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Coxeter groups

The spherical and euclidean Coxeter groups are reflection
groups that act geometrically on spheres and euclidean space.
They arise in the study of regular polytopes and Lie theory.

Their classification is classical and their presentations are
encoded in the well-known Dynkin diagrams and extended
Dynkin diagrams, respectively, using conventions sufficient for
these groups, but not for general Coxeter groups.

The extended Dynkin diagrams consist of:
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Four infinite families

Ã1
∞

Ãn

C̃n

B̃n

D̃n
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Five sporadic examples

G̃2

F̃4

Ẽ6

Ẽ7

Ẽ8
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The spherical Coxeter group COX(B3)
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The euclidean Coxeter Group COX(G̃2)
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General Coxeter groups

Spherical and euclidean Coxeter groups are key examples that
motivate the general theory introduced by Jacques Tits in the
early 1960s. All Coxeter groups are defined by simple
presentations encoded in diagrams.

In that first (unpublished) paper, Tits proved that every Coxeter
group has a faithful linear representation preserving a
symmetric bilinear form and thus has a solvable word problem.

Coxeter groups can be coarsely classified by the signature of
the symmetric bilinear forms they preserve. The spherical and
euclidean groups are those which have positive definite and
positive semi-definite forms.
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General Artin groups

Artin groups first appear in print in 1972 (Brieskorn and Saito,
Deligne). General Artin groups are defined by simple
presentations that can be encoded in the same diagrams as
Coxeter groups and then coarsely classified in the same way.

Those early papers connected spherical Artin groups to the
fundamental groups of spaces derived from complexified
hyperplane complements and successfully analyzed their
structure.

Given the centrality of euclidean Coxeter groups and the
elegance of their structure, one might have expected euclidean
Artin groups to be well understood shortly thereafter. It is now
40 years later and these groups are still revealing their secrets.
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Basic Questions

In a recent article Eddy Godelle and Luis Paris highlight four
basic conjectures about Artin groups:

Conjectures
A) Every Artin group is torsion-free
B) Every non-spherical Artin group has trivial center
C) Every Artin group has a solvable word problem
D) Artin groups satisfy the K (π,1) conjecture

They also remark:

“A challenging question in the domain is to prove
Conjectures A, B, C, and D for the so-called Artin-Tits
groups of affine type, that is, those Artin-Tits groups
for which the associated Coxeter group is affine.”
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Example: ART(B̃3)

The group ART(B̃3) has diagram

a
b

c

d

and presentation

⟨a,b,c,d
abab = baba cd = dc

bcb = cbc ad = da
bdb = dbd ac = ca

⟩

The basic questions were open for this group until very recently.



Coxeter groups Artin groups Isometries Intervals Models

Known: planar Artin groups

The few previously known results about euclidean Artin groups
are easy to review.

In 1987 Craig Squier successfully analyzed the structure of the
three irreducible euclidean Artin groups ART(Ã2), ART(C̃2) and
ART(G̃2) that correspond to the three irreducible euclidean
Coxeter groups acting on the euclidean plane.

He worked directly with the presentations and analyzed them
as amalgamated products and HNN extensions of well-known
groups.

His techniques do not appear to generalize to higher
dimensions.
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Known: euclidean braid groups

The euclidean braid group ART(Ãn) embeds into the annular
braid group ART(Bn+1), and this makes its structure clear. In
fact, there is a short exact sequence

ART(Ãn)↪ ART(Bn+1)↠ Z
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Known: types A and C

Finally, there are recent results due to François Digne.

Theorem (Digne)

The groups ART(Ãn) and ART(C̃n) have Garside structures.

Digne uses the embedding ART(Ãn)↪ ART(Bn+1) to show that
type A has a Garside structure and then an embedding of type
C into type A to show the same for type C.

To my knowledge, these are the only euclidean Artin groups
that were previously fully understood, and they did not include
simple examples such as ART(B̃3).
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New: all euclidean Artin groups

Robert Sulway and I provide positive solutions to Conjectures
A, B and C for all euclidean Artin groups and we also make
progress on Conjecture D. In particular, we prove the following:

Theorem (M-Sulway)

Every irreducible euclidean Artin group ART(X̃n) is a
torsion-free centerless group with a solvable word problem and
a finite-dimensional classifying space.

