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@ Joint work with Katarzyna Rybarczyk, Adam Mickiewicz University
@ Thanks for the slides for the first part of the talk, Katarzyna!
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Outline of this talk

o Erdos—Rényi random graphs
9 Random intersection graphs

© Equivalence and differences between Erdés-Rényi and
random intersection graphs

0 Distribution of subgraph counts in Erdés-Rényi graphs
e Clique covers

e Subgraph counts in random intersection graphs
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On random graphs L
Dedicoted to O. Varga, ot the occasion of his S0 bithday,
By P. ERDOS and A. RENVI (Budspest).

Let us consider a “random graph” 7,y having 7 possible (labelled)

vertices and N edges; in ofher words, lel us choose at random (with equal
iy

probabilities) ane of the ([2" possible graphs which can be formed from
\n/

the n (abelled) vertices Py, Ps,..., P, by sclecting N edges irom the (f’}
Thus the efective mumber of verices of

possible edges PP (1=

witl any otier point 73; we shall cail such points P, solated points. We
consider the isolated poinfs also as belonging to L, x. T,y is called com-
pletely connected if it effectively contains all points P, Py, e i it

has o isolated points) and is connected in the ordinary sense. In the present
v we coniler. gympoic cssical properies of random raps for
I deal with the following questions:
What is the probability of I\, x being completely connected?
2. What is the probability that the greatest connected component (sub~
graph) of I, v should have effectively n—# points? (¢
3, Wit i e probabiy that . shoud conis of exactly 141
sumesid compnest
ne edges e grm with  vertices are chosen successively so
= i step every edge which has ot yet been chosen has the same.
ity chosen as the next, and if we continue this process until
the graph becomes completely_connected, what is the_probabiliy that the
mumber of necessary steps » will be equal to a given number
As (partial) answers to the above questions we prove the following
four theorems. In Theorems 1, 2, and 3 we use the nofation

0 No=|Lntognsen

where ¢ is an arbitrary fixed real number (x] denotes the integer part of x).

Poisson approximation of subgraphs

RANDOM GRAPHS
Br E. N. Guinger
Bel Telephone Laboratories, Inc., Murray Hill,

1. Tntroduction. Lot ¥ points, nambared 1, 2, <+, ¥, be given. There ure
NN ~ 1)/2 lines which can be drawn joining pairs of these points. Choosing a
subset of thesc Tines to draw, one oblains a g *14 possible
graphs in total. Pick one of these graphs by the following random process. For
all pairs of points make random choiccs, independent of each other, whether or
not to join the points of the pair by a line. Let the commen probability of join-
ing be p. Equlvalenﬂv one may crase lincs, with common probability ¢ = 1 = p
from the complete gr

Tn the random g..; M s consruoted ane says that pint i soncied o pind
n some of the lines of me gmph form a. path from @ to j. Tf 7 is connected to §

avery pair 4, 4, then the graph is said to be connecter, The probubility Py
oot the raph s (-nmmrtal, and ulso the probability R that two spocific points,
say 1 and 2, are connected, will both be found,

“As an application, imaginc the ¥ points to be N telephone central offices and
suppose that each pair of offices has the same probability p that there is an idle
direct line between them. Suppose further that & now call betwoon two offces
can be routed via other officos if nocessary. Then Ry is the probability that
there is some way of outing a new call from office 1 to office 2 and Py is the
‘probubility that each office can call every other office.

Thuict, expressions for Py and Ry ave given in Section 2. These rowults are
unwieldy for large N Bounds on £y and Ry derived in Seotion 3 show that
(1) "
and
2}
asymptotically as N — .

Other related results appear in a paper by Austin, Fagen, Penney, and Riordan
[1]. Thesc authors use a different random process to pick a graph and they find
& generating function for the distribution of the number of connected pieces in
the random grap!

ow Jersey

2. Exact results. Py may be expressed in terms of the number C'y.;, of connected
guphs hn ng .‘v Inbdu.l points and L lines. Since each such graph has proba-
being tho chosen graph, it follows that

Py = X Cuap'g P

Reveived Junuary 26, 1050; rovised July 29, 1930.
1
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Erdos—Rényi random graph G(n, p)
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Erdos—Rényi random graph G(n, p)

o ? o.
p_ .~ .
o—9 °
® [
° °
° °
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Erdos—Rényi random graph G(n, p)

@ Q, - a set of all graphs on n vertices (|2, = 2(3));
@ 0 = P(Qn);
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Erdos—Rényi random graph G(n, p)

