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Closely Related “Modular” Topics

I. Rogers-Ramanujan type modular units

—
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Ramanujan’s continued fraction

Famous Fact
The golden ratio is the algebraic integral unit
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Ramanujan’s continued fraction

Famous Fact
The golden ratio /s the algebraic integral unit

145 1
= f:1+71

¢ D 1+

==

as a root of x2 — x — 1.

Question
Is there a theory of special values for
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Ramanujan’s first letter to Hardy
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Hardy's reaction

“[These formulas] defeated me completely. . ..they could only be
written down by a mathematician of the highest class. They must
be true because no one would have the imagination to invent
them.”
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Rogers-Ramanujan

Theorem (Rogers, Ramanujan)
We have that

G(a) Z vkl ||
CI) n=0
M= S

- q”) n=0

1

(1 _ q5n+1)(1 q5n+4)’
1

(1 q5n+2)(1 q5n+3)’
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Rogers-Ramanujan

Theorem (Rogers, Ramanujan)
We have that

P 00 1

G(q Z 1 _ qn) nl—IO (1 _ q5n+1)(1 q5n+4)’
4 00 1

Hla) Z —q") HEIO (1—¢®m2)(1 - g>t3)’

and R(q) = H(q)/G(q).
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Ubiquity of the RR Identities

Number theory
Conformal field theory
K-theory

Kac-Moody Lie algebras
Knot theory

Probability theory

Statistical mechanics
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Ubiquity of the RR Identities

Number theory
Conformal field theory
K-theory

Kac-Moody Lie algebras
Knot theory

Probability theory

Statistical mechanics

Remark

RR identities = Lepowsky-Wilson program
...—> vertex operator theory —> Moonshine.
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Ramanujan’s Claim

Theorem (Berndt-Chan-Zhang (1996), Cais-Conrad (2006))
If T is a CM point, then

e27ri7-/5 . R(e27ri7—)

is an algebraic integral unit.
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Fundamental Problems

Problem 1
Is there a larger (and conceptual) framework of identities:

“Summatory g-series” = “Infinite product modular function”?
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Fundamental Problems

Problem 1
Is there a larger (and conceptual) framework of identities:

“Summatory g-series” = “Infinite product modular function”?

Problem 2
If so, do natural ratios generalize R(q) to give integral units? J
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Problem 1

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> @MPa(1,9,6%, ... 47

A
A1<m

= “Infinite product modular function”.
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Problem 1

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> @MPa(1,9,6%, ... 47

A
A1<m

= “Infinite product modular function”.

Remark
RR identities when m = n =1 and (a, b, c) = (1,2, -1),(2,2,-1).
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Integer Partitions

Definition
A partition is a nonincreasing sequence of positive integers

A= ()\1,)\2,...)

with finitely many non-zero terms.
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Integer Partitions

Definition
A partition is a nonincreasing sequence of positive integers

A= ()\1,)\2,...)

with finitely many non-zero terms.

Notation.
@ |[A:=A1+X+... (Sizeof \).
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Integer Partitions

Definition
A partition is a nonincreasing sequence of positive integers

A= ()\1,)\2,...)

with finitely many non-zero terms.

Notation.
@ |[A:=A1+X+... (Sizeof \).
@ /(A) := "number of parts".
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Integer Partitions

Definition
A partition is a nonincreasing sequence of positive integers

A= ()\1,)\2,...)

with finitely many non-zero terms.

Notation.
@ |[A:=A1+X+... (Sizeof \).
@ /(A) := "number of parts".
e For positive i we let m; := “"multiplicity” of size / parts.
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Integer Partitions

Definition
A partition is a nonincreasing sequence of positive integers

A= ()\1,)\2,...)

with finitely many non-zero terms.

Notation.
Al == A1+ X2+... (Size of \).

@ /(A) := "number of parts".
e For positive i we let m; := “"multiplicity” of size / parts.
e For n > I(\) we let mg := n— I(\).
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Hall-Littlewood symmetric polynomials

Definition
If X is a partition with /(A) < n, then let

A A1 N A
X7 I=X X X"

n o
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Hall-Littlewood symmetric polynomials

Definition
If X is a partition with /(A) < n, then let

= x1>‘1x2>‘2 . -X,),\",
and let .
(9)m,
w(a) =] v
i € S D i
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Hall-Littlewood symmetric polynomials

Definition
If X is a partition with /(A) < n, then let

R Y
and let .
(9)m,
va(q) == H o
i € S D i

The Hall-Littlewood polynomial is

oo LATES)

V/\(q) weS,




Rogers-Ramanujan and Umbral Moonshine
|. Framework of Rogers-Ramanujan identities
Answers

