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Introduction: two ingredients



Graph Laplace operator

Settings: an undirected, simple, finite, connected graph G = (V ,E ).
I Combinatorial Laplace operator L

Lf (x) =
∑

y ,y∼x
f (y)− dx f (x), ∀f : V → R;

I Normalized Laplace operator ∆

∆f (x) =
1
dx

∑
y ,y∼x

f (y)− f (x), ∀f : V → R.

We call λ an eigenvalue of ∆ if there exists some f 6≡ 0 such that

∆f = −λf .
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Settings: an undirected, simple, finite, connected graph G = (V ,E ).
I Combinatorial Laplace operator L

Lf (x) =
∑

y ,y∼x
f (y)− dx f (x), ∀f : V → R;

I Normalized Laplace operator ∆

∆f (x) =
∑
y∈V

f (y)mx (y)− f (x), ∀f : V → R.

mx (y) =

{ 1
dx
, if y ∼ x ;

0, otherwise.

We call λ an eigenvalue of ∆ if there exists some f 6≡ 0 such that

∆f = −λf .



Number of common neighbors and Ricci curvature

Number of common neighbors of x ∼ y ,

](x , y) :=
∑

z,z∼x ,z∼y
1.

x y

](x , y) = 2

Overlaps of two distance balls L9999K lower Ricci curvature bounds
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Largest eigenvalue and number of common
neighbors



The largest eigenvalue

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 be eigenvalues of L.

I Anderson-Morley, 1985

λN−1 ≤ max
x∼y
{dx + dy};

I Rojo-Soto-Rojo, 2000

λN=1 ≤ max
x 6=y
{dx + dy − ](x , y)};

I Das, 2003
λN−1 ≤ max

x∼y
{dx + dy − ](x , y)}.
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maxx dx
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The largest eigenvalue
Combinatorial Laplace operator:

I Das, 2003
λN−1 ≤ max

x∼y
{dx + dy − ](x , y)}.

Normalized Laplace operator:
I Bauer-Jost-L. 2012

λN−1 ≤ 2− minx∼y ](x , y)

maxx dx
.

I λN−1 = 2 iff G is bipartite (with out any odd-length cycles)



Iterated operator
Consider the iterated operator ∆[2] = −I + (I + ∆)2. We have

∆[2]f (x) =
1
dx

∑
y ,y∼[2]x

 ∑
z,z∼x ,

z∼y

1
dz

 f (y)− f (x).

Proof: For u s.t. ∆u = −λN−1u, we have

2− λN−1 =
(u,∆[2]u)

(u,∆u)
=

∑
x∼[2]y

(∑
z,z∼x ,

z∼y
1
dz

)
(u(x)− u(y))2∑

x∼y (u(x)− u(y))2

≥ min
x∼y

∑
z,z∼x ,

z∼y

1
dz
≥ minx∼y ](x , y)

maxx dx
,

where we used
I (f , g) =

∑
x f (x)g(x)dx ;

I minx∼y ](x , y) 6= 0 ensures x ∼ y ⇒ x ∼[2] y .
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
︸ ︷︷ ︸

weight!
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Neighborhood graphs

Definition (Bauer-Jost 2010)
The neighborhood graph G [t] = (V ,E [t]) of the graph G = (V ,E ) of
order t ≥ 1 is defined as

I V : unchanged;
I E [t] changed:

wxy [t] := δx Pt(y)dx =
∑

x1,...,xt−1
x∼x1∼···∼xt−1∼y

1
dx1

· · · 1
dxt−1

.

I x ∼[t] y in G [t] iff ∃ a path of length t between x and y in G ;
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Neighborhood graphs
Definition (Bauer-Jost 2010)
The neighborhood graph G [t] = (V ,E [t]) of the graph G = (V ,E ) of
order t ≥ 1 is defined as

I V : unchanged;
I E [t] changed:

wxy [t] := δx Pt(y)dx =
∑

x1,...,xt−1
x∼x1∼···∼xt−1∼y

1
dx1

· · · 1
dxt−1

.

I x ∼[t] y in G [t] iff ∃ a path of length t between x and y in G ;
I

dx [t] :=
∑

y
wxy [t] = dx ;

I

∆[t] = −I + (I + ∆)t .