The proof uses the structure of intervals in euclidean Coxeter
groups and other euclidean groups generated by reflections.
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Points and Vectors

We distinguish points and vectors. Let V be a vector space with
a simple transitive action on a set E . Elements of E are points
and elements of V are vectors. E has no distinguished origin.

V

λ

↷

x

y

E

λ
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Linear and affine subspaces

Definition (Subspaces)
The vector space V has linear subspaces through the origin
and other affine subspaces. E only has affine subspaces. For
any affine subspace B ⊂ E , vectors between points in B form a
linear subspace DIR(B) ⊂ V called its space of directions.

Remark (Poset structure)
The linear subspaces of V ordered by inclusion are the poset
LIN(V), a graded, bounded, self-dual lattice. The affine
subspaces of E ordered by inclusion are the poset AFF(E). It is
graded and bounded above, but not bounded below, not
self-dual and not a lattice.

There is a well-defined rank-preserving map AFF(E)↠ LIN(V)

that sends B to DIR(B).
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Elliptic and hyperbolic

If we add a positive definite inner product to V we get a
euclidean metric on E and we can discuss isometries of E .

Definition (Basic invariants)
The move-set of an isometry w is the affine subspace
MOV(w) ⊂ V that collects all the motions that its points
undergo. And if µ is the unique vector in MOV(w) closest to the
origin, the points in E that undergo the motion µ are an affine
subspace MIN(w) ⊂ E called the min-set of w . These are the
basic invariants of w .

Definition (Elliptic and hyperbolic)

If MOV(w) includes the origin, µ is trivial, MIN(w) = FIX(w) and
w is elliptic. Otherwise, w is hyperbolic.
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Reflections and translations

The basic invariants for some elementary isometries:

Definition (Translations)
For each vector λ ∈ V there is a translation isometry tλ which is
hyperbolic with min-set E and move-set {λ}.

Definition (Reflections)
For each hyperplane H in E (an affine subspace of
codimension 1) there is a unique nontrivial isometry r fixing H
called a reflection. It is elliptic with fix-set H and move-set a line
through the origin in V . We call any nontrivial vector α in this
line a root of r .
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Example: Reflections

V

Mov(w)

x

w(x)

E

Fix(w)

The basic invariants of a reflection. The move-set is linear and
the isometry is elliptic.
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Example: Glide reflections

V

Mov(w)

x

w(x)

E Min(w)

The basic invariants of a glide reflection. The move-set is a
nonlinear affine subspace and the isometry is hyperbolic.
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Intervals

Definition
z is between x and y when d(x ,z) + d(z,y) = d(x ,y). All
points between x and y form the interval [x ,y]. Intervals are
posets with z ≤ w iff d(x ,z) + d(z,w) + d(w ,y) = d(x ,y).
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Groups⇒ Intervals

Definition (Group intervals)
A group G with a fixed discretely weighted generating set is a
metric space, and thus it has intervals. Let [g,h]G denote the
portion of the Cayley graph between g and h, by which I mean
the union of all the minimal length directed paths from vg to vh.
And note that this edge-labeled directed graph also encodes
the poset structure.

Remark

Cayley graphs are homogeneous so the interval [g,h]G is
isomorphic (as an edge-labeled directed graph) to the interval
[1,g−1h]G. Thus we can restrict to intervals of the form [1,g]G.
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Euclidean intervals

The Lie group L = ISOM(Rn) is generated by the set R of all
reflections and its Cayley graph with respect to R has diameter
n + 1. In fact, Scherk’s theorem identifies the minimal reflection
length of an isometry from its basic geometric attributes.

Question

What about the order structure of the interval [1,w]L?
Is this poset a lattice? What if w is loxodromic?

As a key first step towards understanding euclidean Artin
groups, Noel Brady and I completely characterized the poset
structure of these intervals.
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Scherk’s theorem

To understand intervals in L = ISOM(Rn) we need to understand
reflection length, and this is the content of Scherk’s theorem.

Proposition (Factorizations)
An elliptic isometry with a k-dimensional move-set has a length
k reflection factorization. A hyperbolic isometry with a
k-dimensional move-set has a length k + 2 reflection
factorization.

In fact, these factorizations have minimal length.

