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Ramanujan’s continued fraction

Famous Fact

The golden ratio is the algebraic integral unit
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Ramanujan’s first letter to Hardy
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Hardy’s reaction

“[These formulas] defeated me completely. . . . they could only be
written down by a mathematician of the highest class. They must
be true because no one would have the imagination to invent
them.”

G. H. Hardy
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Rogers-Ramanujan

Theorem (Rogers, Ramanujan)

We have that

G (q) :=
1X

n=0

qn
2

(1� q) · · · (1� qn)
=

1Y

n=0

1

(1� q5n+1)(1� q5n+4)
,

H(q) :=
1X

n=0

qn
2

+n

(1� q) · · · (1� qn)
=

1Y

n=0

1

(1� q5n+2)(1� q5n+3)
,

and R(q) = H(q)/G (q).
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Ubiquity of the RR Identities

Number theory

Conformal field theory

K -theory

Kac-Moody Lie algebras

Knot theory

Probability theory

Statistical mechanics

. . .

Remark

RR identities =) Lepowsky-Wilson program
...=) vertex operator theory =) Moonshine.
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Ramanujan’s Claim

Theorem (Berndt-Chan-Zhang (1996), Cais-Conrad (2006))

If ⌧ is a CM point, then

e2⇡i⌧/5 · R(e2⇡i⌧ )

is an algebraic integral unit.
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Fundamental Problems

Problem 1

Is there a larger (and conceptual) framework of identities:

“Summatory q-series” = “Infinite product modular function”?

Problem 2

If so, do natural ratios generalize R(q) to give integral units?



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Fundamental Problems

Problem 1

Is there a larger (and conceptual) framework of identities:

“Summatory q-series” = “Infinite product modular function”?

Problem 2

If so, do natural ratios generalize R(q) to give integral units?



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Problem 1

“Theorem” (Gri�n-O-Warnaar)

There are four triples (a, b, c) such that for all m, n � 1 we have

X

�
�
1

m

qa|�|P
2�(1, q, q

2, . . . ; qbn+c)

= “Infinite product modular function”.

Remark

RR identities when m = n = 1 and (a, b, c) = (1, 2,�1), (2, 2,�1).
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Answers

Integer Partitions

Definition

A partition is a nonincreasing sequence of positive integers

� := (�
1

,�
2

, . . . )

with finitely many non-zero terms.

Notation.

|�| := �
1

+ �
2

+ . . . (Size of �).

l(�) := “number of parts”.

For positive i we let m
i

:= “multiplicity” of size i parts.

For n � l(�) we let m
0

:= n � l(�).
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Answers

Hall-Littlewood symmetric polynomials

Definition

If � is a partition with l(�)  n, then let

x� := x�1

1

x�2

2

· · · x�n

n

,

and let

v�(q) :=
nY

i=0

(q)
m

i

(1� q)mi

.

The Hall-Littlewood polynomial is

P�(x ; q) =
1

v�(q)

X

w2S
n

w

✓
x�

Y

i<j

x
i

� qx
j

x
i

� x
j

◆
.
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Answers

Example 1

For n � 1 we have

P
(2)

(x
1

, x
2

, . . . , x
n

; q) =
(1� q)n�1

(q)
n�1

·
X

w2S
n

w

✓
x2
1

Y

i<j

x
i

� qx
j

x
i

� x
j

◆
.

We find that

P
(2)

(x
1

; q) = x2
1

P
(2)

(x
1

, x
2

; q) = x2
1

+ x2
2

+ (1� q)x
1

x
2

P
(2)

(x
1

, x
2

, x
3

; q) = x2
1

+ x2
2

+ x2
3

+ (1� q)(x
1

x
2

+ x
1

x
3

+ x
2

x
3

)

... =
...
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Answers

Example 1 (Continued)

Letting x
1

= 1, x
2

= q, x
3

= q2, . . . , we obtain

P
(2)

(1; q) = 1

P
(2)

(1, q; q) = 1 + q

P
(2)

(1, q, q2; q) = 1 + q + q2

...
...

More generally, for every n � 1 we have

P
(2)

(1, q, q2, . . . , qn; q) = 1 + q + q2 + · · ·+ qn.
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Example 1 (Continued)

For each n � 1 we have

P
(2)

(x
1

, . . . , x
n

; q)

=
1 + q

2

�
x2
1

+ · · ·+ x2
n

�
+

1� q

2
(x

1

+ · · ·+ x
n

)2 .