Eigenvalues and number of common neighbors



Eigenvalues and coarse Ricci curvature



Ollivier’s Ricci curvature notion
Definition (Ollivier, 2009)
For any two distinct points x , y ∈ X , the (Ollivier-) Ricci curvature of G
along (xy) is defined as

κ(x , y) := 1− W1(mx ,my )

d(x , y)
,

I W1(mx ,my ) is the optimal transportation distance between the two
probability measures mx and my using the graph distance as cost
function.

x y



Ollivier’s Ricci curvature notion
Definition (Ollivier, 2009)
For any two distinct points x , y ∈ X , the (Ollivier-) Ricci curvature of G
along (xy) is defined as

κ(x , y) := 1− W1(mx ,my )

d(x , y)
,

I W1(mx ,my ) is the optimal transportation distance between the two
probability measures mx and my using the graph distance as cost
function.

I Earlier ideas of defining Ricci curvature on graphs, Dodziuk-Karp
1988, Chung-Yau 1996.

x y



Ricci curvature and common neighbors

Theorem (Jost-L., 2011)
For any pair of neighboring vertices x , y,

](x , y)

dx ∨ dy
≥ κ(x , y) ≥−

(
1− 1

dx
− 1

dy
− ](x , y)

dx ∧ dy

)
+

−
(
1− 1

dx
− 1

dy
− ](x , y)

dx ∨ dy

)
+

+
](x , y)

dx ∨ dy
.

Moreover, this inequality is sharp for certain graphs.
Notations:
a+ := max{a, 0}, a ∧ b := min{a, b}, and a ∨ b := max{a, b}.

I Lower bound improves the estimate of Lin-Yau 2010.



Ricci curvature κ[t]
κ[t] capture the information of number of 3-cycles on G [t] which may
come from

I 3-cycles are preserved from G to G [t].
I x ∈ an odd cycle in G → x ∈ 3-cycles in G [t].

C5 C5[3]

x x

I x ∈ a single edge in G , then it is still possible that x ∈ a 3-cycle in
G [t].

x y

G

x y

G[2]
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Eigenvalues and Curvature

Theorem (Bauer-Jost-L. 2012)
Let k[t] be a lower bound of Ollivier-Ricci curvature of the neighborhood
graph G [t]. Then for all t ≥ 1 the eigenvalues of ∆ on G satisfy

1− (1− k[t])
1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t])

1
t .

Moreover, if G is not bipartite, then there exists a t ′ ≥ 1 such that for all
t ≥ t ′ the eigenvalues of ∆ on G satisfy

0 < 1− (1− k[t])
1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t])

1
t < 2.

I t = 1 case follows directly from Ollivier.

k ≤ λ1 ≤ · · ·λN−1 ≤ 2− k

is nontrivial only when k > 0.
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An Example
We consider the graph C5.

C5

λ1 = 1− cos 2π5
.

= 0.6910, λ4 = 1− cos 4π5
.

= 1.8090. k = 0.

t = 1 : 0 ≤ λ1 ≤ λ4 ≤ 2.

t = 2 : 0.1340 ≤ λ1 ≤ λ4 ≤ 1.8660.

t = 3 : 0.1450 ≤ λ1 ≤ λ4 ≤ 1.8550.

t = 4 : 0.1591 ≤ λ1 ≤ λ4 ≤ 1.8409.
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An Example
We consider the graph C5.

C5[3]

λ1 = 1− cos 2π5
.

= 0.6910, λ4 = 1− cos 4π5
.

= 1.8090. k[3] = 3/8.

t = 1 : 0 ≤ λ1 ≤ λ4 ≤ 2.

t = 2 : 0.1340 ≤ λ1 ≤ λ4 ≤ 1.8660.

t = 3 : 0.1450 ≤ λ1 ≤ λ4 ≤ 1.8550.

t = 4 : 0.1591 ≤ λ1 ≤ λ4 ≤ 1.8409.



An Example
We consider the graph C5.

C5[4]

λ1 = 1− cos 2π5
.

= 0.6910, λ4 = 1− cos 4π5
.

= 1.8090. k[4] = 1/2.

t = 1 : 0 ≤ λ1 ≤ λ4 ≤ 2.

t = 2 : 0.1340 ≤ λ1 ≤ λ4 ≤ 1.8660.
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Exponential decay

Theorem (Bauer-Jost-L. 2012)
If G is not bipartite, the limit

lim
t→∞

log(1− k[t])

t := −a

exists with a ∈ (0,+∞]. That means, k[t] behaves like 1− P(t)e−at as
t →∞ where P(t) is a polynomial in t.
Proof:

I Subadditivity implies existence of the limit −a (for s, t ≥ t ′,
1− k[t + s] ≤ (1− k[s])(1− k[t]));

I Further estimates implies a > 0.
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Thank you for your attentions!


