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Goal: Discuss finiteness properties for EFING and EVCG
when G acts isometrically and discretely on a CAT(0)-space.

- joint work with Dieter Degrijse

1 Short introduction to classifying spaces;

4 Linear groups over positive characteristic;

5 Mapping class group of closed oriented surfaces.
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2 Associated G-simplicial complex;

3 About proofs of Theorems A and B;



All group considered will be discrete.

Let G be a group. A family of subgroups F of G is a collection

of subgroups of G that is closed under conjugation and taking

subgroups.

Definition. A classifying space of G for the family F , also

called a model for EFG, is a G-CW-complex X characterized

by the properties:

(i) all isotropy subgroups of X are in F ;

(ii) for each H 2 F , the fixed point set XH
is contractible.
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Examples:

- A model for EFG can be defined as a terminal ob-

ject in the G-homotopy category of G-CW-complexes

whose isotropy groups are in F .

- A model for EFG exists for any G and any F .

1 If G 2 F , then a point is a model for EFG.

2 If F = {1} - the trivial family of subgroups of G, then

EFG = EG.
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3 Let G be a connected Lie group and K be a maximal

compact subgroup. If � < G is discrete, then G/K is

a model for EFIN�.



- Then G acts isometrically,

properly discontinuously and

cocompactly on En
.

- All stabilizer subgroups are

finite.

- The fixed point set of ev-

ery finite subgroup of G is

contractible.

Ex. Let G be an n-dimensional

crystallographic group.

- Hence, En is a finite model
for EFING.
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Question. What can we say about EFIN
and EVC from isometric actions of groups on

CAT(0)-spaces?
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Main Motivation. EFING and EVCG ap-

pear in the Isomorphism Conjectures.



- Applies to crystallographic groups!

Starting point

Theorem (Lück, 2009). Let G be a group that acts properly

and isometrically on a complete proper CAT(0)-space X. Let

d = 1 or d � 3 such that top-dim(X)  d.

(i) Then there exists a model for EFING of dimension at

most d.

(ii) If in addition, G acts by semi-simple isometries, then

there is a model for EVCG of dimension at most d+ 1.
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- Cellular actions are discrete.

- An isometric group action on a metric space is proper

if and only if it is discrete and all point stabilizers are

finite.

Definition. We say that G acts discretely on a topological

spaceX if the orbits Gx are discrete subsets ofX for all x 2 X.

Question. What if the action on the CAT(0)-space is not

proper?

- The key condition we will need is that the actions should

be discrete.
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First step. Associate to the isometric

action of a group on a metric space a

certain simplicial action.
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Setting. G acts isometrically and discretely

on a CAT(0)-space.



Sketch of proof.

Proposition. Let X be a separable metric space of topolog-

ical dimension at most n. Suppose G acts isometrically and

discretely on X.

(i) Then there exists a simplicial G-complex Y of dimension

at most n for which the stabilizers are the point stabiliz-

ers of X, together with a G-map f : X ! Y .

(ii) Moreover, if G act cocompactly, then Y/G is finite.
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For every x 2 X, there exists an " > 0 such that for all g 2 G

g · B(x, ") \ B(x, ") 6= ; , g 2 G

x

.



The nerve N (V) of V is the simplicial complex whose ver-

tices are the elements of V and the pairwise distinct vertices

V0, . . . , Vd span a d-simplex if and only if \d
i=0Vi 6= ;.

- Since V is G-invariant, the action of G on X induces a

simplicial action of G on N (V).

A good open cover V is a G-invariant open cover of X such that

every V 2 V satisfies:

there exists x

V

2 X such that for each g 2 G

g · V \ V 6= ; , g · V = V , g 2 G

xV .
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- Given g 2 G, then g · (V0, . . . , Vd) = (V0, . . . , Vd) if and

only if (V0, . . . , Vd) is fixed pointwise by g.



Therefore, N (V) is a G-simplicial complex for which the sta-

bilizers are point stabilizers of X.

(i) If dim(V)  n then N (V) is of dimension at most n.
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c

In the rest of the proof we find a G-invariant good open cover

of X that allows one to construct a G-map f : X ! N (V) and
satisfying (i) and (ii).

(ii) If the cover V has only finitely manyG-orbits, then

N (V)/G is finite.



There exists a G-map ' : EFG ! X ⇥JFG because X ⇥JFG
is a model for JFG and EFG is F-numerable.

Theorem A. Let G be a group acting isometrically and dis-

cretely on a separable CAT(0)-space X of topological dimen-

sion n. Let F be a family such that XH 6= ; for all H 2 F .

Denote d = sup{gdF\G
x

(Gx) | x 2 X}. Then

gdF (G)  max{3, n+ d}.

Let JFG be the terminal object in the G-homotopy category

of F-numerable G-spaces.
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Sketch of proof.