Make the identifications

(x
1

, x
2

, . . . )  ! (1, q, q2, . . . )

x r
1

+ x r
2

+ · · ·+ x r
n

 ! 1

1� qr

This gives us

P
(2)

(1, q, q2, . . . ; q) =
(1 + q)

2(1� q2)
+

1� q

2(1� q)2
=

1

1� q
.
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Answers

Example 2

For n � 2 find that

P
(2,2)(x1 . . . , xn; q) = �

q3 � q

4
(x

1

+ · · ·+ x
n

)2(x2
1

+ · · ·+ x2
n

)

+
q3 � 3q + 2

24
(x

1

+ · · ·+ x
n

)4 +
q3 + q + 2

8
(x2

1

+ · · ·+ x2
n

)2

+
q3 � 1

3
(x

1

+ · · ·+ x
n

)(x3
1

+ · · ·+ x3
n

)� q3 + q

4
(x4

1

+ · · ·+ x4
n

).

Arguing as before gives:

P
(2,2)(1, q, q

2, . . . ; q) =
q2

(1� q)(1� q2)
.
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Answers

Hall-Littlewood q-series

Hall-Littlewood q-series

The q-series P�(1, q, q2, . . .; qT ) is defined by:

1 Express in P�(x1, . . . , xn; qT ) using

x r
1

+ · · ·+ x r
n

.

2 Obtain P�(1, q, q2, . . . ; qT ) by replacing

x r
1

+ · · ·+ x r
n

7�! 1 + qr + q2r + · · · = 1

1� qr
.



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Hall-Littlewood q-series

Hall-Littlewood q-series

The q-series P�(1, q, q2, . . .; qT ) is defined by:

1 Express in P�(x1, . . . , xn; qT ) using

x r
1

+ · · ·+ x r
n

.

2 Obtain P�(1, q, q2, . . . ; qT ) by replacing

x r
1

+ · · ·+ x r
n

7�! 1 + qr + q2r + · · · = 1

1� qr
.



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Hall-Littlewood q-series

Hall-Littlewood q-series

The q-series P�(1, q, q2, . . .; qT ) is defined by:

1 Express in P�(x1, . . . , xn; qT ) using

x r
1

+ · · ·+ x r
n

.

2 Obtain P�(1, q, q2, . . . ; qT ) by replacing

x r
1

+ · · ·+ x r
n

7�! 1 + qr + q2r + · · · = 1

1� qr
.



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Problem 1

“Theorem” (Gri�n-O-Warnaar)

There are four triples (a, b, c) such that for all m, n � 1 we have

X

�
�
1

m

qa|�|P
2�(1, q, q

2, . . . ; qbn+c)

= “Infinite product modular function”.

Remark

RR identities when m = n = 1 and (a, b, c) = (1, 2,�1), (2, 2,�1).
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Answers

Notation

Definition (Pochammer)

(a; q)
k

:= (1� a)(1� aq) · · · (1� aqk�1),

and
✓(a; q) := (a; q)1(q/a; q)1.

Remark

The ✓(a; q) are “modular functions” studied by Kubert and Lang.
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Answers

Theorem 1 (Gri�n-O-Warnaar)

If m, n � 1 and  := 2m + 2n + 1, then

X

�
�
1

m

q|�|P
2�

�
1, q, q2, . . . ; q2n�1

�

=
(q; q)n1
(q)n1

·
nY

i=1

✓
�
qi+m; q

� Y

1i<jn

✓
�
qj�i , qi+j�1; q

�

X

�
�
1

m

q2|�|P
2�

�
1, q, q2, . . . ; q2n�1

�

=
(q; q)n1
(q)n1

·
nY

i=1

✓
�
qi ; q

� Y

1i<jn

✓
�
qj�i , qi+j ; q

�
.
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Easy to use Theorem 1

Example

If m = n = 2, then we obtain Dyson’s favorite

X

�
�
1

2

q|�|P
2�

�
1, q, q2, . . . ; q3

�
=

1Y

n=1

(1� q9n)

(1� qn)
,

and
X

�
�
1

2

q2|�|P
2�

�
1, q, q2, . . . ; q3

�

=
1Y

n=1

(1� q9n)(1� q9n�1)(1� q9n�8)

(1� qn)(1� q9n�4)(1� q9n�5)
.
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Normalizations

Definition

For each of the four families, if m, n � 1, then let

�
a,b,c(m, n; ⌧) := qa,b,c (m,n)

X

�
�
1

m

qa|�|P
2�(1, q, q

2, . . . ; qbn+c).
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Answers

Integrality properties

Theorem 2 (Gri�n-O-Warnaar)

If ⌧ is a CM point, then the following are true:

1 The singular value �⇤(m, n; ⌧) is a unit over Z [1/].

2 The ratio �
1,2,�1

(m, n; ⌧)/�
2,2,�1

(m, n; ⌧) is an integral unit.

