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This theory has appeared in various interesting contexts.  

For instance, it is a candidate dual to (chiral?) supergravity
with deep negative cosmological constant. Witten
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To the extent anything very new appears, it is based on two 
recent collaborative papers:

* arXiv : 1507.00004 with Benjamin, Dyer, Fitzpatrick

* arXiv : 1508.02047 with Cheng, Duncan, Harrison

Much of the talk will be review of things well known to
various parts of the audience.

Some slightly older work with other (also wonderful) 
collaborators makes brief appearances.
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Today, I’d like to talk about two distinct topics.
Each is related to the general subjects of this

symposium, but neither has been central to any
of the talks we’ve heard yet.

1.  Extremal CFTs and quantum gravity
...where we see how special chiral CFTs with
sparse spectrum may be important in gravity...

II.  Equivariant Gromov-Witten & K3

...where we see how certain enumerative invariants
of K3 may be related to subjects we’ve heard about...
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I.   Extremal CFTs and quantum gravity 

A fundamental role in our understanding of quantum
gravity is played by the holographic correspondence
between conformal field theories and AdS gravity.

In the basic dictionary between these subjects

conformal symmetry $ AdS isometries

primary field of dimension � $ bulk quantum field of mass m(�)

. . . . . .
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There are famous examples where the correspondence can 
be made very precise.  One, relevant to this conference, 

relates the sigma model with target Hilb(K3) to 
superstrings compactified on AdS3xS3xK3.

B.  The elliptic genus and Mathieu moonshine

The theory describing strings propagating on a K3
surface is a 2d non-linear sigma model with target a 

K3 surface, i.e. a theory of maps

This 2d field theory has some basic fields    (along with
superpartners), and an action schematically like:

�

� : ⌃ ! K3

observables, which of course are also the ones we will be studying here, because of their

phenomenological importance, and because, since the B model is soluble classically, the

relation given by mirror symmetry between observables of the A(X) model and observables

of the B(Y ) model is particularly useful.

2. Preliminaries

To begin with, we recall the standard supersymmetric nonlinear sigma model in two

dimensions.2 It governs maps Φ : Σ → X , with Σ being a Riemann surface and X a

Riemannian manifold of metric g. If we pick local coordinates z, z on Σ and φI on X ,

then Φ can be described locally via functions φI(z, z̄). Let K and K be the canonical

and anti-canonical line bundles of Σ (the bundles of one forms of types (1, 0) and (0, 1),

respectively), and let K1/2 and K
1/2

be square roots of these. Let TX be the complexified

tangent bundle of X . The fermi fields of the model are ψI
+, a section of K1/2 ⊗ Φ∗(TX),

and ψI
−, a section of K

1/2
⊗ Φ∗(TX). The Lagrangian is3

L =2t

∫
d2z

(
1

2
gIJ (Φ)∂zφ

I∂z̄φ
J +

i

2
gIJψ

I
−Dzψ

J
−

+
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gIJψ

I
+Dzψ

J
+ +

1

4
RIJKLψ

I
+ψ

J
+ψ

K
−ψ

L
−

)
.

(2.1)

Here t is a coupling constant, and RIJKL is the Riemann tensor of X . Dz̄ is the ∂̄ operator

on K1/2 ⊗ Φ∗(TX) constructed using the pullback of the Levi-Civita connection on TX .

In formulas (using a local holomorphic trivialization of K1/2),

Dz̄ψ
I
+ =

∂

∂z
ψI

+ +
∂φJ

∂z
ΓI

JKψ
K
+ , (2.2)

with ΓI
JK the affine connection of X . Similarly Dz is the ∂ operator on K

1/2
⊗ Φ∗(TX).

The supersymmetries of the model are generated by infinitesimal transformations

δΦI = iε−ψ
I
+ + iε+ψ

I
−

δψI
+ = −ε−∂zφ

I − iε+ψ
K
− ΓI

KMψM
+

δψI
− = −ε+∂zφ

I − iε−ψ
K
+ ΓI

KMψM
− ,

(2.3)

2 This discussion will be at the classical level, and we will not worry about the anomalies that

arise and spoil some assertions if the target space is not a Calabi-Yau manifold.
3 Here d2z is the measure −idz ∧ dz̄. Thus if a and b are one forms,

∫
a ∧ b =

i
∫

d2z (azbz̄ − az̄bz). The Hodge ! operator is defined by !dz = idz, !dz̄ = −idz̄.

4

What is moonshine?
Outline

Monstrous moonshine
Conway moonshine

Conclusions

Appearance in string theory

I In string theory we me consider 2d
sigma models, maps from
worldsheet to target manifold

I For compact target manifold,
discrete string spectrum !
discrete symmetry groups

I For one-loop partition function,
worldsheet is torus ! any trace
function should be invariant under
SL(2, Z)

Sarah M. Harrison c = 12 Moonshine
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Here is a natural question: given a desired spectrum
of bulk AdS fields (“set of elementary particles”), does

there exist a dual CFT which defines it non-perturbatively?

This question is far beyond our reach.  But we can explore 
simple examples.  Perhaps the simplest is pure 3d quantum 

gravity.

Do there exist conformal field theory duals to pure 3d 
(super)gravity? 
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The spectrum of pure 3d gravity would be just
the graviton multiplet and the associated multiparticle

states.

We can use the spectrum to read off the partition function
of the conjectural dual CFT:

You see that for eigenstates of the “Hamiltonian” it 
becomes obvious that this is just:

Tr e��H , � ⇠ 2⇡R

Now instead of a particle moving in imaginary time, 
consider a string:

There are now two parameters that fix the shape of
the torus, instead of just a radius.

Thursday, May 15, 14

Monday, August 10, 15

This means that the partition function we were
computing, that summarizes the spectrum of string

states, should behave well under SL(2,Z):

Z =
P

n cnq
n

cn = # of states at mass level n

These transformations are associated with the
group SL(2,Z).

q = e2⇡i⌧

Z(a⌧+b
c⌧+d ) ⇠ Z(⌧)

more properly,
should behave as

a modular function
or form....
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You would quickly see that the spectrum of a theory
with just graviton and its descendants is not

consistent.  This would give a partition function:

factorization, and mainly consider only the holomorphic sector of the theory. The full

partition function is the product of the function we determine and a similar antiholomor-

phic function. These partition functions have been studied before [31,32], with different

motivation.

3.1. The Bosonic Case

We begin with the bosonic case. What are the physical states of pure gravity in a

spacetime asymptotic at infinity to AdS3?

Since there are no gravitational waves in the theory, the only state that is obvious

at first sight is the vacuum, corresponding in the classical limit to Anti de Sitter space.

In a conformal field theory with central charge c = 24k, the ground state energy is L0 =

−c/24 = −k. The contribution of the ground state |Ω〉 to the partition function Z(q) =

Tr qL0 is therefore q−k.

Of course, there is more to the theory than just the ground state. According to Brown

and Henneaux [21], a proper treatment of the behavior at infinity leads to the construction

of a Virasoro algebra that acts on the physical Hilbert space. The Virasoro generators

Ln, n ≥ −1 annihilate |Ω〉, but by acting with L−2, L−3, . . ., we can make new states of

the general form
∏∞

n=2 Lsn

−n|Ω〉, with energy −k+
∑

n nsn. (We assume that all but finitely

many of the sn vanish.) If these are the only states to consider, then the partition function

would be

Z0(q) = q−k
∞∏

n=2

1

1 − qn
. (3.1)

This cannot be the complete answer, because the function Z0(q) is not modular-

invariant. There must be additional states such that Z0(q) is completed to a modular-

invariant function.

Additional states are expected, because the theory also has BTZ black holes. The main

reason for writing the present paper, after all, is to understand the role of the BTZ black

holes in the quantum theory. We will assume that black holes account for the difference

between the naive partition function Z0(q) and the exact one Z(q). To use this assumption

to determine Z(q), we need to know something about the black holes.

