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First articles

On random graphs I. 

Dedicated to 0, Vargo, at the occasion of his 50th birthday. 

By P. ERDdS and A. R&WI (Budapest). 

Let us consider a “random graph” r,:l,~v having n possible (labelled) 
vertices and N edges; in other words, let us choose at random (with equal 

probabilities) one of the 

t 1 

(I ; possible graphs which can be formed from 
N, 

the n (labelled) vertices PI, P?, . . ., P,, by selecting N edges from the 
i) ; 

possible edges Px (1 5 i < j 5 n), Thus the effective number of vertices of 
C,,,l- may be less than n, as some points Pi may be not connected in r,, X 
with any other point P,; we shall call such points Pi isolafed points. We 
consider the isolated points also as belonging to Z’7,,~Xy. r,,, X is called com- 
pletely connected if it effectively contains all points PI, Pt, . . . , P,, (i, e. if it 
has no isolated points) and is connected in the ordinary sense. In the present 
paper we consider asymptotic statistical properties of random graphs for 
11++ 30. We shall deal with the following questions: 

1. What is the probability of r,,. T being completely connected? 
2. What is the probability that the greatest connected component (sub- 

graph) of r,,, s should have effectively n-k points? (k=O, 1, . . .). 

3. What is the probability that rp,N should consist of exactly kf I 

connected components? (k = 0, 1, . + .). 

4. If the edges of a graph with n vertices are chosen successively so 
that after each step every edge which has not yet been chosen has the same 
probability to be chosen as the next, and if we continue this process until 
the graph becomes completely connected, what is the probability that the 
number of necessary sfeps v will be equal to a given number I? 

As (partial) answers to the above questions we prove ihe following 
four theorems. In Theorems 1, 2, and 3 we use the notation 

N,= 
(I 
-&n log n+cn 

1 
where c is an arbitrary fixed real number ([xl denotes the integer part of x). 
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Erdős–Rényi random graph G(n,p)
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Erdős–Rényi random graph G(n, p̂)

Ωn - a set of all graphs on n vertices (|Ωn| = 2(n
2));

σ = P(Ωn);
each edge appears independently with probability p̂;
A given graph G ∈ Ωn on m vertices is picked with probability

p̂m(1− p̂)(n
2)−m.
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Evolution of a random graph
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Evarage number of edges M =
(n

2

)
p

As p is growing (M is growing) we expect a graph G(n,p) to change.
With probability 1− o(1):

is an empty graph;
has no cycles (all components are trees);
has all components: either trees or unicyclic;
has exactly one component containing a constant fraction of
vertices;
is disconnected;
is connected.
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Threshold function
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Threshold function in G(n, p̂)

A={G(n, p̂) contains a K3}

Let p0 = 1
n , then

lim
n→∞

Pr{A} =

{
0 as p

p0
→ 0;

1 as p
p0
→∞.

A={G(n, p̂) is connected}

Let p̂0 = ln n+ω
n , then

lim
n→∞

Pr{A} =

{
0 as ω → −∞;

1 as ω →∞.

Every monotone property has a threshold function in G(n, p̂).

w.h.p.
with high probability, i.e. with probability tending to 1 as n→∞.
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Motivation for further research

Why Erdős–Rényi model do not fit into many real life settings?

Example – complex network
Relations between objects are not independent.
Degree distribution is not Poisson.
There are more cliques (hubs).
There is some hidden relations which determine the structure of
connections – it seems that none of the classical models capture
them.
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Random intersection graph - definition

Karoński, Scheinerman, Singer-Cohen (1999)
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Random intersection graph - definition

G(n,m,p)

Set of vertices - V, |V| = n;
Set of features -W, |W| = m = nα, α - constant;
Random bipartite graph with bipartition (V,W)

vivj ∈ E(G(n,m,p))
m

W (vi) ∩W (vj) 6= ∅
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Comparison with G(n, p̂)

edge probability in G(n,m,p)

1− (1− p2)m ∼ 1− exp(−mp2)

∼ mp2

(as mp2 → 0)

p̂ = 1− exp(−mp2) ∼ mp2?
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J. Fill, E. Scheinerman, K. Singer-Cohen, 2000 –
comparison

m = nα, where α > 0 is a constant
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Threshold functions for K3 appearance

G(n,m,p) (Karoński, Scheinerman, Singer-Cohen)

τ =

{
1

n 3√m
for α ≤ 3;

1√
nm for α ≥ 3.

mp2

mτ2 =

{ 3√m
n2 for α ≤ 3;

1
n for α ≥ 3.

G (n, p̂)

τ̂ =
1
n
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Question

Equivalence?