Remark

Theorem 2 (2) is the q1/5R(q) result when m = n = 1.
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Example when m = n = 2

For ⌧ = i/3 the first 100 terms give:

�
1,2,�1

(2, 2; i/3) = 0.577350 · · · ?

=
1p
3

�
2,2,�1

(2, 2; i/3) = 0.217095 . . .

They are not algebraic integers, but are roots of:

3x2 � 1

39x18 � 37 · 37x12 � 2 · 39x9 + 23 · 34 · 17x6 � 2 · 35x3 � 1.

By Theorem 2 (1), both
p
3�

1⇤(2, 2; i/3) are integral units.



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Example when m = n = 2

For ⌧ = i/3 the first 100 terms give:

�
1,2,�1

(2, 2; i/3) = 0.577350 · · · ?

=
1p
3

�
2,2,�1

(2, 2; i/3) = 0.217095 . . .

They are not algebraic integers, but are roots of:

3x2 � 1

39x18 � 37 · 37x12 � 2 · 39x9 + 23 · 34 · 17x6 � 2 · 35x3 � 1.

By Theorem 2 (1), both
p
3�

1⇤(2, 2; i/3) are integral units.



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Example when m = n = 2

For ⌧ = i/3 the first 100 terms give:

�
1,2,�1

(2, 2; i/3) = 0.577350 · · · ?

=
1p
3

�
2,2,�1

(2, 2; i/3) = 0.217095 . . .

They are not algebraic integers, but are roots of:

3x2 � 1

39x18 � 37 · 37x12 � 2 · 39x9 + 23 · 34 · 17x6 � 2 · 35x3 � 1.

By Theorem 2 (1), both
p
3�

1⇤(2, 2; i/3) are integral units.



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Example when m = n = 2

For ⌧ = i/3 the first 100 terms give:

�
1,2,�1

(2, 2; i/3) = 0.577350 · · · ?

=
1p
3

�
2,2,�1

(2, 2; i/3) = 0.217095 . . .

They are not algebraic integers, but are roots of:

3x2 � 1

39x18 � 37 · 37x12 � 2 · 39x9 + 23 · 34 · 17x6 � 2 · 35x3 � 1.

By Theorem 2 (1), both
p
3�

1⇤(2, 2; i/3) are integral units.



Rogers-Ramanujan and Umbral Moonshine

I. Framework of Rogers-Ramanujan identities

Answers

Example when m = n = 2 continued.

Which gives Theorem 3 (3) that

�
1,2,�1

(2, 2; i/3)/�
2,2,�1

(2, 2; i/3) = 4.60627 . . .

is an algebraic integral unit.

Indeed, �
1,2,�1

(2, 2; i/3)/�
2,2,�1

(2, 2; i/3) is a root of

x18 � 102x15 + 420x12 � 304x9 � 93x6 + 6x3 + 1.
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Classical proof of RR

Theorem (G. N. Watson (1929))

(aq, aq/bc)
N

(aq/b, aq/c)
N

NX

r=0

(b, c , aq/de, q�N)
r

(q, aq/d , aq/e, bcq�N/a)
r

qr

=
NX

r=0

1� aq2r

1� a
· (a, b, c , d , e, q�N)

r

(q, aq/b, aq/c , aq/d , aq/e)
r

·
✓
a2qN+2

bcde

◆
r

.
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Proof of the RR identities

• Letting b, c , d , e,N !1 suitably gives...

Corollary (Rogers-Selberg Identity)

1X

r=0

arqr
2

(q; q)
r

=
1

(aq; q)1

1X

r=0

1� aq2r

1� a
· (a; q)r
(q; q)

r

· (�1)ra2rq5(
r

2

)+2r .

• Letting a = 1, q on the LHS gives RR.