The classical BTZ black hole is characterized by its mass M and angular momentum

J . In terms of the Virasoro generators,

M =
1

!
(L0 + L0)

J =(L0 − L0),
(3.2)

29

where c = 24k is the central charge of the theory,
and determines the AdS3 cosmological term.

This alone is not modular.  Can we fix it up?
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Yes!  We forgot that in gravity, we expect also black holes.
The spectrum should contain:

E << c : graviton + descendants

E � c : black holes

Witten’s criterion (too strong??):

Require the polar pieces in Z are graviton + descendants, 
and  “anything goes”  after that.

Happily, the  “anything goes”  portion of the spectrum is
then determined uniquely by modularity!
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In the present case, as the pole in Z(q) at q = 0 is of order k, Z must be a polynomial in

J of degree k. Thus

Z(q) =
k∑

r=0

frJ
r, (3.7)

with some coefficients fr. These k + 1 coefficients can be adjusted in a unique fashion to

ensure that Z(q) takes the form (3.4), or in other words to ensure that the terms in Z(q)

of order q−n, n = 0, . . . , k, coincide with the naive function Z0(q).

When we do this, we get a function that we will call Zk(q), k = 1, 2, 3, . . .. This

function is our candidate for the generating function that counts the quantum states of

three-dimensional gravity in a spacetime asymptotic to AdS3. For example, for k = 1 we

have simply Z1(q) = J(q), and the next few examples are

Z2(q) =J(q)2 − 393767

=q−2 + 1 + 42987520q + 40491909396q2 + . . .

Z3(q) =J(q)3 − 590651J(q)− 64481279

=q−3 + q−1 + 1 + 2593096794q + 12756091394048q2 + . . .

Z4(q) =J(q)4 − 787535J(q)2 − 8597555039J(q)− 644481279

=q−4 + q−2 + q−1 + 2 + 81026609428q + 1604671292452452276q2 + . . . .

(3.8)

Following [31], we refer to a holomorphic CFT with c = 24k and partition function

Zk(q) as an extremal CFT. According to our proposals, the dual of three-dimensional

gravity should be an extremal CFT.

As was already noted in the introduction, Frenkel, Lepowsky, and Meurman con-

structed [24,25] an extremal CFT with k = 1, that is, a holomorphic CFT with c = 24 and

partition function J(q) = Z1(q). They also conjectured its uniqueness. If that conjecture

as well as the ideas in the present paper are correct, then the FLM theory must be the

dual to quantum gravity for k = 1. Unfortunately, as also noted in the introduction, for

k > 1, extremal CFT’s are not known, though their possible existence has been discussed

in the literature [31-33] for reasons not related to three-dimensional gravity. Our reasoning

in this paper suggests that such theories should exist and be unique for each k.

The main point of the FLM construction was that their theory has as a group of

symmetries the Fischer-Griess monster group M, the largest of the sporadic finite groups.

Arguably, the FLM theory is the most natural known structure with M symmetry. The

coefficients in the q-expansion of the J-function are integers for number-theoretic reasons,

31
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31

The first case, k=1, yields the J function.  A few more:

no CFTs
with such Z 

are known to
exist
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Interestingly, the k=1 case yields as a candidate dual
to pure gravity with deep negative cosmological constant, 

precisely the FLM theory!
This gave many further non-trivial checks.  Eventually, 
a beautiful and complete (?) story was worked out,

by Frenkel-Lepowsky-Meurman, Borcherds, ....

Summary on Monster

Bosonic strings on Leech 
lattice orbifold

Monster symmetryModular invariant 
partition function ሺ߬ሻܬ

Frenkel, Lepowsky, Meurman;
Dixon, Ginsparg, Harvey;

Borcherds

Unique 24-dim’l even self-dual lattice 
with no points of length-squared 2

Saturday, June 21, 14

Saturday, June 21, 14
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Caveats:

* k=1 is, at most, barely geometry -- but note 

Bekenstein-Hawking entropy of lightest
black holes is close to working...

* There is a subtlety with holomorphic factorization.
Perhaps this is best thought of as a duality between

“chiral CFT” and “chiral gravity.”  I will not discuss this
further here.

log(196, 883) ⇠ 4⇡
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In mathematical terms, this means the following:

* Even states are called  “bosons,” odd states “fermions.”

*  The Hilbert space admits a Z/2Z grading.

* The symmetry generator is an odd supercharge Q.

Monday, August 10, 15

One can run the same story with supersymmetry.

Now, c=12k is accessible.

With minimal SUSY, at k=1, again a candidate CFT exists!
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B.  Moonshines beyond the Monster

There are even self-dual unimodular lattices in lower 
dimensions than the Leech lattice.  In dimension 8, there

is a unique structure.

The supersymmetrized theory
of bosons propagating on the
E8 lattice, realizes moonshine
for Conway’s largest sporadic

group!

Monday, August 10, 15

It has an equivalent description as the orbifold of the
theory of 24 free chiral fermions:

 i(z),  ! � 

The NS sector partition function is:

simple groups. In §3, we describe how the groups G ∼= M24, Co2 and Co3 arise as the global

symmetry groups when considering the present SCFT as a representation of the Spin(7) algebra.

In §4, we briefly review the representation theory of the Spin(7) superalgebra. In §5, we first

discuss the partition functions

Zg = Tr gqL0−
c
24 (1.1)

twined by all elements g ∈ G of the global symmetry groups mentioned above. Subsequently, we

discuss the mock modular properties of the 2-vector-valued functions that arise when decompos-

ing Zg into Spin(7) characters. In §6 we close the paper with some discussions. The appendices

include our conventions for standard modular functions (Appendix A); character tables for the

groups which appear (Appendix B); and the coefficient tables (Appendix C) together with the

corresponding representations for the twined partition functions (Appendix D).

2 The Free Field Theory

The two-dimensional c = 12 chiral conformal field theory that we will consider was first described

in [2], and an alternative construction was given in [14]. In [15], it was shown that the NS sector of

theory is described by a distinguished super vertex operator algebra, V s!, and can be regarded

as the natural analogue of the Frenkel-Lepowsky-Meurman moonshine module for Conway’s

largest group. In this section we describe the two constructions of this 2d chiral conformal field

theory, and review how its NS-sector twined partition functions are given by certain normalized

principal moduli with vanishing constant terms.

The construction presented in [2] contains 8 free bosons X i compactified on the eight-

dimensional torus R8/ΛE8 given by the E8 lattice plus their 8 fermionic superpartners ψi,

subject to a Z/2 orbifold

(X i,ψi) → (−X i,−ψi) . (2.1)

Clearly, this theory exhibits a manifest N = 1 supersymmetry. In addition, the orbifolding

ensures that there are no NS primary fields of dimension 1
2

1. The partition function of the

theory in the NS sector is given by

ZNS,E8(τ) = trNS qL0−c/24 =
1

2

(

E4θ43
η12

+ 16
θ44
θ42

+ 16
θ42
θ44

)

(τ) (2.2)

= q−1/2 + 0 + 276 q1/2 + 2048 q + 11202 q3/2 + · · · , (2.3)

where we write q = e(τ) and use the shorthand notation e(x) := e2πix. In the above E4(τ)

is the weight 4 Eisenstein series defined in (A.5), η(τ) = q1/24
∏∞

n=1(1 − qn) is the Dedekind

1Here and in the rest of the paper we use the common terminology and refer to the conformal weight of a state,
or the L0-eigenvalue of an eigenstate, as “dimension”.

3

The coefficients in the q-series decompose nicely 
into representations of the sporadic group       .   