@ Q, - aset of all graphs on n vertices (|Q2,| = 2(3));

@ o =P(Qn);

@ each edge appears independently with probability p;

@ A given graph G € Q, on m vertices is picked with probability

pr(1 - p)dm.
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Evolution of a random graph

ON THE EVOLUTION OF RANDOM GRAPHS
by
P. ERDGS and A. RENYI

Dedicated to Professor P. Turdn at
his 50th birthday.
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n n(ln;l w)  n(ln n+u.;
0| N G
T T\

M (1-e)yy (1+¢ N

Evarage number of edges M = (J)p
As pis growing (M is growing) we expect a graph G(n, p) to change
With probability 1 — o(1):

@ is an empty graph;

v
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Evarage number of edges M = (J)p

As pis growing (M is growing) we expect a graph G(n, p) to change.

With probability 1 — o(1):

@ is an empty graph;
@ has no cycles (all components are trees);

v
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n(lnn w) n lnn+w
\/ 2

&y
»

T ¢z

Evarage number of edges M = (J)p

As pis growing (M is growing) we expect a graph G(n, p) to change.

With probability 1 — o(1):
@ is an empty graph;
@ has no cycles (all components are trees);
@ has all components: either trees or unicyclic;
@ has exactly one component containing a constant fraction of

vertices;

v
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n n(nn-w) n(nntw
w 2 2 n
0 J ¥ (:)
2 e

Evarage number of edges M = (7)p

\ 4

As pis growing (M is growing) we expect a graph G(n, p) to change.
With probability 1 — o(1):

@ is an empty graph;

@ has no cycles (all components are trees);

@ has all components: either trees or unicyclic;

°

has exactly one component containing a constant fraction of
vertices;

is disconnected;

is connected.
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Threshold function

(lnn w) n lnn+w n(lnn—w) n(nntw

= N T T 2 .
w *\\/ D, .
(1—e)% (1+¢) R v Q=9 (I+e)y R

The study o the evelution of graphs leads o rather surprising results.
For a number of [undamenial structural properties A there exists a function
Age) tending monctonically to 4 == for = — + = such that

Nin)

0 it lim =0
ne—= Aln)
{1) lim Py oy (d) = v
ke I Laf lim il = 409
n——= A1)
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Threshold function in G(n, p)

A={ contains a K3} A={ is connected}
Let po = 1, then Let po = "2t then

0 as 2 —0; —00;
lim Pr{A} = w lim Pr{A} — {0 @& oo
n—c0 1 as g —oo.| oo 1 asw — oo.
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Threshold function in G(n, p)

A={ contains a K3} A={ is connected}
Let po = 1, then Let po = "2t then
0 £ _,0; — 0
lim Pr{A} = { ok lim Pr{A} — {0 @& oo
n—00 1 as g —oo.| oo 1 asw — oo.
Every monotone property has a threshold function in G(n, p). J

with high probability, i.e. with probability tending to 1 as n — oo.
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Motivation for further research

Why Erd6s—Rényi model do not fit into many real life settings?

Example — complex network

@ Relations between objects are not independent.
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Motivation for further research

Why Erd6s—Rényi model do not fit into many real life settings?

Example — complex network

@ Relations between objects are not independent.
@ Degree distribution is not Poisson.
@ There are more cliques (hubs).

@ There is some hidden relations which determine the structure of
connections — it seems that none of the classical models capture
them.
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Random intersection graph - definition

Karonski, Scheinerman, Singer-Cohen (1999)

(6
W|=n
Dudley Stark (QM)
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Random intersection graph - definition

G(n, m, p)
@ Set of vertices - V, |V| = n;
@ Set of features - W, W| = m = n®, a - constant;
@ Random bipartite graph with bipartition (V, W)

v;v; € E(G(n,m, p))

¢
W(vi) N W(y) # 0
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Comparison with G(n, p)

edge probability in G(n, m, p)

1= (1= p?) ~mp*

1—-(1-p°)" ~1—exp(—mp?) v

(as mp® — 0)

W] = n*
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Comparison with G(n, p)

edge probability in G(n, m, p)

1= (1= p?) ~mp*

1—-(1-p°)" ~1—exp(—mp?) v

(as mp® — 0)

W] = n*

p=1—exp(—mp?) ~ mp??
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J. Fill, E. Scheinerman, K. Singer-Cohen, 2000 -

comparison
m = n%, where a > 0 is a constant

G(n,n'2,p) G(n,p)