Theorem A. Let G be a group acting isometrically and dis-

cretely on a separable CAT(0)-space X of topological dimen-

sion n. Let F be a family such that XH 6= ; for all H 2 F .

Denote d = sup{gdF\G
x

(Gx) | x 2 X}. Then

gdF (G)  max{3, n+ d}.
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'

Z

Z is a G-CW-complex of dimension n + d and G-homotopy

equivalent to Y ⇥ EFG.

EFG
'�! X ⇥ JFG

f⇥Id���! Y ⇥ JFG
Id⇥↵���! Y ⇥ EFG

⇡2�! EFG

Sketch of proof.



Theorem A. Let G be a group acting isometrically and dis-

cretely on a separable CAT(0)-space X of topological dimen-

sion n. Let F be a family such that XH 6= ; for all H 2 F .

Denote d = sup{gdF\G
x

(Gx) | x 2 X}. Then

gdF (G)  max{3, n+ d}.

'

ZEFG EFG
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c

Since EFG is G-dominated by an (n + d)-dimensional G-

CW-complex Z, it is G-homotopy equivalent to one of di-

mension max{3, n+ d}.

Sketch of proof.



Question. What can we say about EVCG at this point?

Answer. Not much, because when G acts isometrically

on a CAT(0)-space an infinite cyclic subgroup C of G,

we may have XC
= ;.

General Strategy: Adapt a finite dimensional model

for EFING into a finite dimensional model for EVCG.
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If each f[H] is a cellular NG[H]-map and i is an inclusion of

G-CW-complexes, then X is a model for EVCG.
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Construction of Lück and Weiermann

N
G

[H] := {x 2 G | |H \Hx| = 1} = Comm

G

(H).

F
H2I G⇥ NG[H]EFINNG[H]

i����! EFING
??y
F

H2I idG⇥NG[H]f[H]

??y
F

H2I G⇥ NG[H]EF [H]NG[H] ����! X

Let X be the cellular G-pushout:

Let H be an infinite v-cyclic subgroup of G.



Theorem B. Let G be a countable group acting discretely by

semi-simple isometries on a complete separable CAT(0)-space

X of topological dimension n. Then

cdVC(G)  n+max{stvc, vstfin + 1},
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1 ! N ! E ! F ! 1,

and E(G,X) is the collection of all groups E that fit

with N  G

x

for some x 2 X and F a subgroup of a finite

dihedral group.

- vstfin = sup{cdFIN (E) | E 2 E(G,X)}

where

- st
vc

= sup{cdVC(Gx

) | x 2 X}



Theorem B. Let G be a countable group acting discretely by

semi-simple isometries on a complete separable CAT(0)-space

X of topological dimension n. Then

cdVC(G)  n+max{stvc, vstfin + 1},

Ex. Let G be a generalized Baumslag-Solitar group and X be

the Bass-Serre tree.

The group G acts on X with infinite cyclic stabilizers.

Then stvc = 0 and vstfin = 1 and we get gdVC(G)  3.

19



Theorem B. Let G be a countable group acting discretely by

semi-simple isometries on a complete separable CAT(0)-space

X of topological dimension n. Then

cdVC(G)  n+max{stvc, vstfin + 1},

Idea of Proof.

- Apply Theorem A to get a model for EFING.

- Use Lück-Weiermann’s construction to reduce the prob-

lem to bounding cdF [H](NG[H]) for each class [H] where

H is an infinite cyclic subgroup G.

- Consider 2 cases: a generator h of H is either an elliptic

or a hyperbolic element.
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Case 2: H = hhi and h is hyperbolic, i.e. has no fixed point.

Let g 2 NG[H]. Then 9l,m 6= 0 such that g�1hlg = hm.

This implies |hl| = |hm|.

H acts on an axis c(R) of h by h · c(t) = c(t+ |h|) where |h| is
the translation length.

c(k + 2|h|)

c(k + 3|h|)

c(k + |h|)

c(k)
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) l = ±m.



Case 2: H = hhi and h is hyperbolic, i.e. has no fixed point.

9m 6= 0 so that g�1hmg = h±m
for all g 2 K.

c(k + 2|h|)

c(k + 3|h|)

c(k + |h|)

c(k)
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Now, let K be a f.g. subgroup of NG[H] that contains H.

Because NG[H] = NG[hhmi], we may assume m = 1.



Case 2: H = hhi and h is hyperbolic, i.e. has no fixed point.

Hence, H CK where K is a f.g. subgroup of NG[H].

) cdF [H]\K(K)  cdFIN (K/H).

- It is left to bound cdFIN (K/H).

c(k + 2|h|)

c(k + 3|h|)

c(k + |h|)

c(k)
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Case 2: H = hhi and h is hyperbolic, i.e. has no fixed point.

Recall that Min(h) = {x 2 X | d(h · x, x) = |h|}.
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Case 2: H = hhi and h is hyperbolic, i.e. has no fixed point.