For instance,  276=276 while:

Co0

2048 = 24 + 2024

11202 = 1 + 276 + 299 + 1771 + 8855
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It has an equivalent description as the orbifold of the
theory of 24 free chiral fermions:

 i(z),  ! � 
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discuss the mock modular properties of the 2-vector-valued functions that arise when decompos-

ing Zg into Spin(7) characters. In §6 we close the paper with some discussions. The appendices

include our conventions for standard modular functions (Appendix A); character tables for the

groups which appear (Appendix B); and the coefficient tables (Appendix C) together with the

corresponding representations for the twined partition functions (Appendix D).

2 The Free Field Theory

The two-dimensional c = 12 chiral conformal field theory that we will consider was first described

in [2], and an alternative construction was given in [14]. In [15], it was shown that the NS sector of

theory is described by a distinguished super vertex operator algebra, V s!, and can be regarded

as the natural analogue of the Frenkel-Lepowsky-Meurman moonshine module for Conway’s

largest group. In this section we describe the two constructions of this 2d chiral conformal field

theory, and review how its NS-sector twined partition functions are given by certain normalized

principal moduli with vanishing constant terms.

The construction presented in [2] contains 8 free bosons X i compactified on the eight-

dimensional torus R8/ΛE8 given by the E8 lattice plus their 8 fermionic superpartners ψi,

subject to a Z/2 orbifold

(X i,ψi) → (−X i,−ψi) . (2.1)

Clearly, this theory exhibits a manifest N = 1 supersymmetry. In addition, the orbifolding

ensures that there are no NS primary fields of dimension 1
2

1. The partition function of the

theory in the NS sector is given by

ZNS,E8(τ) = trNS qL0−c/24 =
1

2

(

E4θ43
η12

+ 16
θ44
θ42

+ 16
θ42
θ44

)

(τ) (2.2)

= q−1/2 + 0 + 276 q1/2 + 2048 q + 11202 q3/2 + · · · , (2.3)

where we write q = e(τ) and use the shorthand notation e(x) := e2πix. In the above E4(τ)

is the weight 4 Eisenstein series defined in (A.5), η(τ) = q1/24
∏∞

n=1(1 − qn) is the Dedekind

1Here and in the rest of the paper we use the common terminology and refer to the conformal weight of a state,
or the L0-eigenvalue of an eigenstate, as “dimension”.
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The coefficients in the q-series decompose nicely 
into representations of the sporadic group       .   

For instance,  276=276 while:

Co0

2048 = 24 + 2024

11202 = 1 + 276 + 299 + 1771 + 8855
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It will play a role in part II of the talk.

Again, at k>2, no extremal CFTs with minimal 
supersymmetry are known.  (For k=2, wait).
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Increasing the supersymmetry has always been a strategy 
that string theorists find useful.  Let’s do that here also.

Gaberdiel, Gukov, Keller, Moore and Ooguri asked a
natural question in the context of 2d N=(2,2) 

supersymmetry.

To an N=2 theory, we can associate a Jacobi form:

the elliptic genus (we could use the partition function
if the theory is chiral).  

in passing that this is a strong assumption at large c; a much weaker criterion, fixing only

coefficients up to the power q−a, with a growing less quickly than c as c → ∞, would satisfy the

conditions we can justifiably place on a theory of pure gravity as well.

In any case, at k = 1, a conformal theory satisfying this constraint is available. Remarkably,

it is the theory constructed by Frenkel, Lepowsky and Meurman in connection with Monstrous

moonshine some thirty years ago [2]! At higher values of k, which correspond to less nega-

tive values of the cosmological term, precise candidates do not yet exist. Various explorations

resulting in constraints of the possibilities at these values appear in [3–6].1

A similar discussion in [1] of pure N = 1 supergravity in AdS3 yields a potential family of

partition functions at c = 12k, and again, at k = 1 a known superconformal theory fits the bill

– a Z2 orbifold of the supersymmetrized E8 lattice theory [2, 12].

In [13], a criterion was similarly proposed for N = (2, 2) superconformal theories dual to pure

extended supergravity in AdS3. These authors argued that the elliptic genus of the conformal

field theory, defined as

ZEG(τ, z) = TrHRR
(−1)FLe2πizJ0qL0− c

24 (−1)FR q̄L̄0− c
24 , (1.2)

is strongly constrained by the requirements of pure N = 2 supergravity in the bulk. On general

grounds, ZEG is a weak Jacobi form of weight 0 and index m, where m = c/6. These authors

were able to argue that for sufficiently large central charge, such extremal elliptic genera do not

exist; at small m, however, there are candidate Jacobi forms waiting to be matched to actual

N = 2 superconformal field theories.

Here, we propose that the case with m = 4 – of interest also because of the representation

theory visible in the q-expansion of the extremal elliptic genus, as we describe below – can

actually be realized. In fact the realization uses in a crucial way a known conformal field theory,

that based on the A24
1 Niemeier lattice. Extending the work of [14], we note that an enlarged,

Z2 double cover of the A24
1 /Z2 orbifold admits an N = 2 superconformal symmetry, and in fact

its chiral partition function matches the desired extremal elliptic genus. As our construction is

chiral, this theory likely corresponds to a chiral gravity [15] analogue of the pure (super)gravity

constructions envisioned in earlier works. (For discussion of the supersymmetric extension of

chiral gravity, see e.g. [16].) As holomorphic factorization of these gravity partition functions

in any case engenders many confusions, it is plausible that the earlier two examples of extremal

theories should also be viewed as duals of chiral gravity theories in 3d.

The organization of this note is as follows. In §2, we describe the m = 4 extremal elliptic

genus. In §3, we prove that an enlarged version of the A24
1 Niemeier theory both admits anN = 2

1Related research on 3d gravity partition functions [7], general constraints on the gap in 2d CFTs [8, 9], and the
relationship of sparse CFT spectra with the emergence of spacetime [10,11] has also appeared in recent years.

3
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We can declare that a theory is extremal if the elliptic 
genus is  “as close as possible to that determined by the 

vacuum character of the N=2 algebra.”

Given a Fourier expansion for a weak Jacobi form
of index m and weight 0:

We assume that the Hilbert space of our theory is a direct sum of unitary highest

weight representations of the N = 2 algebra. This allows us to define the RR-sector

partition function

ZRR(τ, z; τ̄ , z̄) := TrHRRqL0−c/24e2πizJ0 q̄L̃0−c/24e2πiz̄J̃0eiπ(J0−J̃0) (2.1)

which has good modular properties under the SL(2, Z) action (τ, z) → (aτ+b
cτ+d , z

cτ+d). Here,

as usual, q = e2πiτ and y = e2πiz, and similarly for q̄ and ȳ.

In these conventions, the elliptic genus of an N = (2, 2) superconformal field theory C
is defined to be

χ(τ, z; C) := ZRR(τ, z; τ̄ , 0) . (2.2)

It is holomorphic in (τ, z) by the standard properties of the Witten index. For references

on the elliptic genus see [4, 5, 19, 29, 30, 31, 40, 41, 42, 43, 44, 46, 47].

