
 Michael Ghil!
Ecole Normale Supérieure, Paris, and!
University of California, Los Angeles!

Joint work (recently) with   
M. D. Chekroun, D. Kondrashov & Y. Shprits, UCLA; A. Carrassi, IRM, Brussels; L. 
Roques and S. Soubeyrand, INRA, Avignon; C.-J. Sun, CSIRO, Perth; A. Trevisan, 
ISAC-CNR, Bologna; and many others: please see  
http://www.atmos.ucla.edu/tcd/ and http://www.environnement.ens.fr/ 

LMS-Durham Symposium on the 
Mathematics of Data Assimilation 

Durham, 3 August 2011 



➤ Data in meteorology, oceanography and space physics!
- in situ & remotely sensed!

➤ Basic ideas, data types, & issues!
-  how to combine data with models!
-  transfer of information!
! – between variables & regions!

-  filters & smoothers!
-  stability of the forecast-assimilation cycle!

➤ Parameter estimation!
-  model parameters!
-  noise parameters – at & below grid scale!

➤ Novel areas of application!
! !- space physics!
! !- shock waves in solids!
! !- macroeconomics!
! !- paleoclimate!

➤ Concluding remarks and bibliography!



➤ Data in meteorology, oceanography and space physics!
- in situ & remotely sensed!

➤ Basic ideas, data types, & issues!
-  how to combine data with models!
-  transfer of information!
! – between variables & regions!

-  filters & smoothers!
-  stability of the forecast-assimilation cycle!

➤ Parameter estimation!
-  model parameters!
-  noise parameters – at & below grid scale!

➤ Novel areas of application!
! !- space physics!
! !- shock waves in solids!
! !- macroeconomics!
! !- paleoclimate!

➤ Concluding remarks and bibliography!



Parameter Estimation	


a) Dynamical model 	



	

dx/dt = M(x, µ) + η(t)   !
!yo = H(x) + ε(t)!
!Simple (EKF) idea – augmented state vector!
!dµ/dt = 0, X = (xT, µT)T!

b) Statistical model	


	

L(ρ)η = w(t), !L  – AR(MA) model, ρ = (ρ1, ρ2, …. ρM)!
	

Examples: 1) Dee et al. (IEEE, 1985) – estimate a few parameters in the 
covariance matrix Q = E(η, ηT); also the bias  <η> = Eη;!
	

2) POPs - Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D); 
Penland & Ghil (1993, MWR)!
!3) dx/dt = M(x, µ) + η: Estimate both M & Q from data (Dee, 1995, QJ), Nonlinear 
approach: Empirical mode reduction (EMR: Kravtsov et al., J. Clim., 2005; 
Kondrashov et al., J. Clim., 2005; Strounine et al., Physica D, 2009)!
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Estimating noise – I 

Q1 = Qslow ,  Q2 = Qfast ,  Q3 =0;!
 R1 = 0,  R2 = 0,  R3 =R; !
Q = ∑ αiQi; R = ∑ αiRi ; !
α(0) = (6.0, 4.0, 4.5)T;!
Q(0) = 25*I.!

Dee et al. (1985, IEEE Trans. Autom. 
Control, AC-30)!

α1


α2


α3


estimated!

true (α =1)!

Poor convergence for Qfast?




Estimating noise – II 

 Same choice of α(0),  Qi , !
 and Ri but  !

!      ⎡1    0.8   0 ⎤!
Θ(0) = 25 *⎮0.8  1    0  ⎥!

!      ⎣ 0    0    1  ⎦!

Dee et al. (1985, IEEE Trans. Autom. 
!    Control, AC-30)!

estimated!

true (α = 1)!

Good convergence for  Qfast!!
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Space physics data  

Space platforms in Earth’s magnetosphere!

Two decades ago … 

… and now 



Parameter Estimation for Space Physics – I!
!Daily fluxes of 1 MeV relativistic electrons in Earthʼs outer radiation belt        
(CRRES observations from 28 August 1990)!
!Kp  - index of solar activity (external forcing) – used to determine the position!

Kondrashov, Shprits, !
Ghil & Thorne !
(J. Geophys. Res., 2007) 

 of the plasmapause Lpp !

(black) in the observations  



Parameter estimation for space physics – II!
HERRB-1D code (Y.  Shprits) – 

estimating phase-space density !
!f and electron lifetime τL:!

Different lifetime parameterizations for !
plasmasphere – out/in: 	


τLo = ζ/Kp(t); τLi = const.!
What are the optimal lifetimes to match 

!the observations best? !