Recall that Min(h) = {x 2 X | d(h · x, x) = |h|}.

It is a complete CAT(0)-space.

Moreover, K maps an axis of h to an axis of h.
25

8g 2 K, ghg�1 = h±1 ) g ·Min(h) = Min(ghg�1) = Min(h)



Case 2: H = hhi and h is hyperbolic, i.e. has no fixed point.

Since H acts by non-trivial translations on each axis, here it

acts trivially on Y -factor and it acts cocompactly on R-factor.

It follows that K/H acts isometrically and discretely on Y .

Min(h)
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There is a complete separable CAT(0)-subspace Y of X so that

Min(h) is isometric to Y ⇥R and K acts on Y ⇥R via discrete

isometries in Iso(Y )⇥ Iso(R).

Y

Th.A ) cdFIN (K/H)  n� 1 + vstfin.

c



Proof. The strategy is to obtain an action of G on a finite

product of buildings.

Cornick-Kropholler Construction
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- Can reduce to G = SLn(S) where is S is a f.g. domain

of characteristic p > 0.

- The ring S is a finitely generated domain and hence it is

integral over some Fp[x1, . . . , xs].

Corollary 1. LetG be a finitely generated subgroup of GLn(F )

where F is a field of positive characteristic. Then

gdFIN (G) < 1 and gdVC(G) < 1.



- There are finitely many discrete valuations of the fraction

field E of S such that S \ Tr
i=1 Ovi ✓ L, the algebraic

closure of Fp in E and L is finite.

SLn(
ˆEi) acts chamber transitively on the associated Euclidean

building Xi of dimension n� 1.

The restriction of this action to G has vertex stabilizers con-

jugate to a subgroup of SLn(Ovi).

Let Ci be a chamber of Xi. Since Xi is a continuous image of

the separable space SLn(
ˆEi)⇥ Ci it is itself separable.
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X = X1 ⇥ . . .⇥Xr

such that each stabilizer G

x

of a vertex x of X lies inside

SLn(S)\
r\

i=1

a�1
i SLn(Ovi)ai, for ai 2 SLn(E), i = 1, . . . , r.

and therefore is locally finite.

Th.A ) cdFIN (G)  r(n� 1) + 1.

 r(n� 1) + 2.

c

Th.B ) cdVC(G)  r(n� 1) + max{stvc, vstfin + 1},
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Then G acts diagonally on



Proof.

Let T (Sg) be the Teichmüller space of Sg.

- With the natural topology T (Sg)
⇠
=

R6g�6
.

This is not enough as we need a CAT(0)-metric!

- Equipped with the Weil-Petersson metric, T (Sg) is a

non-complete separable CAT(0)-space on which Mod(Sg)

acts by isometries.

- The completion of T (Sg) with respect to theWeil-Petersson

metric is the augmented Teichmüller space T (Sg).
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Corollary 2. Let Mod(Sg) be the mapping class group of a

closed, connected and orientable surface of genus g � 2. Then

gdVC(Mod(Sg))  9g � 8.



- By a theorem of Bridson (2010), this action is semi-

simple.

- Claim 1: The stabilizers are virtually abelian of rank at

most 3g � 3.

- Claim 2: The action is discrete.
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) (T (Sg), dWP ) is a complete separable CAT(0)-space of

dimension 6g � 6 on which Mod(Sg) acts (cocompactly)

by isometries.



We only need to check stabilizers of points in T (Sg)rT (Sg).

It is a union of strata S� corresponding to sets � of free homo-

topy classes of disjoint essential simple closed curves on Sg.

Let x 2 S� and let �� be the group generated by the Dehn

twists defined by the curves in �.

Claim 1: The stabilizers are v-abelian of rank at most 3g�3.
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We only need to check stabilizers of points in T (Sg)rT (Sg).

It is a union of strata S� corresponding to sets � of free homo-

topy classes of disjoint essential simple closed curves on Sg.

Let x 2 S� and let �� be the group generated by the Dehn

twists defined by the curves in �.

Claim 1: The stabilizers are v-abelian of rank at most 3g�3.

�

�� is free abelian of rank at most 3g�3 and fixes S� pointwise.

{g 2 Mod(Sg) | g · U \ U 6= ;}

is a finite union of cosets of ��.
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By Hubbard-Koch (2011), there is a neighborhood U ✓ T (Sg)
of x such that the set



Now, applying Theorem B, we have

cdVC(Mod(Sg))  6g � 6 + max{3g � 3 + 1, 3g � 3 + 1},

 9g � 8.
c
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- Recall that Mod(Sg) acts cocomactly on (T (Sg), dWP ).

Then,

EST Mod(Sg) ! T (Sg)
f�! Y ! EST Mod(Sg)

c

Corollary 3. EST Mod(Sg) has a model of finite type.