N = 2 algebras have the crucial spectral flow isomorphism [45], which allows us to

relate the NS and R-sector partition functions. Recall that spectral flow SFθ for θ ∈ 1
2Z is

an isomorphism of N = 2 superconformal algebras which maps eigenvalues

L0 → L0 + θJ0 + θ2m (2.3)

J0 → J0 + 2θm . (2.4)

The spectral flow operators act on Z = ZRR as:

(SFθS̃F θ̃Z) = e

(
mθ2τ + 2mθ(z +

1

2
)

)
· e
(

mθ̃2τ̄ + 2mθ̃(z̄ − 1

2
)

)
Z(τ, z + τθ; τ̄ , z̄ + θ̃τ̄),

(2.5)

where e(x) := e2πix. For simplicity we restrict our attention to theories with integral

spectrum of left- and right-moving U(1) charges J0, J̃0. Again, it should be possible, and

would be interesting, to relax this assumption. Spectral-flow invariant theories with integral

U(1) charges satisfy

ZRR = (SFθS̃F θ̃)ZRR θ, θ̃ ∈ Z (2.6)

ZNSNS = (SFθS̃F θ̃)ZRR θ, θ̃ ∈ Z +
1

2
. (2.7)

As is well-known [29], the modularity properties of ZRR together with spectral flow

invariance and unitarity imply that the elliptic genus is a weak Jacobi form of index m

and weight zero [22]. A weak Jacobi form φ(τ, z) of weight w and index m ∈ Z, with

(τ, z) ∈ H × C, satisfies the transformation laws

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)we2πim cz2

cτ+dφ(τ, z)

(
a b

c d

)

∈ SL(2, Z) , (2.8)

φ(τ, z + %τ + %′) = e−2πim($2τ+2$z)φ(τ, z) %, %′ ∈ Z , (2.9)

and has a Fourier expansion

φ(τ, z) =
∑

n≥0,$∈Z

c(n, %)qny$ (2.10)

– 4 –

it can be useful to define the polar part:

with c(n, !) = (−1)wc(n,−!). It follows from the spectral flow identity that c(n, !) = 0

for 4mn − !2 < −m2. Following [22], we denote by J̃w,m the vector space of weak Jacobi

forms of weight w and index m. A Jacobi form is then a weak Jacobi form whose polar

part vanishes (see below).

Suppose we are given an integer m ∈ Z+. If (!, n) ∈ Z2 is a lattice point we refer

to its polarity as p = 4mn − !2. If φ ∈ J̃0,m let us define the polar part of φ, denoted

φ−, to be the sum of the terms in the Fourier expansion corresponding to lattice points of

negative polarity. By spectral flow one can always relate the degeneracies to those in the

fundamental domain with |!| ≤ m. If we impose the modular transformation (2.8) with

−1 ∈ SL(2, Z), which implements charge conjugation, then c(n, !) = c(n,−!) and therefore

the polar coefficients which cannot be related to each other by spectral flow and charge

conjugation are c(n, !) where (!, n) is valued in the polar region P (of index m), defined to

be

P(m) := {(!, n) : 1 ≤ ! ≤ m, 0 ≤ n, p = 4mn − !2 < 0} . (2.11)

For an example, see figure 1.

n

m

!

Figure 1: A cartoon showing polar states (represented by “•”) in the region P(m). Spectral flow
by θ = 1

2 relates these states to particle states in the NS sector of an N = 2 superconformal field
theory which are holographically dual to particle states in AdS3.

Given any Fourier expansion

ψ(τ, z) =
∑

!,n∈Z

ψ̂(n, !)qny! (2.12)

we define its polar polynomial (of index m) to be the sum restricted to the polar region

P(m):

Pol(ψ) :=
∑

(!,n)∈P(m)

ψ̂(n, !)qny! . (2.13)

Let us moreover denote by Vm the space of polar polynomials, i.e. the vector space gener-

ated by the monomials qny! with (!, n) ∈ P(m).

– 5 –
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– 5 –

Using facts from Eichler and Zagier, GGKMO were
able to prove that for large index m, no extremal SCFT

(by this definition) can exist.
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However, there could be theories at

c = 6, 12, 18, 24, 30, 42, 48, 66, 78

We can provide explicit constructions for chiral CFTs
realizing the preferred Jacobi forms at c=12,24.  This

doubles the list of known  “extremal CFTs”.

The construction at c=12 arose  “by accident”  in
a project attempting to do something else.
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One can view the super-E8 theory as a theory with 
a variety of different supersymmetry algebras.

Subgroups of the Conway group preserving the
k-plane act on the corresponding superconformal

field theory.

The global symmetry of the N=4 theory will be the 
subgroup of        which fixes the given 3-plane.

The book by Conway & Sloane contains a nice discussion
of the various subgroups one can realize by fixing 

3-planes, 2-planes,... in the Leech lattice.  For the rest
of the talk I focus on one set of choices:

Co0

In [?] it was shown that one can extend this construction by building larger superalgebras

out of the fermions. A choice of two (three) fermions is required to generate the U(1) (SU(2))

R-symmetry currents of an N = 2 (N = 4) superalgebra. This breaks the symmetry group of

the theory to a subgroup of Co
0

which stabilizes a two-(three-)plane in the Leech lattice and

by construction commutes with the corresponding superalgebra. Consequently the chiral CFT,

when viewed as N = 2 (N = 4) superconformal field theory, results in modules for subgroups

G0 of Co
0

that stabilize two- (three-)planes in the Leech lattice. In other words, decomposing

the (U(1)-graded) partition function twined by g 2 G0 into characters of the corresponding

superalgebra yields a two-component vector-valued mock modular form whose coe�cients are

given by certain g-characters. It was also established in [?] that the groups M
23

and M
22

are

distinguished among the groups which preserve an N = 2 or N = 4 algebra, respectively. This

is because all of their twining functions satisfy a certain “optimal pole” condition, and are thus

candidates for the moonshine phenomenon.

In the rest of this paper, we explore a similar story for an extended N = 1 superalgebra, the

algebra which, as discussed in [?], is associated with c = 12 conformal field theories with target

manifolds of exceptional holonomy Spin(7). This algebra, which can be defined as an N = 1

superalgebra extended by a single copy of the Ising model, breaks the global symmetry group

of the Conway module from Co
0

to a subgroup which stabilizes a line in the Leech lattice. The

choice of line corresponds to the choice of single fermion used to generate the c = 1

2

Ising sector

of the extended N = 1. We compute twining functions for a number of groups which preserve

such a “1-plane” in the Leech lattice and show they are given in terms of two-component vector-

valued mock modular forms. See Table 1 for a summary of the extended superalgebras in the

Conway module and examples of the groups they preserve. The Mathieu groups M
22

, M
23

and

M
24

are singled out here as the 3-, 2-, 1-plane preserving groups in the Leech lattice that admit

a representation as permutation groups on 24 objects. See [?] for more details on these groups

and their relation to the Leech lattice.

Superalgebra Geometrical Representation Global symmetry group
N = 0 R24 Spin(24)
N = 1 ⇤Leech Co0
Spin(7) ⇤Leech, fixed 1-plane M24

N = 2 ⇤Leech, fixed 2-plane M23

N = 4 ⇤Leech, fixed 3-plane M22

Table 1: The extended superconformal algebras compatible with the chiral CFT, the resulting
unbroken global symmetry groups, and the relevant geometric objects these symmetry groups act
on.

5
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3.  Mock modular forms play an important role in the
moonshine.  

Monday, August 10, 15

The fixed planes give one, two, or three fermions out of 
which one can write currents to enhance the N=1 algebra 

to other choices.
Cheng, Dong, Duncan, Harrison, SK, Wrase;
Benjamin, Harrison, Paquette, SK, Whalen;

Cheng, Harrison, SK, Whalen 
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The first few  “extremal Jacobi forms”  are:of m as:

Zm=1
EG = ϕ0,1 (2.6)

Zm=2
EG =

1

6
ϕ2
0,1 +

5

6
ϕ2
−2,1E4 (2.7)

Zm=3
EG =

1

48
ϕ3
0,1 +

7

16
ϕ0,1ϕ

2
−2,1E4 +

13

24
ϕ3
−2,1E6 (2.8)

Zm=4
EG =

67

144
ϕ4
−2,1E

2
4 +

11

27
ϕ3
−2,1ϕ0,1E6 +

1

8
ϕ2
−2,1ϕ

2
0,1E4 +

1

432
ϕ4
0,1 . (2.9)

We note in passing that the m = 2 extremal elliptic genus arises as the chiral partition

function of the N = 2 theory discussed in §7 of [20]. That theory enjoys an M23 symmetry.

Here, our focus will be on constructing an example of an extremal m = 4 theory.2

We now give a few more details about the would-be theory at m = 4.

