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1. Motivation: decoupling fundamental domains

» If M compact “structure”

~» spectrum of the corresponding Laplacian o(Ap) v
» If X is a non-compact structure
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(Think of M as, e.g., cpt. Riemannian mfd. or finite graph
and X non-cpt. Riemannian mfd. or infinite graph)

In this talk we will focus on periodic structures:

» Covering X — M with fundamental domain D and discrete
group [ acting on it.

e Analyze o(Ax), in particular when gaps appear.

e Physically, spectral gaps may be thought as energy values at
which there is no transmission.



Spectral gaps and Riemannian coverings:

Theorem: (LI./Post, Cont. Math. '07, Rev.Math.Phys. '08)

Given a Riemannian covering X — M with residually finite group I
and given n € N, there is a deformed covering X, — M., ¢ = e(n),
such that o(Ax_) has at least n gaps.
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2. Laplacians on discrete and metric graphs

Can we localize spectral gaps in graph Laplacians ?
2.1 Discrete graphs and Laplacians

> G :=(V, E,0) be an oriented graph. E, edges at v € V
> Orientation: 0: E = V x V, e = (0_e, D e).
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Exterior derivative: d: £3(V) — £o(E), (dF)e = F(0+€) — F(O_e),
> discr. (normalized) Laplacian: A := d*d: £o(V) — £>(V)
(AGF)(V) = F(v) — %—gl(—v) > F(ve), with F € £5(V).
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Discrete Dirichlet Laplacians

Boundary of G = (V, E,0): It is a choice of a set OV C V

e Define the Dirichlet Laplacian Z&?;V similarly as before, but on
F € 05(V) such that F [ 0V = 0.

e If G is finite (e.g., a fund. domain D of a periodic graph) then

x OV .
> Lk, piY eigenvalues of Ag, AG respectively.
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> In discrete Laplacians the vertices V play a primary role, while
edges E are secondary objects.



2.2 Metric graphs and Laplacians

Let G := (V, E, D) be an oriented graph.
The metric graph associated with G is constructed as follows:

> Equilateral graph: E> e [, = (0,1)

» Metric space: X := eLE-JETe/N

» Basic L*-space: J# = [%(X) = o [2(l) (Hilbert space).
We define Laplacians in terms of quadratic forms!

Consider first on each edge/intervall: the following

unbounded positive quadratic <— operators
1

h(f) ::/ F(x)[2dx "5 —(F, Af) and Af = —f" & b.c.
0

Most important advantage of the quadratic forms language:

> domh O domA. E.g., H3(0,1) D H3(0,1).



Laplacians on the metric graph: G .= (V,E,0) ~ X

Kirchhoff Laplacian:
> Quadratic form: h(f) == [|f'||2 = .. fo |£/(x)]? dx.
> domb = (@ H(le)) N C(X).

Remark: Where does the name Kirchhoff come from?

Axfe=—fiff=(fe)ece € ( S H2(/e)) N C(X)

e c E

Kirchhoff condition: Y  f/(v)=0,v e V.
eec E,

Dirichlet-Kirchhoff Laplacian: Let X cpt. & V C V a boundary.
» Defined via the quadratic form f]av(f) = ||f']|? on {.;,49“5

domh?” = {f € domp | f | OV = 0}
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> Ak, A}V eigenvalues of Ay, A?}V respectively.

° ]blueSumma[ﬂ: For metric Laplacians the edges are primary objects

and the vertices come in via boundary conditions.



2.3 Spectral relations (reminder): discrete vs. metric graphs

> G finite graph and X is the metric graph (compact and
equilateral) associated to G.

> Discrete Laplacian A‘Z‘/ vs. metric Laplacian A" .Both
Laplacians with Dirichlet data on the boundary 0V C V.

» Dirichlet spectrum for A?}V: Y = L ks = | wE N
Proposition 1: (Outside ZD) If A& £P then

> Aco (A?(V) ff () = (1 - cos \/X) €0 (Ai‘/)c [o,2]

Proposition 2: (At X”) If A = ), € P, then for n = 2/ even there is
an isomorphism between the relative homology H;(X,9V) and the set

{f c ker (Aiv — )\nl) | F [ W = O}. In particular,

dim ker(A%Y — A1) = by(X,0V) = |E| — |V| +|0V|.




Spectral relations in a concrete example
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3. Eigenvalue bracketing for the metric Laplacian

Quadratic forms are also useful to order eigenvalues of metric
Laplacian! (In general this is not possible at the level of operators!)

1. Recall that the Dirichlet and Kirchhoff domains satisfy
domh®Y C domh C A7 with §(F) = ||F||2.
2. Extending the quadratic forms on the whole Hilbert .5Z space

by oo and using the variational characterization of eigenvalues
In terms quadratic forms

. h(f)
Ak = inf sup —=,
“T Lo reL ||f]2

where L is a k-dimensional subspace. Similarly for h2V.
dombh?Y  domp BN AV >\

3. Define the Dirichlet-Kirchoff intervals: Iy := [A¢, A2V].



4. Spectral localization and gaps

Theorem 1 (LI./Post '08) Let X be a periodic metric graph (not
necessarily equilateral) with residually finite group I' and
fundamental domain D. If Ax is the Kirchhoff-Laplacian, then

(i) o(Ax) C ol A, A2V

(i) If g C [0, 0c) satisfies g N (kUN Ak )\‘EVD = (), then
=

gNo(Ax) =0 and Ax has a spectral gap.
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ldea of the proof:

> Towers of coverings: The covering X can be exhausted by
finite coverings X; with finite group I'/T;

[/T;

> 1. step: o(Ax) C _gNa(AX,.)

> 2. step: 0(Ax,) C kUN [)\k, XEV} using bracketing techniques.
=



Theorem 2 (LI./Post '08)

Let G be a discrete periodic graph with residually finite group [
and fundamental domain D. Let v(D) be the set of vertices of the
fundamental domain and A the discrete Laplacian. Then

: X V(D)
(l) o (AG) C kL:J1 [#kaﬂfv]'

V(D
kgl) [)\k, )\fv]> = (), then

gNo (AG) = () and the discrete Laplacian has a spectral gap.

(i) If g C [0, 2] satisfies g N (

|dea of the proof:

> Use first Theorem 1 for equilateral metric graph.

> Use the spectral relation between discrete and metric graphs:

Neo(Ax) iff (X)) = (1—cosxf>\) co(Ag).



Example 1 (Periodic onion)

S O

Metric and discrete Laplacians have a spectral gap if the number
of edges r > 2: e.g.,

" 1 1 1 1
C - - 1 2| .
a(AG)_{O,HJU[l 2 1+r}u[+1+r,}

Motivational idea applied to graphs:
Decouple fundamental domains by enlarging the fundamental
domain. High contrast!



Example 2 (One fundamental domain with two group actions)
Consider the periodic graphs with the same fundamental domain
D and two radically different groups acting

» Abelian group I = Z2.
> Free group [ = F, with two generators.
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> For both we can localize a spectral gap: e.g., discr. Laplacian

" 1
a(AG)ﬂ(l——\g—g,l—E) =0.



5. Summary and conclusions

Results:

> Analysis of the spectrum of Laplacians for (infinite) periodic
discrete and metric graphs.

> Sufficient conditions for the existence of spectral gaps in both
cases. Examples.

Techniques used:

» Eigenvalue bracketing for metric graphs.

> Use the metric graphs to analyze discrete Laplacians.

» Work and estimate at the level of fundamental domains.
What else?

1. Localize spectral gaps directly for the discrete Laplacians.

2. Analyze tower of coverings with magnetic Laplacians.



