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Goal: Discuss finiteness properties for ErzaG and EyeG
when G acts isometrically and discretely on a CAT(0)-space.

1 Short introduction to classitying spaces:;

2 Associated G-simplicial complex;

3 About proofs of Theorems A and B;

4 Linear groups over positive characteristic;

5 Mapping class group of closed oriented surfaces.

- joint work with Dieter Degrijse
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All group considered will be discrete.

Let G be a group. A famaly of subgroups F of GG is a collection
of subgroups of G that is closed under conjugation and taking
subgroups.

Definition. A classifying space of G for the family F, also
called a model for ErG, is a G-CW-complex X characterized
by the properties:

(i) all isotropy subgroups of X are in F;

(ii) for each H € F, the fixed point set X is contractible.



- A model for E£G can be defined as a terminal ob-

ject in the G-homotopy category of G-CW-complexes
whose isotropy groups are in f.

- A model for F =G exists for any GG and any F.

Examples:

1 If G € F, then a point is a model for E=G.

2 If F = {1} - the trivial family of subgroups of GG, then
ErG = EG.

3 Let GG be a connected Lie group and K be a maximal

compact subgroup. If I' < G is discrete, then G/ K is
a model for E]:IN‘F.
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Main Motivation. Er7nG and EyeG ap-
pear in the Isomorphism Conjectures.

Question. What can we say about Erza
and Fyc from isometric actions of groups on

CAT(0)-spaces?



Starting point

Theorem (Liick, 2009). Let G be a group that acts properly
and isometrically on a complete proper CAT(0)-space X. Let
d =1 or d > 3 such that top-dim(X) < d.

(i) Then there exists a model for ErzpG of dimension at
most d.

(ii) If in addition, G acts by semi-simple isometries, then
there is a model for Fy¢G of dimension at most d + 1.

- Applies to crystallographic groups!



Question. What if the action on the CAT(0)-space is not
proper?

- The key condition we will need is that the actions should
be discrete.

Definition. We say that G acts discretely on a topological
space X if the orbits Gx are discrete subsets of X for all z € X.

- Cellular actions are discrete.

- An isometric group action on a metric space is proper
if and only if it is discrete and all point stabilizers are

finite.



Setting. GG acts isometrically and discretely
on a CAT(0)-space.

First step. Associate to the isometric
action of a group on a metric space a
certain simplicial action.



Proposition. Let X be a separable metric space of topolog-
ical dimension at most n. Suppose G acts isometrically and
discretely on X.

(i) Then there exists a simplicial G-complex Y of dimension
at most n for which the stabilizers are the point stabiliz-
ers of X, together with a G-map f: X — Y.

(ii) Moreover, if G act cocompactly, then Y/G is finite.

Sketch of proof.

For every x € X, there exists an € > 0 such that for all g € G

g-B(z,e)NB(zx,e) #0 < g € G,.



A good open coverV is a G-invariant open cover of X such that
every V € ) satisfies:

there exists xy € X such that for each g € GG
g VNV #ADe=g - V=Vegei,,.

The nerve N (V) of V is the simplicial complex whose ver-
tices are the elements of V and the pairwise distinct vertices
Vo, ..., V4 span a d-simplex if and only if ﬂgl:OVL- # ).

- Since V is G-invariant, the action of G on X induces a
simplicial action of G on N (V).

- Given g € G, then g- (Vp,...,Vy) = (Vo,...,Vy) if and
only if (Vg,...,Vy) is fixed pointwise by g.



Therefore, M (V) is a G-simplicial complex for which the sta-
bilizers are point stabilizers of X.

(i) If dim(V) < n then N (V) is of dimension at most n.

(ii) If the cover V has only finitely many G-orbits, then
N (V) /G is finite.

In the rest of the prootf we find a G-invariant good open cover
of X that allows one to construct a G-map f : X — N (V) and
satisfying (i) and (ii).




Theorem A. Let G be a group acting isometrically and dis-
cretely on a separable CAT(0)-space X of topological dimen-
sion n. Let F be a family such that X" # () for all H € F.
Denote d = sup{gdrng. (Gz) | * € X}. Then

od ~(G) < max{3,n + d}.
Sketch of proof.

Let JrG be the terminal object in the GG-homotopy category
of F-numerable G-spaces.

There exists a G-map ¢ : ExrG — X X JrG because X X JrG
is a model for JrG and E =G is F-numerable.