1. The character expansion of the partition function is

Zm=4
EG = chN=2

7
2
;1,4 + 47 chN=2

7
2
;1,0

+ (23 + 61984q+ · · · )chN=2
7
2
;2,4

+ (2024 + 485001q+ · · · )(chN=2
7
2
;2,3 + chN=2

7
2
;2,−3)

+ (14168 + 1659174q+ · · · )(chN=2
7
2
;2,2 + chN=2

7
2
;2,−2)

+ (32890 + 2969208q+ · · · )(chN=2
7
2
;2,1 + chN=2

7
2
;2,−1) . (2.10)

Our conventions for characters are as in [20]; chN=2
l;h,Q denotes the N = 2 superconformal

character with l ≡ m − 1
2 = c

6 − 1
2 . For BPS characters h = m

4 = c
24 , while for non-BPS

characters h = m
4 + n with n ∈ Z. But because the non-BPS characters at various values

of n differ only by an overall power of q, we write all of them as chN=2
l;m

4
+1,Q and multiply

by the appropriate power of q in front.

2. The degeneracies in (2.10) are suggestive of an interesting (sporadic) discrete symmetry

group. The Mathieu groupM24 has representations of dimension 23 and 2024, for instance.

In fact we will see below that this is no coincidence; our construction of an N = 2 SCFT

with this chiral partition function will be based on the A24
1 Niemeier lattice, which enjoys

M24 symmetry. The choice of N = 2 algebra breaks the symmetry group to M23, which

is the symmetry group of the resulting N = 2 superconformal field theory.

3. Because of the properties of the ring of weak Jacobi forms of weight 0 and index 4, such a

form is determined by four coefficients in its q, y expansion (where y = e2πiz). For instance

2We note that it is plausible that more than one such theory exists, i.e. there could be additional constructions
which also match the extremal m = 4 elliptic genus.

5

The m=2 case precisely coincides the with chiral partition 
function of the N=2 formulation of this c=12 theory.  It

has M23 symmetry.

We have also been able to engineer, with Benjamin, Dyer
and Fitzpatrick, an N=2 theory with c=24 matching

the m=4 case above.
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The m=4 case has character expansion:

of m as:
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We note in passing that the m = 2 extremal elliptic genus arises as the chiral partition
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2 . For BPS characters h = m

4 = c
24 , while for non-BPS
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4 + n with n ∈ Z. But because the non-BPS characters at various values

of n differ only by an overall power of q, we write all of them as chN=2
l;m

4
+1,Q and multiply

by the appropriate power of q in front.

2. The degeneracies in (2.10) are suggestive of an interesting (sporadic) discrete symmetry

group. The Mathieu groupM24 has representations of dimension 23 and 2024, for instance.

In fact we will see below that this is no coincidence; our construction of an N = 2 SCFT

with this chiral partition function will be based on the A24
1 Niemeier lattice, which enjoys

M24 symmetry. The choice of N = 2 algebra breaks the symmetry group to M23, which

is the symmetry group of the resulting N = 2 superconformal field theory.

3. Because of the properties of the ring of weak Jacobi forms of weight 0 and index 4, such a

form is determined by four coefficients in its q, y expansion (where y = e2πiz). For instance

2We note that it is plausible that more than one such theory exists, i.e. there could be additional constructions
which also match the extremal m = 4 elliptic genus.

5

Because of the small size of the space of Jacobi forms
of index 4 and weight 0, it is fixed just by a few coeffs:in the case at hand, the Ramond sector elliptic genus has a q, y expansion

Zm=4,RR
EG =

1

y4
+ 46 + y4 +O(q) . (2.11)

Matching the coefficients of O(q0) in (2.11) suffices to completely determine this weak

Jacobi form.

3 The A24
1 /Z2 orbifold

The best known chiral conformal field theories are associated to theories of chiral bosons prop-

agating on even self-dual unimodular lattices of dimension 24k, as well as their orbifolds. At

dimension 24, there are precisely 24 such lattices – the Leech lattice and the 23 Niemeier lat-

tices [21]. The chiral conformal field theories at c = 24 are conjecturally classified as well,

starting with the work of Schellekens [22], as extended in [23]. For a recent review of progress

in this classification, see e.g. [24].

We focus here on one of the theories associated to Niemeier lattices, the A24
1 theory. The

A24
1 Niemeier lattice contains the lattice vectors in the A24

1 root lattice, as well as additional

vectors generated by the “gluing vectors.” We discuss aspects of our construction in some detail

below. But first, we pause to give a general description of the theory, just by using simple facts

about the A24
1 lattice. These facts are as follows:

1. The SU(2) current algebra (associated to each of the A1 factors) has three currents, and

so the A24
1 theory is expected to have 72 states at conformal dimension ∆ = 1. (This

is correct in the full theory – the additional gluing vectors do not add states at this low

conformal dimension.)

2. This lattice theory, like all such theories, admits a canonical Z2 symmetry – the one

inverting the lattice vectors. (In the language of 24 chiral bosons, it acts as X i → −X i).

The dimension of the “twist fields” σa creating the twisted sector ground states from

the untwisted sector is ∆twist = 3
2 . This is the right dimension for a supercharge; and

following the general construction of [14], in fact this theory can be promoted to an N = 1

superconformal theory. The total number of such twist fields is 212 = 4096 [25], and we

will carefully choose two linear combinations of them to be the supercharges G±.

3. Furthermore, in the A24
1 theory, one can actually promote to N = 2 superconformal

invariance. For an N = 2 superconformal algebra, we require an additional U(1) current

and a pair of supercharges with charges ± under the U(1). For the U(1) we select the Z2

invariant current,

J = 2(ei
√
2X1

+ e−i
√
2X1

) , (3.1)

6

suggestive of 
Mathieu
group

Tuesday, August 11, 15



In fact, a familiar friend from recent talks allows us to 
construct this theory.

The c=24 theories are conjecturally classified.  The simplest
examples are associated with Niemeier lattices.

From these a simple construction follows:

*  The theory associated to the         Niemeier lattice
can be orbifolded by the canonical         symmetry.

A24
1

Z2

* The resulting theory has a supersymmetry, by analogy
with the Dixon-Ginsparg-Harvey construction.
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* In fact, by choosing a U(1) generator in one of the 24 
copies of       , one can promote this to N=2 

supersymmetry.
A1

* The 72 currents associated with the 24 copies of SU(2)
current algebra split into 48 which have half-integral 
singularities with the supercharge, and 24 which have 

integral singularities.  

* These facts immediately allow one to prove that
this theory has chiral partition function given by 

of m as:

Zm=1
EG = ϕ0,1 (2.6)

Zm=2
EG =

1

6
ϕ2
0,1 +

5

6
ϕ2
−2,1E4 (2.7)

Zm=3
EG =

1

48
ϕ3
0,1 +

7

16
ϕ0,1ϕ

2
−2,1E4 +

13

24
ϕ3
−2,1E6 (2.8)

Zm=4
EG =

67

144
ϕ4
−2,1E

2
4 +

11

27
ϕ3
−2,1ϕ0,1E6 +

1

8
ϕ2
−2,1ϕ

2
0,1E4 +

1

432
ϕ4
0,1 . (2.9)

We note in passing that the m = 2 extremal elliptic genus arises as the chiral partition

function of the N = 2 theory discussed in §7 of [20]. That theory enjoys an M23 symmetry.

Here, our focus will be on constructing an example of an extremal m = 4 theory.2

We now give a few more details about the would-be theory at m = 4.

