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Overview

• Inference for stochastic differential equations

• Variational approach 6= 4D–Var

• Variational approximations for path probabilities

• Experiments

• Outlook
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Ito stochastic differential equations

for state Xt ∈ Rd

dXt = f(Xt))︸ ︷︷ ︸
Drift

dt+ Σ1/2(Xt)︸ ︷︷ ︸
Diffusion

× dWt︸ ︷︷ ︸
Wiener process

Limit of discrete time process Xk

∆Xk ≡ Xk+1 −Xk = f(Xk)∆t+ Σ1/2(Xk)
√

∆t εk .

εk i.i.d. Gaussian.
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Inference Problems

Given noisy observations {yi}Ni=1 ≡ y1, . . . , yN of hidden process Xti
at times ti ≤ T for i = 1, . . . , N .

• Estimate Xt for 0 ≤ t ≤ T (smoothing).

• Estimate system parameters θ contained in drift f and diffusion Σ.
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Motion in double-well potential

dX = f(X)dt+ σdW.

with f(x) = −dV (x)
dx

and V (x) is a double well potential
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A sample path might look like this
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Observations & optimal prediction
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What we would like to do

• State estimation: Use conditional (posterior) distribution over

paths X0:T (an ∞ dimensional object)

dP (X0:T |{yi}Ni=1, θ)

dPprior(X0:T |θ)
=

1

p({yi}Ni=1|θ))
×

N∏
n=1

p(yn|Xtn, θ),

to compute prediction E[Xt|{yi}Ni=1, θ]

• Parameter estimation: Maximise p({yi}Ni=1|θ) with respect to θ

(Max Likelihood) or use a prior p(θ) to compute p(θ|{yi}Ni=1) ∝
p({yi}Ni=1|θ)p(θ) (Bayes).

The conditional distribution and likelihood p({yi}Ni=1|θ) are not easily

tractable !
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The variational approximation

Approximate intractable posterior

p(x|y) =
p(y|x)p(x)

p(y)

by a q(x) which belongs to a family of simpler tractable distributions

(e.g. factorising = mean field, or Gaussian densities).

Optimise q by minimising the relative entropy

D[q‖p(·|y)] =
∫
q(x) ln

q(x)

p(x|y)
dx =∫

q(x) ln
q(x)

p(x)
dx−

∫
q(x) ln p(y|x) dx+ ln p(y)
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The statistical physics version

Set p(x|y) = 1
Z e−H

y(x) and q(x) = 1
Z0

e−H0(x)

The variational bound on the free energy is

− lnZ ≤ − lnZ0 + 〈Hy(x)〉0 − 〈H0(x)〉0
(Feynman, Peierls, Bogolubov, Kleinert...)

Equivalent to first order perturbation theory around H0

Approximation for free energies is often better than the quality of q.
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The path integral (for diffusion processes) would be something like this

...

Z =
∫
D[Xt] exp

[
−

1

2σ2

∫ T
0
dt

{(
dx

dt

)2
+

1

2
f ·

dx

dt
− ||f ||2 −

1

2
σ2∇f

}]
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The Gaussian Variational Approximation

For previous applications in machine learning (see e.g. Barber & Bishop

(1998), Seeger (2000), Honkela & Valpola (2005)).
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Variational free energy

F(q) = D[q‖p(·|y)]− ln p(y)

= D[q‖p]−
∫
q(x) ln p(y|x) dx

≥ − ln p(y)
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Approximate maximum likelihood estimate

Assume model depends on parameter θ. The free energy inherits the

dependency.

Let q∗(θ) = argminFθ(q). Since

− ln p(y|θ) ≤ Fθ(q∗(θ))

we can minimise Fθ(q∗) wrt θ to get an approximate maximum like-

lihood estimate.
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Approximate Bayesian parameter inference

Approximate posterior of parameters (Lappalainen, 2000):

q(θ|y) ≈
e−Fθ(q) p(θ)∫
e−Fθ(q) p(θ) dθ

.
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How to choose the measure q for stochastic

differential equations ?

• Process conditioned on data is Markovian!

• It fulfils SDE

dXt = g(Xt, t)dt+ Σ1/2(Xt) dWt

with a new time dependent drift g(Xt, t) but the same diffusion

Σ.
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Example

Wiener process with single, noise free observation y = x(t = T ) = 0

Posterior drift g(x, t) = − x
T−t for 0 < t < T .
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Relative entropy for path probabilities: A physics

style derivation

Use representation of joint density in term of conditionals and the

Markov property (assuming q0(x) = p0(x)) and work with time dis-

cretization tk+1 − tk = ∆t.