If G(n,m,p) and G (n, p̂) for

p̂ ∼ Pr{(v1, v2) is an edge in G(n,m,p)}

are asymptoticly equivalent.
i.e. for any graph property A and any a ∈ [0; 1]

Pr{G (n, p̂) ∈ A} → a iff Pr{G(n,m,p) ∈ A} → a
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Equivalence

Theorem (J. Fill, E. Scheinerman, K. Singer-Cohen, 2000)
Let m = nα and α > 6. Let p = p(n) be such that

ω

n
√

m
≤ p ≤

√
2 ln n − ω

m

for some ω →∞ (i.e. w.h.p G(n,m,p) is not edgeless and not
complete). Let

p̂ = 1− (1− pe)m

(pe ∼ p2) and A be any graph property. Then for any a ∈ [0; 1]

Pr {G(n,m,p) ∈ A} → a⇔ Pr {G (n, p̂) ∈ A} → a
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Triangle counts

Given sequences an, bn, an ∼ bn means that an/bn → 1 as n→∞.

In G (n, p̂), what are the expected number of K3’s?

Let X be the number of K3’s.
E(X ) =

(n
3

)
p̂3 ∼ 1

6n3p̂3 and so . . .
When p̂ ∼ c/n for a constant c > 0, E(X ) ∼ c3/6.
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Triangle counts

If p̂ ∼ c/n, then what is the limiting distribution of X?
Let Γ index all possible triangles.
Let X =

∑
α∈Γ Iα, where Iα is the indicator random variable that α

is present in G (n, p̂).
If α, β ∈ Γ share no vertices, then Iα and Iβ are independent.
The expected number of pairs of triangles sharing vertices goes to
0.
Therefore, X ⇒ Po(c3/6).
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Subgraph counts in G (n, p̂)

let H0 be a subgraph of Kn with e edges and v vertices.
Let X be the number of H0’s.
E(X ) = (n)v

|Aut(H0)| p̂
e ∼ 1

|Aut(H0)|n
v p̂e and so . . .

When p̂ ∼ cn−v/e for a constant c > 0, E(X ) ∼ ce

|Aut(H0)| .
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Subgraph counts in G (n, p̂)

Bollobas, Rucinski,. . .

Definition of strictly balanced
A subgraph H0 of Kn is strictly balanced if

max
∅(S(V (H0)

|E(S)|
|S|

<
e
h
,

where E(S) is the number of edges of H0 contained in S.

Theorem

If p̂ ∼ cn−v/e for a constant c > 0 then, X has a limiting Poisson
distribution if H0 is strictly balanced.
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≤ e
h
,

where E(S) is the number of edges of H0 contained in S.

Theorem

p̂ ∼ cn−v/e for a constant c > 0 and H0 is strictly balanced, but not
strictly balanced, then limn→∞Var(X ) > E(X ) and X does not have
limiting Poisson distribution.
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Subgraph problem

Rybarzyk, S.(2010)
m = nα, α – constant;
Xn – number of Kh, h ≥ 3, in G(n,m,p)

p ∼


cn−1m−

1
h for 0 < α < 2h/(h − 1);

cn−
h+1
h−1 for α = 2h/(h − 1);

cn−
1

h−1 m−
1
2 for α > 2h/(h − 1).
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m = nα, α – constant;
Xn – number of Kh, h ≥ 3, in G(n,m,p)
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Subgraph problem

Rybarzyk, S.(2010)

(i) If 0 < α < 2h/(h − 1), then EXn ∼ ch/h! and
dTV (Xn,Po(EXn)) = O

(
n−

α
h

)
;

(ii) If α = 2h/(h − 1) then EXn ∼
(
ch + ch(h−1)

)
/h! and

dTV (Xn,Po(EXn)) = O
(

n−
2

h−1

)
;

(iii) If α > 2h/(h − 1) then EXn ∼ ch(h−1)/h! and

dTV (Xn,Po(EXn)) = O
(

n
(

h−α(h−1)
2 − 2

h−1

)
+ n−1

)
.
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Clique covers

Definition of the clique covers of H0

Given a fixed subgraph H0 of Kn, define V (H0) and E(H0) to be the
vertex and edge sets of H0, respectively. A clique cover
C = {C1, . . . ,Ct} of H0 is a set of subsets of V (H0) such that
|Ci | ≥ 2 for all Ci ∈ C
Each Ci ∈ C induces a clique in H0

For any {v1, v2} ∈ E(H0) there exists Ci ∈ C such that v1, v2 ∈ C.
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Clique covers of K3
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Clique covers of K3
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Clique cover induction

Definition of induction by a clique cover
We say that H0 is induced by clique cover C = {C1, . . . ,Ct} if there is a
family of disjoint non-empty subsets {W1, . . . ,Wt} ofW, such that,

For all 1 ≤ i ≤ t , each element of Wi is an object assigned to all
the vertices of Ci and no other vertices from V (H0).
Each w ∈ W \

⋃t
i=1 Wi is chosen by at most one vertex from

V (H0).
Clearly, if H0 is an induced subgraph of G(n,m,p), then it is induced by
exactly one clique cover in G(n,m,p).
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Clique covers of K3

A clique cover can be induced in many different ways.
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Restricted clique covers

Given ∅  S  V (H), we define two different types of restricted clique
covers, which are multisets defined by

C[S] := {Ci ∩ S : |Ci ∩ S| ≥ 1, i ∈ [t ]}

and
C′[S] := {Ci ∩ S : |Ci ∩ S| ≥ 2, i ∈ [t ]}.