1. The character expansion of the partition function is

Zm=4
EG = chN=2

7
2
;1,4 + 47 chN=2

7
2
;1,0

+ (23 + 61984q+ · · · )chN=2
7
2
;2,4

+ (2024 + 485001q+ · · · )(chN=2
7
2
;2,3 + chN=2

7
2
;2,−3)

+ (14168 + 1659174q+ · · · )(chN=2
7
2
;2,2 + chN=2

7
2
;2,−2)

+ (32890 + 2969208q+ · · · )(chN=2
7
2
;2,1 + chN=2

7
2
;2,−1) . (2.10)

Our conventions for characters are as in [20]; chN=2
l;h,Q denotes the N = 2 superconformal

character with l ≡ m − 1
2 = c

6 − 1
2 . For BPS characters h = m

4 = c
24 , while for non-BPS

characters h = m
4 + n with n ∈ Z. But because the non-BPS characters at various values

of n differ only by an overall power of q, we write all of them as chN=2
l;m

4
+1,Q and multiply

by the appropriate power of q in front.

2. The degeneracies in (2.10) are suggestive of an interesting (sporadic) discrete symmetry

group. The Mathieu groupM24 has representations of dimension 23 and 2024, for instance.

In fact we will see below that this is no coincidence; our construction of an N = 2 SCFT

with this chiral partition function will be based on the A24
1 Niemeier lattice, which enjoys

M24 symmetry. The choice of N = 2 algebra breaks the symmetry group to M23, which

is the symmetry group of the resulting N = 2 superconformal field theory.

3. Because of the properties of the ring of weak Jacobi forms of weight 0 and index 4, such a

form is determined by four coefficients in its q, y expansion (where y = e2πiz). For instance

2We note that it is plausible that more than one such theory exists, i.e. there could be additional constructions
which also match the extremal m = 4 elliptic genus.

5
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It also has an M23 symmetry: the M24 of the        Niemeier
lattice is broken to M23 by the choice of N=2 R-current. 

A24
1

We are currently pursuing various ideas to find analogous 
N=2 constructions at higher values of c, perhaps (by slightly 

relaxing the criteria) even values  “not allowed”  by
GGKMO.

More generally, I think connections between the
new objects playing a role in moonshine and natural

objects in string theory or quantum gravity,  are worth 
pursuing.
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II.  Enumerative invariants of K3 surfaces

...and now for something completely different.

Happily, we have built up a stock of objects and facts
which I can now use to simply explain observations in

our paper which appeared yesterday on the arXiv.

Motivation:  In summer 2014, three prominent 
mathematicians (Katz, Klemm, Pandharipande) wrote a 

paper  “On the motivic stable pairs invariants of
K3 surfaces,” whose abstract states:  “Numerical data 

suggest the motivic invariants are linked to the Mathieu
M24 phenomena.”
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Let me try to explain the relevant invariants.

There is a very easy way to count BPS states in
type IIA string theory on K3.  This theory enjoys

a string duality, relating it to heterotic strings on T4.  

In the heterotic theory, the string has right-moving
supersymmetry.  Any strings in the right-moving ground

state but with arbitrary left excitations, are BPS.

BPS partition function =

1
⌘(q)24
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One might, however, want an intrinsically type II accounting.  
This was first provided by Yau-Zaslow.

Let         denote the moduli space of holomorphic curves
of genus n equipped with a flat U(1)-bundle, living inside 

K3.

MH
n

Then if we define

dn = �(MH
n )

P
n�0 dnq

n�1 = 1
�(⌧) = q�1(1 + 24q + 324q2 + 3200q3 + · · · )
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A more intuitive version of this formula comes in 
yet another duality frame.  Instead of imagining D2-branes
wrapping curves, we can imagine n D0-branes inside one

D4-brane.

Then the same counting function arises from

2 Refined K3 Invariants

To see how BPS indices of a K3 compactification can be related to certain statements about

the enumerative geometric properties of K3 surfaces, first recall the following equality. The

generating function of the Euler characteristic of K3[n], the Hilbert scheme of n points on an

arbitrary K3 surface, is given [23] by Göttsche’s formula

X

n�0

�(K3[n])qn�1 =
1

�(⌧)
, (2.1)

where q = e2⇡i⌧ and �(⌧) denotes the unique (up to scale) cuspidal modular form of weight 12

for the modular group,

�(⌧) = ⌘24(⌧) = q
Y

k>0

(1� qk)24. (2.2)

To see how the above quantity relates to BPS indices, consider the bound states of one D4-brane

and n D0-branes on a K3 surface in type IIA string theory. The corresponding BPS index is given

by the Euler characteristic of the relevant moduli space, which in this case is of the form K3[n].

Recall that K3[n] serves as a desingularisation of the n-th symmetric product K3(n) := K3n/Sn.

As shown in [24], the value �(K3[n]) coincides with the orbifold Euler characteristic of K3(n)

(and directly similar statements hold for Hodge numbers). Using the string duality relating type

IIA string theory compactified on K3 to heterotic string theory compactified on a torus, T 4, the

right-hand side of (2.1) can be understood as the chiral partition function of a bosonic string.

This is counting the Dabholkar–Harvey states—half BPS states of the heterotic theory—with

the right-moving oscillators in their ground state and arbitrary left-moving excitations.

The relation of (2.1) to K3 curve counting, discussed by Yau–Zaslow [16], building on the

physical results of [25–27], is best understood when we go to another duality frame. Namely,

the BPS system of one D4-brane and n D0-branes on K3 is dual to the system of one D2-brane

wrapping a 2-cycle of K3 with self-intersection number 2n � 2, and this can be realised as a

holomorphic curve of genus n whenever n � 0. Hence, in the D2-brane duality frame, the BPS

index is argued to be equal to the Euler characteristic of the (compactification of the) moduli

space of holomorphic curves of genus n with a choice of flat U(1)-bundle [25]. Let us denote

this moduli space by M

H
n . In [16] it was shown that the contribution to �(MH

n ) is localised on

curves with genus 0 and n double (nodal) points. From the above one arrives at the Yau–Zaslow

formula
X

n�0

dnq
n�1 =

1

�(⌧)
= q�1(1 + 24q + 324q2 + 3200q3 + · · · ), (2.3)

where dn counts the number of P1’s with n double points in a K3 surface. See [28] for a detailed

proof of this identity.

4

and the construction with the Hilbert scheme of
n points on a K3 surface becomes manifest. 

Gottsche
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Now, we could hope to gain more information than
that provided by this function.  For instance, the 
space-time physics of type II strings on K3 (times

a circle) has SU(2) x SU(2) symmetry.

Can’t we write a more refined generating function which 
keeps track of the SU(2) Cartan quantum numbers?

The generating function formula (2.1) of Göttsche has been extended in [29, 30] from the

Euler characteristic, to the elliptic genus [31–35]. Writing the Fourier expansion of the K3

elliptic genus as

ZEG(⌧, z;K3) =
X

n,`2Z
n�0

c(4n� `2) qny` = 2y + 2y�1 + 20 +O(q) (2.4)

(cf. (3.7)), where y = e2⇡iz, the second-quantised K3 elliptic genus is given by the DMVV

formula:
X

n�0

ZEG(⌧, z;K3[n])pn�1 = p�1
Y

r,s,t2Z
r>0,s�0

(1� qsytpr)�c(4rs�t2). (2.5)

Recall that the elliptic genus is a generalisation of Hirzebruch’s �y genus: for a compact complex

manifold M with complex dimension d, we have

lim
⌧!i1

ZEG(⌧, z;M) = y�d/2��y(M), (2.6)

where �y(M) :=
P

p,q y
p(�1)qhp,q(M). As a result, taking ⌧ ! i1 in (2.5) (and then replacing

p with q), we arrive at

X

n�0

��y(K3[n])y�nqn�1 = q�1
Y

k>0

(1� yqk)�2(1� qk)�20(1� y�1qk)�2

= (�y + 2� y�1)
⌘(⌧)6

✓21(⌧, z)

1

�(⌧)
.

(2.7)

Given the geometric interpretation of the generating function (2.1) just discussed, it is natural

to ask whether this one-variable refinement (2.7) also admits a curve-counting interpretation.