D [q‖p] =
∫
dx0:T q(x0:T ) ln

q(x0:T )

p(x0:T )

≈
K−1∑
k=0

∫
dx qtk(x)

∫
dx′ qtk+1,tk(x

′|x) ln
qtk+1,tk(x

′|x)

ptk+1,tk(x
′|x)

=
K−1∑
k=0

∫
dx qtk(x)D

[
qtk+1,tk(·|x)‖ptk+1,tk(·|x)

]

in terms of transition and marginal probabilities.
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We know that short time transition probability

is approximately Gaussian

pt+∆t,t(x
′|x) ∝ exp

[
−

1

2∆t

∥∥∥x′ − x− f(x)∆t
∥∥∥2

Σ

]
as ∆t→ 0,

with ‖F‖2Σ = F>Σ−1F .

Then for small ∆t

D
[
qtk+1,tk(·|x)‖ptk+1,tk(·|x)

]
≈

1

2
‖g(x, t)− f(x)‖2Σ ∆t
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The relative entropy for Stochastic Differential

Equations

Let q and p be measures over paths for SDEs with drifts g(X, t) and

f(X, t) with same diffusion Σ(X). Then

D [q‖p] =
1

2

∫ T
0
dt

{∫
dx qt(x) ‖g(x, t)− fθ(x)‖2Σ

}

qt(x) is the marginal density of Xt.

20



The variational problem (exact inference !)

Minimise variational free energy

Fθ(q) =
1

2

∫ T
0

∫
q(x, t) ‖g(x, t)− fθ(x)‖2Σ dx dt −

∑
i

Eq[ln p(yi|Xti)]

with respect to the marginal density q(x, t).

The marginal density q and the drift g(x, t) are coupled through the

Fokker - Planck equation

∂q

∂t
=
{
−∇g +

1

2
Tr(∇∇TΣ)

}
q

Variation leads to forward backward PDEs.
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The Variational Gaussian Approximation for SDEs

(Archambeau, Cornford, Opper & Shawe - Taylor, 2007)

• Approximate (Gaussian) process over paths X0:T induced by linear
SDE:

dXt = {A(t)Xt + b(t)} dt+ Σ1/2dW

• Diffusion Σ must be independent of X !

• Relative entropy is of the form Fθ[m,S,A, b].

• Constraints are evolution eqs. for marginal mean m(t) and cova-
riance S(t)

dm

dt
= Am+ b

dS

dt
= AS + SA>+ Σ.

→ nonlinear ODEs instead of PDEs !
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Numerical approach

Introduce Lagrange multipliers

L = Fθ[m,S,A, b]− tr
{

ΨT(t)
(
dS
dt −AS − SA

T −Σ
)

−λT(t)
(
dm
dt −Am− b

)}
dt

1. For given A and b run moment equations forward in time.

2. Derivatives wrt m and S lead to backward equation for Ψ and λ.

3. Compute gradient with respect to A and b.

23



Example: Motion in double-well potential

dX = X(θ −X2)dt+ σdW.
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A trajectory
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Prediction & comparison with hybrid Monte Carlo

T = 20, θ = 1, σ2 = 0.8 with N = 40 observations with noise σ2
o =

0.04. Fixed initial conditions.
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Large observation noise

Double well with observation noise σo = 0.6



Negative Log-Likelihood for θ



Negative Log-Likelihood for σ



Posterior for θ



Posterior for σ



Lorenz 1963

dxt = σ(yt − xt)dt+
√

ΣxdWx

dyt = (ρxt − yt − xtzt)dt+
√

ΣydW
y

dzt = (xtyt − βzt)dt+
√

ΣzdW
z
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Prediction and comparison with hybrid HMC

(σ, ρ, β) = (10,28,2.6667), T = 20, Σ = 6I and N = 200 observations

with noise Σo = 2I.





Predicted marginal variance/ HMC prediction



Negative Log-Likelihood for drift parameters





Negative Log-Likelihood for diffusion parameters





More dimensions

Lorenz 1998 model:

x = (x1, . . . , x40) with drift

fi(xt) =
(
xi+1
t − xi−2

t

)
xi−1
t − xit + θ

Σ = 5 and N = 90 observations.

28



Likelihoods



Other applications of variational approach: Model for

transcriptional regulation:

• xi(t) = mRNA concentration of target gene i. modelled by an

Ornstein - Uhlenbeck process

dx = (aµ(t) + c− λx)dt+ σdW (t)

• µ(t) = fast switching transcription factor activity (unobserved) mo-

delled by µ(t) ∼ T P (f±) a random telegraph process.

• Variational approximation

q (x0:T , µ0:T ) = qx (x0:T ) qµ (µ0:T ) .
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(Opper, Ruttor & Sanguinetti 2010)



Summary

• Posterior probability as the solution of a variational problem invol-

ving the relative entropy

• As a byproduct we get a bound on the parameter likelihood

• The relative entropy can be computed analytically for path proba-

bilities of stochastic differential equations

• A Gaussian approximation to path probabilities can be used for

smoothing and parameter estimation.

• The Gaussian approximation cannot be applied to state dependent

diffusions.

30



Present & Future work

• Variational path densities as proposal for MCMC

• Perturbative corrections (estimate for error)

• Find good parametric forms for large covariance matrices (projec-

tions, low rank representations ?)

• Variational approach to problems with state dependent noise
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