— 1 complete graph ] ——

1 .
: P i h-clique (h > 4)
connectivity —f lnLl,'?‘

[r% ——  connectivity
g >3
h-cycles (h>4) — L i :lr;\“clef h>4
_— gle

P 1 an Zn T B

Ch-clique (h > 4) TBTR “' 7R
triangle —— ”“ 1% D>
1 L

single edges

/\

Fig. 2. A comparison of (asymptotic) edge probability at various thresholds for G(n, n', p)
and G(n, p).
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Threshold functions for K; appearance

G(n, m, p) (Karonski, Scheinerman, Singer-Cohen)

\/:Tm for a > 3.

i for a < 3;
T = ny/m

2 {‘s/n—? for a < 3;

1
5 for o > 3. ]

L1
==
n
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Equivalence?

If G(n, m, p) and G (n, p) for
p ~ Pr{(v1, v2) is an edge in G(n, m, p)}

are asymptoticly equivalent.
i.e. for any graph property A and any a € [0; 1]

Pr{G(n,p) e A} —a iff Pr{G(n,m,p)e A} — a
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Equivalence

Theorem (J. Fill, E. Scheinerman, K. Singer-Cohen, 2000)

Let m= n*and o > 6. Let p = p(n) be such that

w cp< 2Inn—w
nvm PV "m

G(n, m, p) is not edgeless and not

for some w — oo (i.e. w.h.
complete). Let

©

p=1-(1-pe)
(pe ~ P?) and A be any graph property. Then for any a € [0; 1]

Pr{G(n,m,p) e A} - a< Pr{G(n,p) e A} — a
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Let m= n* and « > 6. Let p = p(n) be such that

w_ - 2Inn —w
n == m

G(n, m, p) is not edgeless and not

3

for some w — oo (i.e. w.h.
complete). Let

©
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Triangle counts

Given sequences ap, by, ap ~ b, means that a,/b, — 1 as n — co.
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Triangle counts

Given sequences ap, by, ap ~ b, means that a,/b, — 1 as n — co.

In G(n, p), what are the expected number of K3’s?

@ Let X be the number of K3’s.
° E(X)=(3)p° ~ gn*p®andso...
@ When p ~ ¢/n for a constant ¢ > 0, E(X) ~ ¢%/6.
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Triangle counts

If p ~ c/n, then what is the limiting distribution of X?
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Triangle counts

If p ~ c/n, then what is the limiting distribution of X?

@ Let I index all possible triangles.

@ Let X =) . I, where I, is the indicator random variable that «
is present in G(n, p).

@ If a, 5 € T share no vertices, then I, and /5 are independent.
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Triangle counts

If p ~ c/n, then what is the limiting distribution of X?

@ Let I index all possible triangles.

@ Let X =) . I, where I, is the indicator random variable that «
is present in G(n, p).

@ If a, 5 € T share no vertices, then I, and /5 are independent.

@ The expected number of pairs of triangles sharing vertices goes to
0.
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Triangle counts

If p ~ c/n, then what is the limiting distribution of X?

@ Let I index all possible triangles.

@ Let X =) . I, where I, is the indicator random variable that «
is present in G(n, p).

@ If a, 5 € T share no vertices, then I, and /5 are independent.

@ The expected number of pairs of triangles sharing vertices goes to
0.

@ Therefore, X = Po(c®/6).
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Subgraph counts in G (n, p)

@ let Hp be a subgraph of K, with e edges and v vertices.
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Subgraph counts in G (n, p)

@ let Hp be a subgraph of K, with e edges and v vertices.
@ Let X be the number of Hy’s.
° E(X) = |Al(n”();,0)|ﬁe ~ muE NP and so ...
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Subgraph counts in G (n, p)

@ let Hp be a subgraph of K, with e edges and v vertices.
@ Let X be the number of Hy’s.
° E(X) = |Al(n”();,0)|ﬁe ~ muE NP and so ...

@ When p ~ cn~"/€ for a constant ¢ > 0, E(X) ~ Wi’o)\-
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Subgraph counts in G (n, p)

Bollobas, Rucinski,. ..

Definition of strictly balanced

A subgraph Hp of K}, is strictly balanced if
|E(S)]

e
0cScV(Ho) | S| h’

where E(S) is the number of edges of Hp contained in S.
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Subgraph counts in G (n, p)

Bollobas, Rucinski,. ..

Definition of strictly balanced
A subgraph Hp of K}, is strictly balanced if

[E(S)]

e
0cScV(Ho) | S| h’

where E(S) is the number of edges of Hp contained in S.