Following [1, 2], Katz–Klemm–Vafa proposed in [17] that the numbers nr
n, satisfying

X

r�0

X

n�0

(�1)rnr
n(y

1/2
� y�1/2)2rqn�1 = q�1

Y

k>0

(1� yqk)�2(1� qk)�20(1� y�1qk)�2, (2.8)

encode the (reduced) Gromov–Witten invariants of a K3 surface in the following way. Given a

(non-singular, projective) K3 surface X, and a primitive class ↵ 2 Pic(X), the Gromov–Witten

potential reads

F↵(gs, x) =
X

r�0

X

k�1

Rr
k↵ g2r�2

s ex·k↵, (2.9)

where Rr
� is the (reduced) Gromov–Witten invariant of genus r and curve class �. It can be

5

Moving to the        genus gives the “KKV invariants.”�y
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But we expect more refinement from both sides -- two 
Cartan U(1)s exist, and K3 cohmology admits two gradings.

This is the role of the “KKP invariants.”

re-expressed as

F↵(gs, x) =
X

r�0

X

k�1

ñr
k↵ g2r�2

s

X

d>0

1

d

✓
sin(dgs/2)

gs/2

◆2r�2

ex·d↵, (2.10)

where ñr
� = nr

n for all curve classes � with self-intersection number � · � = 2n � 2. Note that

by specialising (2.8) to z = 0 we recover the Yau–Zaslow formula (2.3) with dn = nr=0
n . The

KKV conjecture relating (2.8) to Gromov–Witten invariants has recently been proven in [36].

(See also [37].)

After refining from the Euler characteristic (2.1) to the �y genus (2.7), the next obvious

refinement is a generating function for the Hodge polynomials of K3[n],

X

n�0

�Hodge(K3[n])qn�1

= q�1
Y

k>0

(1� uyqk)�1(1� u�1yqk)�1(1� qk)�20(1� uy�1qk)�1(1� u�1y�1qk)�1

= (u� y � y�1 + u�1)
⌘(⌧)6

✓1(⌧, z + w)✓1(⌧, z � w)

1

�(⌧)
,

(2.11)

where u = e2⇡iw. Here, following [18], we define

�Hodge(M) := u�d/2y�d/2
X

p,q

(�u)q(�y)php,q(M) (2.12)

for M a Kähler manifold of complex dimension d. As before, K3[n] denotes the Hilbert scheme

of n points on an arbitrary K3 surface.

To discuss the enumerative geometric interpretation of (2.11) it will be helpful to first recall

the physical origin of the (refined) Gopakumar–Vafa invariants. Given a Calabi–Yau threefold

M , and a homology class � 2 H2(M,Z), the refined Gopakumar–Vafa invariant Ñ jL,jR
� is defined

as the BPS index counting the BPS states of M2-branes wrapping a 2-cycle of class �, with spin

quantum numbers (jL, jR) under the little group SO(4) ' SU(2)L⇥SU(2)R of a massive particle

in 5-dimensional Lorentzian space-time. More directly, consider M-theory on M ⇥ S1
⇥~✏ TN

where TN denotes the Taub-NUT space, and the subscript ~✏ = (✏1, ✏2) indicates a twist by the

element (ei✏1 , ei✏2) of the U(1)⇥U(1) subgroup of the Taub-NUT isometry group, U(1)⇥SO(3).

Then, in particular, the geometry is locally given by C2 near the tip of the Taub-NUT factor,

and writing (z1, z2) for local coordinates near the tip, the twist along the S1 is given by

z1 ! ei✏1z1, z2 ! ei✏2z2.

The BPS partition function of this M-theory compactification, in the presence of suitable three-

6

From the q-expansions of these functions, via formulae a bit 
too elaborate for me to reproduce here, one can obtain
various famous enumerative invariants (“curve counting 

formulae”) associated to K3.
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Trace functions in the Moonshine module   

The interesting (but, perhaps, unsurprising) thing, is that
all of these can be obtained from trace functions in an

a priori unconnected Moonshine module.

Let us return to our friend:

B.  Moonshines beyond the Monster

There are even self-dual unimodular lattices in lower 
dimensions than the Leech lattice.  In dimension 8, there

is a unique structure.

The supersymmetrized theory
of bosons propagating on the
E8 lattice, realizes moonshine
for Conway’s largest sporadic

group!

Monday, August 10, 15

V s\
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Its Ramond ground states span a 24 of the Conway group.

to the conjugacy classes of M24 (although these forms are di↵erent from those arising from the

Mathieu moonshine observation of Eguchi–Ooguri–Tachikawa).

In [14] stability conditions on K3 surfaces are used to identify orthogonal pairs of (complex)

Ramond sector ground states, a±X , a±Z 2 24. More specifically, given a (projective) K3 surface

X, choose vectors a�X 2 H2,0(X) and a+X 2 H0,2(X) such that ha±X , a⌥Xi = 1, where h· , ·i

denotes the Mukai pairing on the K3 cohomology lattice H̃(X,Z) :=
L

Hn(X,Z) (cf., e.g. [14]
or [20]), extended linearly to H̃(X,Z)⌦ZC =

L
Hp,q(X). (Note that H2,0(X) and H0,2(X) are

isotropic with respect to h· , ·i.) Next, choose a stability condition in Bridgeland’s distinguished

space [59] and write Z for the corresponding central charge, which we may regard as an element

of H0,0(X)�H1,1(X)�H2,2(X). Then choose isotropic a±Z 2 CZ�CZ̄ such that ha±Z , a
⌥
Z i = 1.

[JD: this paragraph is to be fixed...] Such pairs correspond to supersymmetric K3 sigma

models, according to the description [60,61] in terms of positive-definite 4-planes in the real K3

cohomology space. (See [19] for a succinct summary of this.) We can also use such a pair to

equip V s\ with an action of the N = 4 superalgebra at central charge c = 6, as we will now

demonstrate.

Write h· , ·i for the bilinear form on 24 determined by the unique Co0-invariant copy of the

Leech lattice in 24. Assume as in [14] that the pairs {a±X} and {a±Z} are orthogonal, that a±X

and a±Z are isotropic, and that ha+X , a�Xi = ha+Z , a
�
Z i = 1. Using the notation of [13, 14], define

vectors in V s\ by setting

|3 :=
1

4
(a�X(� 1

2 )a
+
X(� 1

2 )v + a�Z (�
1
2 )a

+
Z (�

1
2 )v),

|± :=
i

2
a±X(� 1

2 )a
±
Z (�

1
2 )v,

⌧±1 :=
p

2
�
a�X(0)± a+X(0)± a⌥X(0)a�Z (0)a

+
Z (0)

�
⌧tw,

⌧±2 := ⌥i
p

2
�
a�Z (0)± a+Z (0)± a⌥Z (0)a

�
X(0)a+X(0)

�
⌧tw,

(3.3)

where v is the vacuum of V s\. Then |3 and the |± generate an SU(2) current algebra, and

the pairs {⌧�1 , ⌧�2 } and {⌧+1 , ⌧+2 } each span a copy of the natural 2-dimensional representation

of the correpsonding SU(2). Write G±
j (z) for the spin-3/2 fields corresponding to the ⌧±j , and

define J±(z) and J3(z) similarly in terms of the |± and |3. Then a routine calculation verifies

the OPEs

G±
j (z)G

⌥
j (w) ⇠

4

(z � w)3
±

4J3(w)

(z � w)2
+

2T (w)

(z � w)
±

2@wJ3(z)

(z � w)
,

G±
1 (z)G

±
2 (w) ⇠ ±

4J±(w)

(z � w)2
±

2@wJ±(w)

(z � w)
,

G±
j (z)G

±
j (w) ⇠ G±

1 (z)G
⌥
2 (w) ⇠ 0,

(3.4)

for j 2 {1, 2}, where T (z) is a spin-2 current generating the Virasoro algebra at c = 6. That

10

As Duncan explained in his talk, there are states which are 
related by the operator-state correspondence to 

generators of a c=6 N=4 algebra:

With these choices, the U(1)-graded partition function
of this chiral theory turns out to be:

c.f. Duncan,
Mack-Crane
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is to say, the G±
j (z) generate an action of the (small) N = 4 superconformal algebra at c = 6

(cf. [62]) on V s\. Note that T (z) is not the stress-energy tensor of V s\, which we denote L(z),

and which has c = 12. More details on (3.3) and (3.4) will appear in [63].