Dominant loss
mechanisms Pitch angle scattering due to resonance

interactions with :
1) Plasmaspheric hiss ( whistler mode

waves) loss time on the scale of 5-
10 days (Lyons & Thorne, 1973;
Abel & Thorne, 1998; Meredith et al.,
2006)

2) Chorus waves outside plasmapause
provide fast losses on the scale of a
day (Horne et al., 2005; Albert et al.,
2005; O’Brien, 2004; Thorne et al.,
2005)

3) EMIC waves mostly in plumes on
the dusk side – very fast localized
losses (Millan et al., 2002; Summers
& Thorne, 2003; Albert, 2003,
Bortnik et al., 2006; Shprits et al.,
2006a)

4) Combined effect of losses to
magnetopause and outward radial
diffusion (Shprits et al., 2006b).



Parameter estimation for space physics – III
Daily observations from the “truth” —
     τLo = ζ/Kp, ζ = 3, and τLI = 20 —
are used to correct the model’s “wrong”
parameters, ζ = 10 and τLI = 10.
The estimated error tr(Pf) ≈ actual.
When the parameters’ assumed  uncertainty
is large enough, their EKF estimates

converge rapidly to the “truth”.

Black – actual errors for state estimation only
Red – actual errors for state and

     parameter estimation
Blue – EKF-estimated error (tr Pk

f)



Phase-space densities (PSDs)  in the Van Allen radiation belts vary by several orders of!
magnitude over the interval ! ! !    , !where            Earthʼs radius. This interval !
includes sharp!
gradients at the !
time-varying!
plasmapause:!

D. Kondrashov, Y. Shprits!
& M. Ghil (Space Weather, !
2011, submitted)!
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(b) Model run, different parameters
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1 ≤ L ≤ 6RE RE =

LPP = 2RE − 6RE.

Not good for standard 
sequential (or control) 
methods that assume 
normally distributed 
errors  Change of 
variables! 



D. Kondrashov, Y. Shprits!
& M. Ghil (Space Weather, !
2011, submitted)!

Introduce the new variable ! !    to yield the nonlinear PDE in S:!S = log(f)

∂S

∂t
= L2 ∂

∂L

�
1

L2
DLL

∂S

∂L

�
− 1

τL
+DLL

�
∂S

∂L

�2

.

To deal with the nonlinearity and the sharp gradients, we use a total-variation diminishing, 
second-order scheme (A. Harten, JCP, 1983).  

The linear Kalman filter for the original PDE in f has to be replaced by an EKF.!
Results are definitely better with the modified PDE & the log-EKF, as shown by the plot!
below for “fraternal (dizygotous)-twin” experiments. This is especially so when the !
observational error covariances R are much larger than the model errors Q.!

Another way of evaluating assimilation scheme performance is by considering the 
variance of the innovation 
sequence residuals:   !

! !where!
zk ≡ y

o
k −Hxf

k.
EzTk zk,



We have used real observational data sets from 4 spacecraft missions: the 
Combined Release and Radiation Effects Satellite (CRRES), GEO-1989 (GEO), 
GPS NS18 (GPS), and Akebono.!

CRESS has the best coverage and accuracy, and was used as a benchmark.!
Assimilation was performed with the Akebono and GEO observations, separately.!
Plotted are the results for ! zk ≡ y

o
k −Hxf

k.EzTk zk,
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Ghil (JAS, 1976), Bhattacharya, Ghil & Vulis (JAS, 1983),!
Roques et al. (Phil. Trans., 2011, submitted)!

One considers a 1-D paleoclimate model governed by an EBM for zonally averaged 
surface air temperatures T(t, x): !

 Zonal belt with heat capacity   
C(x) and temperature T(t, x), 
subject to incoming radiation 
Ri, outgoing radiation Ro, and 
meridional diffusion D.  

c(x)
∂T

∂t
=

∂

∂x

�
k(x)

∂T

∂x

�
+ µQ(x)[1− a(x, T )]− g(x, T );

here ! ! ! ! !      is the absorbed solar!

radiation, with a = a(x, T)  the planetary albedo, and!

Ro = g(x, T) is the terrestrial radiation, modified by the!

greenhouse effect, while ! ! !is a meridional !

variable.  The albedo depends on past temperatures,!

because of the long time needed to build up and melt !

ice sheets.!

Ri = µQ(x)[1− a(x, T )]

0 ≤ x ≤ 1



Roques et al. (Phil. Trans., 2011, submitted)!

The memory effects are represented by a history function H = H(t, x, T),!

H(t, x, T ) =

� 0

−τ
β(s, x)T (t+ s, x) ds, t > 0, x ∈ (0, 1),

with the non-negative kernel     that sums to unity, thus yielding the general 
EBMM: 

β = β(s, x)

c(x,H(t, x, T ))
∂T

∂t
=

∂

∂x

�
k(x)

∂T

∂x

�
+ f(t, x, T,H(t, x, T ));

here f = Ri  – Ro is the net radiation balance, affected by the past history. 

The observational data come from proxy 
records of past temperatures and ice 
volume, with errors in both age-dating 
(abscissa = time axis) and “transfer  
function” (ordinate = climate variable).   