If p ~ cn—"/€ for a constant ¢ > 0 then, X has a limiting Poisson
distribution if Hy is strictly balanced.

Dudley Stark (QM) Poisson approximation of subgraphs Durham, 24 July 2013 22 /41



Subgraph counts in G (n, p)

Definition of balanced

A subgraph Hyp of K, is balanced if

max  LEG)
0CSCV(Ho) | S|

e
SEa

where E(S) is the number of edges of Hy contained in S.
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Subgraph counts in G (n, p)

Definition of balanced

A subgraph Hyp of K, is balanced if

max  1EG
0CSCV(Ho) | S|

e
Sﬁa

where E(S) is the number of edges of H, contained in S.

v

Theorem

P ~ cn—V/€ for a constant ¢ > 0 and Hy is strictly balanced, but not
strictly balanced, then lim,_,, Var(X) > E(X) and X does not have
limiting Poisson distribution.
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Subgraph counts in G (n, p)

Definition of balanced
A subgraph Hy of K, is unbalanced if

E(S)]
S|

>

I

>l o

forsome ) € S C V(Hp), where E(S) is the number of edges of Hy
contained in S.
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Subgraph counts in G (n, p)

Definition of balanced

A subgraph Hy of K, is unbalanced if

E(S) _ e
R

forsome ) € S C V(Hp), where E(S) is the number of edges of Hy
contained in S.

v

Theorem

If p ~ cn—"/€ for a constant ¢ > 0 and Hj is unbalanced, then X — 0 in
probability.

v
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Subgraph problem

Rybarzyk, S.(2010)

@ m = n%, a — constant;
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@ X, —number of Ky, h > 3, in G(n, m, p)
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Subgraph problem

Rybarzyk, S.(2010)

@ m = n%, a — constant;
@ X, —number of Ky, h > 3, in G(n, m, p)

cen'mn for0<a<2h/(h—1);
p~<{ cnr for a = 2h/(h— 1);
cn rimz fora > 2h/(h—1).
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Subgraph problem

(i) f0<a<2h/(h- 1) then IEX,, ~ cl/h! and
drv(Xn, Po(EXp)) =

(i) If « = 2h/(h—1) then EX, ~ (¢" + c"=1) /hl and

dry(Xn, Po(EX)) = O (77 ) ;

1)

)=

(iii) If o > 2h/(h — 1) then EX,, ~ c"("=1) /hl and
(h— alh=1) 2 ) 1
dTV(Xn, PO(EXn) +n o
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Clique covers

Definition of the clique covers of Hy
Given a fixed subgraph Hy of K, define V(Hp) and E(Hp) to be the

vertex and edge sets of Hy, respectively. A clique cover
C={Cy,...,C:} of Hy is a set of subsets of V(Hp) such that

@ [Cj| >2forall C;eC
@ Each C; € Cinduces a clique in Hy

@ For any {v1, v} € E(Hp) there exists C; € C such that v, v» € C.
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Clique covers of Kj
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Clique covers of Kj

ACLIQUE
COVER

MANDATORY
CLIQUES

FORBIDDEN
CLIQUES

Dudley Stark (QM) Poisson approximation of subgraphs Durham, 24 July 2013 29 /41



Clique cover induction

Definition of induction by a clique cover

We say that H is induced by clique cover C = {Cy,..., Gt} if thereis a
family of disjoint non-empty subsets { W4, ..., W;} of W, such that,

@ Forall1 </ <t each element of W; is an object assigned to all
the vertices of C; and no other vertices from V(Hp).
@ Each w e W\ |J!_, W, is chosen by at most one vertex from
V(Hp).
Clearly, if Hp is an induced subgraph of G(n, m, p), then it is induced by
exactly one clique cover in G(n, m, p).

v
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Clique covers of Kj
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Restricted clique covers

Given ) ¢ S ¢ V(H), we define two different types of restricted clique
covers, which are multisets defined by
C[S] ={CinS:|CinS|>1,i€elt}
and
C'[S]:={CinS:|CinS|>2,i€el[t]}.
We define
Y cisl= Y [Gins|
i€[t]
|CiNS|>1
and
Y Csl= > [GinS.
i€[t]
|CiNS|>2
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Let Hyp[S] the induced subgraph of Hy on vertices S. Clearly, it is
impossible for C to induce Hp unless C[S] and C'[S] induce Hy[S].