The Ramond sector index of this supersymmetric model is simply a constant,

Zs\(⌧) := Tr((�1)F qL(0)� c
24
|V s\

tw)

=
1

2

1

⌘12(⌧)

4X

i=2

(�1)i+1✓12i (⌧, 0) = 24,
(3.5)

but once equipped with a U(1) current we may consider the corresponding U(1)-graded Ramond

sector index. Taking J(z) := 2J3(z), the U(1)-graded index works out [14] to be

Zs\(⌧, z) := Tr((�1)F qL(0)� c
24 yJ(0)|V s\

tw)

=
1

2

1

⌘12(⌧)

4X

i=2

(�1)i+1✓2i (⌧, z)✓
10
i (⌧, 0),

(3.6)

which is a weak Jacobi form of weight 0 and index 1 satisfying Zs\(⌧, 0) = Zs\(⌧) = 24. That

is, we have recovered the K3 elliptic genus,

Zs\(⌧, z) = ZEG(⌧, z;K3). (3.7)

Evidence is presented in [14] that the coincidence (3.7) is not an accident, but rather reflects

a deep relationship between V s\ and K3 surface geometry. To explain this, recall that Co0 is

precisely the subgroup of Aut(V s\) that fixes ⌧tw. Define G⇧ to be the subgroup of this Co0

consisting of elements that point-wise fix the 4-space ⇧ := Span{a±X , a±Z} < 24. Then G⇧ is

precisely the supersymmetry preserving symmetry group of the K3 sigma model corresponding

to ⇧, according to the main result of [19]. Now for g 2 G⇧ we may consider the g-twined

U(1)-graded Ramond sector index,

Zs\
g (⌧, z) := Tr(g(�1)F qL(0)� c

24 yJ(0)|V s\
tw), (3.8)

and we may compare it to the corresponding equivariant K3 sigma model elliptic genus,

ZEG(⌧, z;⇧, g) := TrRR(g(�1)F+F̄ qL(0)� c
24 q̄L̄(0)� c̄

24 yJ(0)) (3.9)

(cf. [19]). One can check [14] that

Zs\
g (⌧, z) = ZEG(⌧, z;⇧, g), (3.10)

11

And happily, 

is to say, the G±
j (z) generate an action of the (small) N = 4 superconformal algebra at c = 6

(cf. [62]) on V s\. Note that T (z) is not the stress-energy tensor of V s\, which we denote L(z),

and which has c = 12. More details on (3.3) and (3.4) will appear in [63].

The Ramond sector index of this supersymmetric model is simply a constant,

Zs\(⌧) := Tr((�1)F qL(0)� c
24
|V s\

tw)

=
1

2

1

⌘12(⌧)

4X

i=2

(�1)i+1✓12i (⌧, 0) = 24,
(3.5)

but once equipped with a U(1) current we may consider the corresponding U(1)-graded Ramond

sector index. Taking J(z) := 2J3(z), the U(1)-graded index works out [14] to be

Zs\(⌧, z) := Tr((�1)F qL(0)� c
24 yJ(0)|V s\

tw)

=
1

2

1

⌘12(⌧)

4X

i=2

(�1)i+1✓2i (⌧, z)✓
10
i (⌧, 0),

(3.6)

which is a weak Jacobi form of weight 0 and index 1 satisfying Zs\(⌧, 0) = Zs\(⌧) = 24. That
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a deep relationship between V s\ and K3 surface geometry. To explain this, recall that Co0 is

precisely the subgroup of Aut(V s\) that fixes ⌧tw. Define G⇧ to be the subgroup of this Co0

consisting of elements that point-wise fix the 4-space ⇧ := Span{a±X , a±Z} < 24. Then G⇧ is
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Now, the symmetries of        are under excellent control. V s\

Our choices equipping it with an N=4 structure here
leave symmetries preserving 4-planes in the 24 of        . 

Co0
c.f. Gaberdiel, Hohenegger, Volpato
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and compare with twinings of K3 sigma models:
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Natural question:

??
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In many cases yes.  Universally?  There may be a role
for other Umbral modules.

Now, this allows us to define twined enumerative invariants 
as well.  Because although we have only compared the 

elliptic genus of K3 to the partition function of this 
Moonshine module, all of the previous generating functions

are determined by (special limits of) the elliptic genus!
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This may not be obvious, as they involve Euler characters 
(and generalizations) of Hilbert schemes.  But recall that via 

the formula of Dijkgraaf-Moore-Verlinde-Verlinde,
The generating function formula (2.1) of Göttsche has been extended in [29, 30] from the

Euler characteristic, to the elliptic genus [31–35]. Writing the Fourier expansion of the K3

elliptic genus as

ZEG(⌧, z;K3) =
X

n,`2Z
n�0

c(4n� `2) qny` = 2y + 2y�1 + 20 +O(q) (2.4)

(cf. (3.7)), where y = e2⇡iz, the second-quantised K3 elliptic genus is given by the DMVV

formula:
X

n�0

ZEG(⌧, z;K3[n])pn�1 = p�1
Y

r,s,t2Z
r>0,s�0

(1� qsytpr)�c(4rs�t2). (2.5)

Recall that the elliptic genus is a generalisation of Hirzebruch’s �y genus: for a compact complex

manifold M with complex dimension d, we have

lim
⌧!i1

ZEG(⌧, z;M) = y�d/2��y(M), (2.6)

where �y(M) :=
P

p,q y
p(�1)qhp,q(M). As a result, taking ⌧ ! i1 in (2.5) (and then replacing

p with q), we arrive at

X

n�0

��y(K3[n])y�nqn�1 = q�1
Y

k>0

(1� yqk)�2(1� qk)�20(1� y�1qk)�2

= (�y + 2� y�1)
⌘(⌧)6

✓21(⌧, z)

1

�(⌧)
.

(2.7)

Given the geometric interpretation of the generating function (2.1) just discussed, it is natural

to ask whether this one-variable refinement (2.7) also admits a curve-counting interpretation.

Following [1, 2], Katz–Klemm–Vafa proposed in [17] that the numbers nr
n, satisfying

X

r�0

X

n�0

(�1)rnr
n(y

1/2
� y�1/2)2rqn�1 = q�1

Y

k>0

(1� yqk)�2(1� qk)�20(1� y�1qk)�2, (2.8)

encode the (reduced) Gromov–Witten invariants of a K3 surface in the following way. Given a

(non-singular, projective) K3 surface X, and a primitive class ↵ 2 Pic(X), the Gromov–Witten

potential reads

F↵(gs, x) =
X

r�0

X

k�1

Rr
k↵ g2r�2

s ex·k↵, (2.9)

where Rr
� is the (reduced) Gromov–Witten invariant of genus r and curve class �. It can be

5

determines
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5

The formula of KKV is just the              limit of DMVV. ⌧ ! i1
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Then, via the relationship between K3 sigma models and
we can produce equivariant curve counts.V s\

To get to the KKP invariants, which have an additional 
grading, one simply needs to grade the partition function in

 by an additional U(1).V s\

This succeeds in relating the KKP (and more primitive)
invariants to sporadic groups and moonshine, though

perhaps not by the route they expected.
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Last but not least:

THANKS TO THE ORGANISERS FOR 
AN EXCELLENT PROGRAM!!
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