Roques et al. (Phil. Trans., 2011, submitted)!

and we use Neumann boundary conditions at the 2 poles (or pole and equator, by 
symmetry). This semi-empirical EBMM requires determining coefficients from the proxy 
records, e.g., the ratio ! !   between  Ri  and  Ro: 

Here ! ! ! !     is the reaction function in our reaction-diffusion model.!
Under reasonable assumptions on ! ! ! ! !    , one can prove that — given!
exact initial data over ! ! !   and exact data on T and Tx at a single point 0 < x0 < 1 
(i.e., for a single “core”) over some interval 0 < t < t* — the coefficient !   is determined 
uniquely! ! ! ! !!
But we are interested now in the more realistic situation in which a statistical model of 
the observation process is needed. We assume that T(t, x) = T0 is the initial data with 
prior distribution      and that the unknown coefficient !  has prior distribution        !
Data will be provided at three sites (cores) Sk, k =1, 2, 3, in the intervalʼs right half.!

The initial data for this functional PDE are!
T (s, x) = T0(s, x), s ∈ [−τ, 0], x ∈ [0, 1]

f = fα(t, x, T,H) = f1(t, x, T,H) + α(x) f2(t, T,H), H = H(t, x, T ).

f = f [α] = Ri −Ro

f1, f2, H, c, k,α and β

−τ ≤ t ≤ 0

α(x)

π1 π2.α

α = α(x)



where the albedo a(t) is a known, piecewise-linear ramp function (cf. Sellers, 1969, and !
Ghil, 1976), and we study numerically the two cases   

As expected, the solution tends rapidly to stationarity for small lag and has a longer 
transient, with large amplitude, for the larger lag.!

The proxy records at the three sites Sk, k =1, 2, 3 have 2 sources of uncertainty.!

The mechanistic-statistical model now includes the specific EBMM !
∂T

∂t
=

∂2T

∂x2
+ α(x) (1− a(T ))− q0 − q1 T −

�
1

τ

� 0

−τ
T (t+ s) ds

�3

,

τ = 0.2 and τ = 0.7 ky.
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 where !   is the variance of the temperature measurement noise; and!
 (ii) the date of ti is in fact s(ti ), with!

where Γ is the gamma distribution, ! !    is a shape parameter, and !

The statistical model for these uncertainties is as follows:!
(i) Yk(ti) is the measurement of temperature T  at time ti and location Sk,!

Yk(ti) | s(ti) ∼ indep. N
�
T (s(ti), Sk),σ

2
�
,

σ2

s(ti) = θ −
i�

j=1

ηj with ηj ∼ indep. Γ

�
tj−1 − tj

κ2
,κ2

�
,

κ2 > 0 t0 = θ.

This model is order-preserving, i.e.!

! ! !and its variance !
increases as we “sink” further into!
the past. !

ti > tj implies s(ti) > s(tj),

E(s(t)) = t,

Sobrino et al. (Boreas, 2008):!
Age-depth models for 3 pollen cores !
In NW Iberia.!



Roques et al. (2011, submitted)!

t=5 kyt=0
T=-8°C

T=10°C

{Site 1

{Site 2

{Site 3

t=5 kyt=0
T=-15°C

T=+15°C

{Site 1

{Site 2

{Site 3

Actual temperatures vs. measured temps, at the 3 sites. At each of them, the upper row!
corresponds to the actual Tʼs at the actual times, while the lower row corresponds to the!
measured Tʼs at the estimated times. (a) τ = 0.2 ky, and (b) τ = 0.7 ky. Clearly the errors 
in both the estimates of Tʼs and times are larger for the larger delay, which resulted in 
the more irregular solution.!

We seek the coefficient α(x) by a Bayesian approach, assume uniform prior distributions 
for T0 and for α(x), and draw a sample from the joint posterior distribution of (T0, α(x)) by 
Markov chain Monte Carlo (MCMC). 



Estimates of the coefficient α(x): posterior median (red), first and last deciles (magenta),!
first and last percentiles (blue); the true values are the + signs. (a) τ = 0.2 ky, and (b) τ = 
0.7 ky. Clearly the estimates are better in (b). !

The last figure shows the average L2-response  !
of our EBMM model to random perturbations αʼ(x) in 
α(x) drawn from a random field A with std. dev. ε, 
over the interval 0 < t < 5 ky:  blue for τ = 0.2 ky,  
and red for τ = 0.7 ky. Both curves show linear 
response, but the red one has double the slope. ! 

The results are shown below: 
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Concluding remarks 
Weʼve come a long way in 30 years — some advances are laborious and 
incremental (e.g., sequential vs. control-theoretical methods), but others !
are fresh and exciting.!

The latter include new areas of application !
!– biology, paleoclimate, space physics, …;!

as well as novel methodological challenges!
!– multi-scale and multi-model problems!
!– inverse problems for evolution equations, …!

Technological advances both pose new problems (more data, higher resolution, 
…) and help solve them.!

Overall, itʼs a brave new world, in which data and models actively speak to each 
other, and we do so to both: enjoy!!
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