometry (G, X) define a deformation space
D(6,x)(X) of marked (G, X)-structures on ¥.

0 Geometric Structures on Manifolds / 24



Classification of Ehresmann structures

@ For fixed topology X and geometry (G, X) define a deformation space
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@ The holonomy mapping
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is a local homeomorphism,
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@ For fixed topology X and geometry (G, X) define a deformation space
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@ The holonomy mapping
D(e.x)(E) ™ Hom(rr, G)/G

is a local homeomorphism,
@ but it may not be covering-space.
@ Hom(w, G) is an R-algebraic set...
@ but it may be singular.
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is a local homeomorphism,
@ but it may not be covering-space.
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Classification of Ehresmann structures

@ For fixed topology X and geometry (G, X) define a deformation space
D(6,x)(X) of marked (G, X)-structures on ¥.

@ The holonomy mapping

D(e.x)(E) ™ Hom(rr, G)/G

is a local homeomorphism,
@ but it may not be covering-space.
@ Hom(w, G) is an R-algebraic set...
@ but it may be singular.
@ G acts algebraically on Hom(7, G) ...
@ but the action may not be locally free and may not be proper.
@ Mod(X) acts on D¢ x)(X)...

@ but the action may not be proper and may not be free.
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Classification of Ehresmann structures

@ For fixed topology X and geometry (G, X) define a deformation space
D(6,x)(X) of marked (G, X)-structures on ¥.

@ The holonomy mapping

D(e.x)(E) ™ Hom(rr, G)/G

is a local homeomorphism,
@ but it may not be covering-space.
@ Hom(w, G) is an R-algebraic set...
@ but it may be singular.
@ G acts algebraically on Hom(7, G) ...
@ but the action may not be locally free and may not be proper.
@ Mod(X) acts on D¢ x)(X)...
@ but the action may not be proper and may not be free.
@ Isomorphism classes of (G, X)-structures on ¥ correspond to
Mod(X)-orbits on D¢ x)(X).
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