• What is the RHS when a = 1, q?
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Proof of the RR identities continued

Lemma (Jacobi Triple Product)

1X

r=�1
(�1)rx rq(

r

2

) = (q; q)1 · ✓(x ; q),

• Rogers-Selberg + JTP =) RR.
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Obtaining the framework

“Theorem” (Bartlett-Warnaar (2013))

There are “crazier” transformation, arising from Lie algebra root
systems, where

a  ! (x
1

, x
2

, . . . , x
n

).

Remark

Their transformation laws make use of

�C(x) :=
nY

i=1

(1� x2
i

)
Y

1i<jn

(x
i

� x
j

)(x
i

x
j

� 1).
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Bartlett-Warnaar Transformation Law
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What next?

Make use of the added flexibility.

Let parameters !1 and take a nonterminating limit.

Analyze the RHS....using definition of Hall-Littlewood
polynomials.
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Theorem (Higher Rogers-Selberg Identity)
X

�
�
1

m

q|�|P 0
2�(x ; q) = L(0)

m

(x ; q),

where

L(0)
m

(x ; q) :=
X

r2Zn

+

�C(xqr )

�C(x)

⇥
nY

i=1

x2(m+1)r

i

i

q(m+1)r

2

i

+n(ri
2

) ·
nY

i ,j=1

⇣
�x

i

x
j

⌘
r

i (x
i

x
j

)
r

i

(qx
i

/x
j

)
r

i

.
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Obtaining the framework

• It is easy to modify LHS for each theorem.

• Manipulating L(0)
m

(x ; q) is di�cult....requiring a complicated
recursive limiting argument.

• Many pages of reformulations involving Macdonald identities for

D(2)

n+1

, B(1)

n

, D(1)

n

,

Weyl-Kac denominator formulas, and of course JTP.
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Hint of moonshine

John McKay observed that

196884 = 1 + 196883



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

John Thompson’s generalizations

Thompson further observed:

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326
864299970| {z }

Coe�cients of j(⌧)

1 + 1 + 196883 + 196883 + 21296876 + 842609326| {z }
Dimensions of irreducible representations of the Monster M

Definition

Klein’s j-function

j(⌧)� 744 =
1X

n=�1

c(n)qn

= q�1 + 196884q + 21493760q2 + 864299970q3 + . . . .
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The Monster characters

The character table for M (ordered by size) gives dimensions:

�
1

(e) = 1

�
2

(e) = 196883

�
3

(e) = 21296876

�
4

(e) = 842609326

...

�
194

(e) = 258823477531055064045234375.



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

Monster module

Conjecture (Thompson)

There is an infinite-dimensional graded module

V \ =
1M

n=�1

V \
n

with
dim(V \

n

) = c(n).
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The McKay-Thompson Series

Definition (Thompson)

Assuming the conjecture, if g 2M, then define the
McKay–Thompson series

T
g

(⌧) :=
1X

n=�1

tr(g |V \
n

)qn.
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Conway and Norton

Conjecture (Monstrous Moonshine)

For each g 2M there is an explicit genus 0 discrete subgroup
�
g

⇢ SL

2

(R) for which T
g

(⌧) is the unique modular function with

T
g

(⌧) = q�1 + O(q).
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Borcherds’ work

Theorem (Frenkel–Lepowsky–Meurman)

The moonshine module V \ =
L1

n=�1

V \
n

is a vertex operator
algebra of central charge 24 whose graded dimension is given by
j(⌧)� 744, and whose automorphism group is M.

Theorem (Borcherds)

The Monstrous Moonshine Conjecture is true.
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The Monster and Supersingular elliptic curves

Theorem (Griess (1982))

The Monster group M exists. It has order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

Theorem (Ogg, 1974)

Toutes les valuers supersingulières de j sont F
p

si, et seulement si

p 2 Ogg
ss

:= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.
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II. Moonshine

The Jack Daniels Problem

Ogg’s Problem

Problem 1

Do order p elements in M know the F
p

supersingular j-invariants?

Theorem (Dwork’s Generating Function)

If p � 5 is prime, then

(j(⌧)� 744) | U(p) ⌘

�
X

↵2SS
p

A
p

(↵)

j(⌧)� ↵
�

X

g(x)2SS⇤
p

B
p

(g)j(⌧) + C
p

(g)

g(j(⌧))
(mod p).
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The Jack Daniels Problem

Answer to Problem 1

If g 2M and p is prime, then Moonshine implies that

T
g

+ pT
g

| U(p) = T
g

p .