We define ∑
C[S] =

∑
i∈[t]

|Ci∩S|≥1

|Ci ∩ S|

and ∑
C′[S] =

∑
i∈[t]

|Ci∩S|≥2

|Ci ∩ S|.
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Let H0[S] the induced subgraph of H0 on vertices S. Clearly, it is
impossible for C to induce H0 unless C[S] and C′[S] induce H0[S].

The expected number of copies of H0[S] in G(n,m,p) induced by C[S]
and C′[S] are asymptotically of order

ψ(H0,C,S) := min
{

n|S|+α|C[S]|p
∑

C[S],n|S|+α|C
′[S]|p

∑
C′[S]

}
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Thresholds for induction by a clique cover

Consider clique cover C
Define

η2(H0,C,S) :=


|S|+α|C[S]|∑

C[S] if either α < |S|∑
C[S]−|C[S]|

or
∑

C[S] = |C[S]|;
|S|+α|C′[S]|∑

C′[S] otherwise,

and define
η1(H0,C) := min

∅ S⊆V (H0)
η2(H0,C,S).

Then p = n−η1(H0,C) should be a threshold for C inducing copies of H0.
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Thresholds for induction by a clique cover

Thus, if we define

η0 = η0(H0) := max
C∈C

η1(H0,C),

then it is natural to expect that under suitable conditions p = n−η0(H0)

should be the threshold for the appearance of H0 in G(n,m,p).

The clique covers which will induce copies of H0 at threshold
p = n−η0(H0) are those for which η1(H0,C) = η0. We call them critical.

We call a clique cover C ∈ C(H0) strictly α-balanced if
η2(H0,C,S) > η2(H0,C,V (H0)) for all ∅  S  V (H0). The idea of
strictly α-balanced was introduced by Jaworski and Karonski for
random bipartite graphs.
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Balanced and unbalanced clique covers

We call a clique cover C ∈ C(H0) α-balanced if
η2(H0,C,S) = η2(H0,C,V (H0)) for all ∅  S  V (H0).

We call a clique cover C ∈ C(H0) strictly α-unbalanced if
η2(H0,C,S) < η2(H0,C,V (H0)) for some ∅  S  V (H0).
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Work in progress

≈Theorem
Suppose at least one of the critical clique covers of H0 is strictly
α-balanced and all of them are either strictly α-balanced or
α-unbalanced. If p ∼ cn−ηo(H0), then X converges to a Poisson
distributed random variable with parameter λ. If at least one of the
critical clique covers is α-unbalanced, then λ < limn→∞ E(X ). If all of
the critical clique covers are α-balanced, then λ = limn→∞ E(X )

What we think is true, but might not be able to show yet
If any of the critical clique covers are α-balanced, but not strictly
α-balanced, then we should not have Poisson convergence.
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Stein’s Method

We use the following well known theorem for approximating
distributions by Poisson distributions.
Define the total variation distance between two integer-valued random
variables by

dTV(X ,Y ) =
1
2

∞∑
i=0

|Pr {X = i} − Pr {Y = i} |.

Given a set of indices Γ and indicator variables Iα, α ∈ Γ, let
X =

∑
α∈Γ Iα and Y ∼ Poisson(λ), where λ = E(X ).

A dependency graph L with vertices Γ is such that if {α, β} is not an
edge in L, then Iα and Iβ are independent.
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Stein’s Method

Then,

Theorem (Janson, Rucinski, T. Łuczak)

dTV (X ,Y ) ≤ min(λ−1,1)

 ∑
α∈V (L)

π2
α +

∑
{α,β}∈E(L)

(παπβ + E(IαIβ)

 ,

Our index set is Γ = {(Hi ,C)} where Hi is an isomorphic copy of H0
and C is a clique cover of Hi . There is an edge in the dependency
graph between (Hi ,C) and (Hj ,C∗) if and only if Hi and Hj have
vertices in common. I(Hi ,C) is the indicator random variable that C
induces Hi .
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Application of Stein’s Method

For {α, β} ∈ E(L), it is enough to show that

E(I(Hi ,C)I(Hj ,C∗)) = O(1)E(I(Hi ,C))E(I(Hj ,C∗))
n|V (Hi )∩V (Hj )|

ω(Hi ,C)
,

where
ω(Hi ,C) = min

∅(S(V (Hi )
ψ(Hi ,C).
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THANK YOU
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