Theorem A. Let G be a group acting isometrically and dis-
cretely on a separable CAT(0)-space X of topological dimen-
sion n. Let F be a family such that X" # () for all H € F.
Denote d = sup{gdrng. (Gz) | * € X}. Then

od ~(G) < max{3,n + d}.
Sketch of proof.
ErG 5 X x J£G Y x JrG Y x E-G 22 ExG

T

Z is a G-CW-complex of dimension n + d and G-homotopy
equivalent to Y x E=G.
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Theorem A. Let G be a group acting isometrically and dis-
cretely on a separable CAT(0)-space X of topological dimen-
sion n. Let F be a family such that X" # () for all H € F.
Denote d = sup{gdrng. (Gz) | * € X}. Then

od ~(G) < max{3,n + d}.
Sketch of proof.
E]:G >/ > E]:G

\ 2/

Since FrG is G-dominated by an (n + d)-dimensional G-
CW-complex Z, it is G-homotopy equivalent to one of di-
mension max{3,n + d}.




Question. What can we say about EyeG at this point?

Answer. Not much, because when G acts isometrically
on a CAT(0)-space an infinite cyclic subgroup C of G,
we may have X¢ = (0.

General Strategy: Adapt a finite dimensional model
for Er7aG into a finite dimensional model for EyveG.



Construction of Luck and Welermann

Let H be an infinite v-cyclic subgroup of G.
NglH| ={x € G| |HNH*| = o0} = Commg(H).
Let X be the cellular G-pushout:
Uprer G X nom ErzaNG[H] —— EzznG
ll—IHEIidGXNG[H]f[H] l

UHEIG X NG[H]EJ—‘[H]NG[H] 7 X

~

If each fi is a cellular Ng|H|-map and ¢ is an inclusion of
G-CW-complexes, then X is a model for EycG.



Theorem B. Let G be a countable group acting discretely by
semi-simple isometries on a complete separable CAT(0)-space
X of topological dimension n. Then

cdyc(G) < n + max{styc, vstfin + 1},
where

- Stye = sup{cdye(G,) | z € X'}

- vst i = sup{cdrzn(F) | E € £(G, X)}

and £(G, X) is the collection of all groups E that fit
l1—-N—-FE—F —1,

with V < G, for some x € X and F' a subgroup of a finite
dihedral group.



Theorem B. Let G be a countable group acting discretely by
semi-simple isometries on a complete separable CAT(0)-space
X of topological dimension n. Then

cdyc(G) < n + max{styc, vstfin + 1},

Ex. Let GG be a generalized Baumslag-Solitar group and X be
the Bass-Serre tree.

The group GG acts on X with infinite cyclic stabilizers.

Then st,. = 0 and vsty;,, = 1 and we get gdy-(G) < 3.



Theorem B. Let G be a countable group acting discretely by
semi-simple isometries on a complete separable CAT(0)-space
X of topological dimension n. Then

cdyc(G) < n + max{styc, vstfin + 1},

Idea of Proof.
- Apply Theorem A to get a model for ErznG.

- Use Luck-Weiermann’s construction to reduce the prob-
lem to bounding cd 71z (Ng|H]) for each class [H| where
H is an infinite cyclic subgroup G.

- Consider 2 cases: a generator h of H is either an elliptic
or a hyperbolic element.
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Case 2: H = (h) and h is hyperbolic, i.e. has no fixed point.

c(k+2\h\)w

= c(k+ [h])

VS N N S

|
H acts on an axis ¢(R) of h by h-c(t) = c(t + |h|) where |h] is
the translation length.

Let g € Ng[H]. Then 3, m # 0 such that g~ th'g = h"™.

This implies |h!| = |A™|. = [=+m.
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Case 2: H = (h) and h is hyperbolic, i.e. has no fixed point.

c(k+2\h\)w

~ 4
\ P

1

c(k)

c(k + |h|)

v

v

Now, let K be a f.g. subgroup of Ng|H| that contains H.
dm # 0 so that g th™g = h=™ for all g € K.

Because Ng|H| = Ng|[(h"™)|, we may assume m = 1.
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Case 2: H = (h) and h is hyperbolic, i.e. has no fixed point.

c(k+2\h\)w

N <

l

c(k)

V'

c(k + |h|)

v

v

Hence, H <t K where K is a f.g. subgroup of Ng|H]|.
= cdFp)nK (K) < cdrzn (K/H).

- It is left to bound cdrza (K/H).
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Case 2: H = (h) and h is hyperbolic, i.e. has no fixed point.