And so if g has order p, then

T
g

+ pT
g

| U(p) = j � 744.

Which implies that

T
g

⌘ j � 744 (mod p).

....giving us Dwork’s generating function

T
g

| U(p) ⌘ (j � 744) | U(p) (mod p).
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The Jack Daniels Problem

Ogg’s Problem

Problem 2

If p 62 Ogg
ss

, then why do we expect p - #M?

Answer

By Ogg, if p 62 Ogg
ss

, then X+

0

(p) has positive genus, and
there is no hauptmodul.
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The Jack Daniels Problem

Ogg’s Problem

Problem 3

If p 2 Ogg
ss

, then why do we expect (a priori) that p | #M?

Weak Answer

Let h
p

(⌧) be the hauptmodul for �+
0

(p).

Hecke implies that h
p

| U(p) ⌘ (j � 744) | U(p) (mod p).

Implies j 0(h
p

| U(p)) 2 S
p+1

(1) (mod p).

Moonshine “implies” j 0(h
p

| U(p)) comes from ⇥’s.

But Serre implies j 0(h
p

| U(p)) 2 S
2

(p) (mod p).

Pizer proved ⇥0s from quaternion alg’s su�ce i↵ p 2 Ogg
ss

.
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Recent moonshine

Observation (Eguchi, Ooguri, Tachikawa (2010))

Using the K3 surface elliptic genus, there is a mock modular form

H(⌧) = q�
1

8

�
�2 + 45q + 231q2 + 770q3 + 2277q4 + 5796q5 + ...

�
.

The degrees of the irreducible repn’s of the Mathieu group M
24

are:

1, 23,45, 231, 252, 253, 483, 770, 990, 1035,

1265, 1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395.
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Mathieu Moonshine

Theorem (Gannon (2013))

There is an infinite dimensional graded M
24

-module whose
McKay-Thompson series are specific mock modular forms.

Remark

There are well known connections with even unimodular positive
definite rank 24 lattices:

M
24

 ! A24

1

lattice.
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Conjecture (Cheng, Duncan, Harvey (2013))

Let LX (up to isomorphism) be an even unimodular
positive-definite rank 24 lattice, and let :

X be the corresponding ADE-type root system.

W X the Weyl group of X .

The umbral group GX := Aut(LX )/W X .

For each g 2 GX let HX

g

(⌧) be a specific mock modular
form with “minimal principal parts”.

Then there is an infinite dimensional graded GX module KX for
which HX

g

(⌧) is the McKay-Thompson series for g .
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What are mock modular forms?

Notation. Throughout, let

⌧ = x + iy 2 H with x , y 2 R.

Hyperbolic Laplacian.

�
k

:= �y2
✓

@2

@x2
+

@2

@y2

◆
+ iky

✓
@

@x
+ i

@

@y

◆
.
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Harmonic Maass forms

Definition

A harmonic Maass form of weight k on a subgroup � ⇢ SL
2

(Z) is
any smooth function M : H! C satisfying:

1 For all A =
�
a b

c d

�
2 � and z 2 H, we have

M

✓
a⌧ + b

c⌧ + d

◆
= (cz + d)k M(⌧).

2 We have that �
k

M = 0.
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Fourier expansions

Fundamental Lemma

If M 2 H
2�k

and �(a, x) is the incomplete �-function, then

M(⌧) =
X

n��1
c+(n)qn +

X

n<0

c�(n)�(k � 1, 4⇡|n|y)qn.

l l
Mock modular form M+ Nonholomorphic part M�

Remark

If ⇠
2�k

:= 2iy2�k

@
@⌧ , then the shadow of M is ⇠

2�k

(M�) 2 S
k

.
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Our results....

Theorem (Duncan, Gri�n, Ono)

The Umbral Moonshine Conjecture is true.

Remark

This result is a “numerical proof”. It is analogous to the work of
Atkin, Fong and Smith in the case of monstrous moonshine.
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Beautiful examples

Example

For M
12

the MT series include Ramanujan’s mock thetas:

f (q) = 1 +
1X

n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

�(q) = 1 +
1X

n=1

qn
2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

�(q) = 1 +
1X

n=1

qn
2

(1� q + q2)(1� q2 + q4) · · · (1� qn + q2n)
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Strategy of Proof

For each X we compute non-negative integers mX

i

(n) for which

KX =
1X

n=�1

X

�
i

mX

i

(n)V�
i

.