Theorem (Scherk)
Let w be an isometry with a k-dimensional move-set. If w is
elliptic, its reflection length is k. If w is hyperbolic, its reflection
length is k + 2.
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Reflections and invariants

Basic facts about the invariants of a product of an isometry and
a reflection are determined by the relations between their basic
invariants. Here is a sample lemma.

Lemma
Suppose w is hyperbolic with `R(w) = k and MOV(w) = U + µ in
standard form, r is a reflection with root α and let Uα denote the
span of U ∪ {α}.
● If α ∈ U then rw is hyperbolic with `R(rw) = k − 1.
● If α /∈ U and µ ∈ Uα then rw is elliptic and `R(rw) = k − 1.
● If α /∈ U and µ /∈ Uα then rw is hyperbolic and `R(rw) = k + 1.
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Elliptic intervals

Proposition (Elliptic intervals)

Let w be an elliptic isometry with MOV(w) = U ⊂ V. The map
u ↦ MOV(u) creates a poset isomorphism [1,w]L ≅ LIN(U). In
particular, [1,w]L is a lattice.

Alternatively the map u ↦ FIX(u) gives a poset isomorphism
with the affine subspaces containing FIX(w) under reverse
inclusion, i.e. the fixed points determine the motion!

Remark
The most remarkable aspect of this result is that the structure
of the interval only depends on the codimension of the fix-set
and is otherwise independent of w .
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Poset

To describe the intervals for hyperbolic w , we first define an
abstract poset that mimics the basic invariants of euclidean
isometries.

Definition
The poset P has two types of elements:
● an element hM ∈ P for each nonlinear affine M ⊂ V
● an element eB ∈ P for each affine B ⊂ E

Its order relations are:

hM ≥ hM ′ iff M ⊃ M ′ hM > eB iff M⊥ ⊂ DIR(B)

eB ≥ eB′ iff B ⊂ B′ no eB is ever above hM
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Invariant map

Next we define a map that sends each isometry in L = ISOM(E)

to an element of P based on its type and its invariants:

Definition (Invariant map)

Define a map INV ∶ L→ P by setting INV(u) = hMOV(u) when u is
hyperbolic and INV(u) = eFIX(u) when u is elliptic.

Remark
There is a ordering on L based on distance to the identity that
turns L into a poset. Under this ordering the invariant map is a
rank-preserving poset map, but it is far from injective.
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Model posets

Definition (Model posets)

For each affine subspace B ⊂ E , let PB denote the poset of
elements below eB in P. For each nonlinear affine subspace
M ⊂ V let PM denote the poset of elements below hM in P.

Since the invariant map is a poset map, the image of the
interval [1,w]L is contained in P INV(w). In fact:

Theorem (Brady-M)

For each isometry w, the map u ↦ INV(u) gives a poset
isomorphism [1,w]L ≅ P INV(w).

Thus we can forget about the isometries themselves and focus
on a poset defined in terms of affine subspaces of V and E .
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Maximal hyperbolic isometries

When w is a hyperbolic isometry of maximal reflection length its
min-set is a line and its move-set is a nonlinear affine
hyperplane.

We call the direction of its min-set vertical and the orthogonal
directions horizontal. More generally we call any motion with a
non-trivial vertical component vertical.

For every u ∈ [1,w] there is a v such that uv = w . We split
[1,w] into 3 rows based on the types of u and v . When one is
hyperbolic, the other is a purely horizontal elliptic. When both
are elliptic, both motions have vertical components. Within each
row we grade based on the dimensions of the basic invariants.
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Coarse structure

When w is a maximal hyperbolic isometry, [1,w]L has the
following coarse structure:

1 RH

RV

T w

(ell,hyp) row

(ell,ell) row

(hyp,ell) row

A unique hyperbolic element for each subspace of MOV(w) ⊂ V
and a unique elliptic for each subspace of E .
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Lattice failure

We understand the structure of the intervals and precisely
where the lattice property fails.

Theorem (Brady-M)
If w is a hyperbolic isometry whose move-set is at least
2-dimensional, then the interval [1,w]L is NOT a lattice.

In the paper we give an explicit characterization of these
failures and where they occur.

Corollary

The interval for a loxodromic isometry in R3 is NOT a lattice.
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