The expected number of copies of Hy[S] in G(n, m, p) induced by C[S]
and C'[S] are asymptotically of order

“(Ho, C, S) = min { pISi+lCIS] pECIS] pISi+ale[S] pzcw}
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Thresholds for induction by a clique cover

Consider clique cover C

Define
BELEEL it either o < s~gatloray
n2(Ho, C, S) := or > C[S] = [C[S]};
% otherwise,
and define
m(Ho, C) := @;Srgi\p(Ho)nz(Ho,C, S).
Then p = n~(H0:€) should be a threshold for C inducing copies of Hp. )
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Thresholds for induction by a clique cover

Thus, if we define
no = no(Ho) := maxn1(Ho, C),
cec

then it is natural to expect that under suitable conditions p = n—"0(Fo)
should be the threshold for the appearance of Hy in G(n, m, p).
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Thresholds for induction by a clique cover

Thus, if we define
no = no(Ho) := maxn1(Ho, C),
cec

then it is natural to expect that under suitable conditions p = n—"0(Fo)
should be the threshold for the appearance of Hy in G(n, m, p).

The clique covers which will induce copies of Hy at threshold
p = n—"0(tb) are those for which 71 (Hy, C) = 10. We call them critical.

v
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Thresholds for induction by a clique cover

Thus, if we define
no = no(Ho) := maxn1(Ho, C),
CeC

then it is natural to expect that under suitable conditions p = n—"0(Fo)
should be the threshold for the appearance of Hy in G(n, m, p).

The clique covers which will induce copies of Hy at threshold
p = n—™(Fb) gre those for which 71 (Hp, C) = 1. We call them critical.

v

We call a clique cover C € C(Hp) strictly a-balanced if

n2(Ho, C, S) > n2(Ho, C, V(Hp)) forall ® & S & V(Hp). The idea of
strictly a-balanced was introduced by Jaworski and Karonski for
random bipartite graphs.
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Balanced and unbalanced clique covers

We call a clique cover C € C(Hp) a-balanced if
ne2(Ho, C, S) = no(Ho, C, V(Hp)) forall @ & S & V(Hp). J

We call a clique cover C € C(Hp) strictly a-unbalanced if
n2(Ho, C, S) < m2(Ho, C, V(Ho)) for some 0 & S & V(Hp). J
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Work in progress

~Theorem

Suppose at least one of the critical clique covers of Hy is strictly
a-balanced and all of them are either strictly a-balanced or
a-unbalanced. If p ~ cn~(F) then X converges to a Poisson
distributed random variable with parameter \. If at least one of the

critical clique covers is a-unbalanced, then A < limy_,., E(X). If all of

the critical clique covers are a-balanced, then A = lim,_, E(X)

Dudley Stark (QM) Poisson approximation of subgraphs Durham, 24 July 2013

37/41



Work in progress

~Theorem

Suppose at least one of the critical clique covers of Hy is strictly
a-balanced and all of them are either strictly a-balanced or
a-unbalanced. If p ~ cn—"°(F) then X converges to a Poisson
distributed random variable with parameter \. If at least one of the
critical clique covers is a-unbalanced, then A < limy_,., E(X). If all of
the critical clique covers are a-balanced, then A = lim,_, E(X)

What we think is true, but might not be able to show yet

If any of the critical clique covers are a-balanced, but not strictly
a-balanced, then we should not have Poisson convergence.

| A

\
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Stein’s Method

We use the following well known theorem for approximating
distributions by Poisson distributions.

Define the total variation distance between two integer-valued random
variables by

drv(X,Y) = ;i[Pr{X: i} —Pr{y=1i}|.
i=0

Given a set of indices I and indicator variables /,, « € T, let

X =3 qcr la @and Y ~ Poisson()), where A = E(X).

A dependency graph L with vertices I is such that if {«, 8} is not an
edge in L, then /, and I are independent.
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Stein’s Method

Then,

Theorem (Janson, Rucinski, T. Luczak)

acV(L) {a,8}€E(L)

dry(X,Y) <min(A~', 1) ( doom+ Y (mm—l—E(/a/ﬁ))’

Our index setis ' = {(H;, C)} where H; is an isomorphic copy of Hy
and C is a clique cover of H;. There is an edge in the dependency
graph between (H;, C) and (H;,C*) if and only if H; and H; have
vertices in common. /4, c) is the indicator random variable that C
induces H,.
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Application of Stein’s Method

For {«, 8} € E(L), it is enough to show that
AlVH)NV(H)]
E(fH.c)lH.c4) = O(1 )E(/(H,,C))E(/(w,C*))W,
I

where

w(H;,C) = @gsrgl&](H,)w(H"’c)'
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THANK YOU
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