Recall that Min(h) ={x € X | d(h-z,x) = |h|}.
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Case 2: H = (h) and h is hyperbolic, i.e. has no fixed point.

N V&

[

|

|
Recall that Min(h) ={zx € X |d(h-z,x) = |h|}.

It is a complete CAT(0)-space.

Vg € K, ghg~! = h¥™! = ¢-Min(h) = Min(ghg~') = Min(h)

Moreover, K maps an axis of h to an axis of h.
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Case 2: H = (h) and h is hyperbolic, i.e. has no fixed point.

KY
\ Min(h)

There is a complete separable CAT(0)-subspace Y of X so that
Min(h) is isometric to Y nd K acts on Y x R via discrete

isometries in Iso(Y) xAsofR).

Since H acts by nern-fiivial translations on each axis, here it
acts trivially on Y-factor and it acts cocompactly on R-factor.

It follows that K/H acts isometrically and discretely on Y.

Th.A = cdrzn(K/H) <n— 14 vsts,.
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Corollary 1. Let GG be a finitely generated subgroup of GL,, (F')
where F' is a field of positive characteristic. Then

gdrra(G) <o and  gdye(G) < 0.
Proof. The strategy is to obtain an action of G on a finite
product of buildings.

Cornick-Kropholler Construction

- Can reduce to G = SL,,(S) where is S is a f.g. domain
of characteristic p > 0.

- The ring S is a finitely generated domain and hence it is
integral over some F,|z1,..., 2]
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- There are finitely many discrete valuations of the fraction
field E of S such that SN(,_, O, C L, the algebraic
closure of IF), in £ and L is finite.

SL,,(E;) acts chamber transitively on the associated Euclidean
building X; of dimension n — 1.

Let C; be a chamber of X;. Since X; is a continuous image of
the separable space SL,, (F;) x C} it is itself separable.

The restriction of this action to G has vertex stabilizers con-
jugate to a subgroup of SL,(O,,).
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Then G acts diagonally on

X = X1 X...x X,

such that each stabilizer G, of a vertex x of X lies inside
S)N ﬂ a; 'SL,(O0,,)a;, for a; € SL,(E), i=1,...,r.

and therefore is locally finite.

Th.A = Cd]:IN(G) < T(n — 1) 1.

<7r(n-—1)+2.

29



Corollary 2. Let Mod(S,) be the mapping class group of a
closed, connected and orientable surface of genus g > 2. Then

3dye (Mod(S,)) < 99 — 8.

Proof. Let T(S,) be the Teichmiiller space of S,,.
- With the natural topology T (S,) = R®9~°.

This is not enough as we need a CAT(0)-metric!

- Equipped with the Weil-Petersson metric, T7(5,) is a
non-complete separable CAT(0)-space on which Mod(.S,)
acts by isometries.

- The completion of 7(Sy) with respect to the Weil-Petersson
metric is the augmented Teichmiiller space T (.5,).
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= (T(S,),dwp) is a complete separable CAT(0)-space of
dimension 6g — 6 on which Mod(S,) acts (cocompactly)

by isometries.

- By a theorem of Bridson (2010), this action is semi-

simple.

- Claim 1: The stabilizers are virtually abelian of rank at

most 3g — 3.

- Claim 2: The action is discrete.
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Claim 1: The stabilizers are v-abelian of rank at most 3g — 3.

We only need to check stabilizers of points in T (S,)\T7 (S,).

It is a union of strata Sr corresponding to sets I' of free homo-
topy classes of disjoint essential simple closed curves on 5.

Let £ € Sr and let Ar be the group generated by the Dehn
twists defined by the curves in I'.

I'
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Claim 1: The stabilizers are v-abelian of rank at most 3g — 3.

We only need to check stabilizers of points in T (S,)\T7 (S,).

It is a union of strata Sr corresponding to sets I' of free homo-
topy classes of disjoint essential simple closed curves on 5.

Let £ € Sr and let Ar be the group generated by the Dehn
twists defined by the curves in I'.

5 ATES ARIIFBLSRAS 3F Wpst 39— 3 and fixes S polntwise.
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Now, applying Theorem B, we have

cdyc(Mod(S,)) < 6g —6 +max{3g —3+1,3g — 3+ 1},

< 9g — 8.

- Recall that Mod(S,) acts cocomactly on (7 (S,), dwp).

Then,

ESTMOd(Sg) — T(Sg) Q Y — ESTMOd(Sg)

Corollary 3. Es7Mod(S,) has a model of finite type.
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