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

Sketch of the proof

Strategy of Proof

For each X we compute non-negative integers mX

i

(n) for which

KX =
1X

n=�1

X

�
i

mX

i

(n)V�
i

.



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

Sketch of the proof

TX
� (⌧)

Define the weight 1/2 harmonic Maass form

TX

�
i

(⌧) :=
1

|GX |
X

g2GX

�
i

(g)HX

g

(⌧).

We have that

TX

�
i

(⌧) = “period integral of a ⇥-function” +
1X

n=�1

mX

i

(n)qn.

Method of holomorphic projection gives:

⇡
hol

: H
1

2

�! eM
2

= {wgt 2 quasimodular forms}.
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Holomorphic projection

Definition

Let f be a wgt k � 2 (not necessarily holomorphic) modular form

f (⌧) =
X

n2Z
a
f

(n, y)qn.

Then its holomorphic projection is

(⇡
hol

f )(⌧) := (⇡k

hol

f )(⌧) := c
0

+
1X

n=1

c(n)qn,

where for n > 0 we have

c(n) =
(4⇡n)k�1

(k � 2)!

Z 1

0

a
f

(n, y)e�4⇡nyyk�2dy .



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

Sketch of the proof

Holomorphic projection

Definition

Let f be a wgt k � 2 (not necessarily holomorphic) modular form

f (⌧) =
X

n2Z
a
f

(n, y)qn.

Then its holomorphic projection is

(⇡
hol

f )(⌧) := (⇡k

hol

f )(⌧) := c
0

+
1X

n=1

c(n)qn,

where for n > 0 we have

c(n) =
(4⇡n)k�1

(k � 2)!

Z 1

0

a
f

(n, y)e�4⇡nyyk�2dy .



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

Sketch of the proof

Holomorphic projection

Definition

Let f be a wgt k � 2 (not necessarily holomorphic) modular form

f (⌧) =
X

n2Z
a
f

(n, y)qn.

Then its holomorphic projection is

(⇡
hol

f )(⌧) := (⇡k

hol

f )(⌧) := c
0

+
1X

n=1

c(n)qn,

where for n > 0 we have

c(n) =
(4⇡n)k�1

(k � 2)!

Z 1

0

a
f

(n, y)e�4⇡nyyk�2dy .



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

Sketch of the proof

Holomorphic projection

Definition

Let f be a wgt k � 2 (not necessarily holomorphic) modular form

f (⌧) =
X

n2Z
a
f

(n, y)qn.

Then its holomorphic projection is

(⇡
hol

f )(⌧) := (⇡k

hol

f )(⌧) := c
0

+
1X

n=1

c(n)qn,

where for n > 0 we have

c(n) =
(4⇡n)k�1

(k � 2)!

Z 1

0

a
f

(n, y)e�4⇡nyyk�2dy .



Rogers-Ramanujan and Umbral Moonshine

II. Moonshine

Sketch of the proof

Holomorphic projection continued

Fundamental Lemma

If f is a wgt k � 2 nonholomorphic modular form on �
0

(N), then
the following are true.

1 If f is holomorphic, then ⇡
hol

(f ) = f (⌧).

2 The function ⇡
hol

(f ) lies in the space eM
k

(�
0

(N)).

Remark

Holomorphic projections appeared earlier in works of Sturm, and
Gross-Zagier, and work of Imamoglu, Raum, and Richter, Mertens,
and Zwegers in connection with mock modular forms.
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Sketch of the proof of umbral moonshine

Compute each wgt 1/2 harmonic Maass form TX

�
i

(⌧).

Compute holomorphic projections of products with shadows.

The mX

�
i

(n) are integers i↵ these holomorphic projections
satisfy certain congruences.

The mX

�
i

(n) can be estimated using “infinite sums” of
Kloosterman sums weighted by I -Bessel functions. For
su�ciently large n this establishes non-negativity.

Check the finitely many (less than 400) cases directly.
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Executive Summary

1 Framework of RR identities arising from Hall-Littlewood
symmetric functions with nice algebraic properties.

2 The Monster knows about supersingular elliptic curves.

3 Umbral Moonshine Conjecture is true.
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