Example 1
For n > 1 we have

1— n—1 Xj — gX;
Poy(x1, %2, ..., Xni q) = % Z W<X12HX:—CLJJ>
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Example 1
For n > 1 we have

1—q)" 1! Xj — qX;
P(2)(X1,X2,...7Xn;q):((:)- Z W<X12 qj)

We find that

Piy(x1; q) = X
Py (x1,%2: @) = x{ + 5 + (1 — q)x1x2

Poy(x1,%2,X3:q) = x§ + %5 + x5 + (1 — q)(xax2 + x1x3 + x2x3)
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Example 1 (Continued)

Letting x1 = 1,x = q,x3 = q°, ..., we obtain

Pi)(1:q) =1
Pey(1,q:9) =1+q
Po)(1,q,¢%9)=1+q+q
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Example 1 (Continued)

Letting x1 = 1,x = q,x3 = q°, ..., we obtain
P(Q)(l; q) =1

Pey(1,q:9) =1+q
Po)(1,q,¢%9)=1+q+q

More generally, for every n > 1 we have

Po)(1,q,¢%...,q%q)=1+qg+q¢"+---+q".
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Answers

Example 1 (Continued)

@ For each n > 1 we have

Py(x1;- -, Xni q)

1
ﬁ(l"" Cdx

1—
> 2+ =+t x0)
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Example 1 (Continued)

@ For each n > 1 we have

Py(x1;- -, Xni q)

71+q 2

1_
T(X1+...+X§)_|_ 2q(X1+"'+Xn)2_

@ Make the identifications

(x1,x2,...) <— (1,q,q2,...)

X{+x3 4+ +x,
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Example 1 (Continued)

@ For each n > 1 we have

Py(x1;- -, Xni q)

14 1-—

@ Make the identifications

(x1,x2,...) <— (1,q,q2,...)
1

o This gives us

1+ 1— 1
(1+q) N q

2 . —
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Answers
Example 2
For n > 2 find that
¢ —q 2.2 2
Pooy(X1 ... Xni q) = — g (14 +x)°05 +-+x5)
3—3q+2 *+q+2
b I e )t e I 2 k22
24 38
f— >+
+ Lt )+ ) = T )

3
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Answers
Example 2
For n > 2 find that
¢ —q 2.2 2
Poay(x1....xniq) = — 2 (14 +x0)°0q + -+ xp)
3—3q+2 *+q+2
b I e )t e I 2 k22
24 8
-1 3 3 +q, .4 4
T a0+ ) = T )
Arguing as before gives:
2
q
P 1,9.¢%...;9)= — .
@2 )= 1=
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Hall-Littlewood g-series

Hall-Littlewood g-series

The g-series Px(1,q,q%,...;q") is defined by:
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Hall-Littlewood g-series

Hall-Littlewood g-series
The g-series Px(1,q,q%,...;q") is defined by:
© Express in Py(x1,...,xn;q") using




Rogers-Ramanujan and Umbral Moonshine
I. Framework of Rogers-Ramanujan identities
Answers

Hall-Littlewood g-series

Hall-Littlewood g-series
The g-series Px(1,q,q%,...;q") is defined by:
© Express in Py(x1,...,xn;q") using

@ Obtain Py(1,q,¢%,...;q") by replacing
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Problem 1

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> @MPa(1,9,6%, ... 47

A
A1<m

= “Infinite product modular function”.
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Problem 1

“Theorem” (Griffin-O-Warnaar)

There are four triples (a, b, ¢) such that for all m,n > 1 we have

> @MPa(1,9,6%, ... 47

A
A1<m

= “Infinite product modular function”.

Remark
RR identities when m = n =1 and (a, b, c) = (1,2, -1),(2,2,-1).
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Notation

Definition (Pochammer)

(3:9)k == (1 — a)(1 — aq) - - (1 — ag"“ 1),
and
0(a; q) := (3 9)oo(q/2: G)co-
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Notation

Definition (Pochammer)

(3:9)k == (1 — a)(1 — aq) - - (1 — ag"“ 1),
and
0(a; q) := (3 9)oo(q/2: G)co-

Remark
The 6(a; q) are “modular functions” studied by Kubert and Lang. J
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Answers

Theorem 1 (Griffin-O-Warnaar)
Ifm,n>1and k :=2m+ 2n+ 1, then

> dMPu(1,9,4% . g7

A
A1<m

(q qn)oo ‘Hg(qi—i-m;qn) H e(qj—i’qi—f—j—l; qn)
i=1

> @MPo(lq,6% . 7Y

A
A1<m

_ (9% q")5% _He(qi;qx) H 0, q"": q").

n
(q)oo i=1 1<i<j<n
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Easy to use Theorem 1

Example
If m= n =2, then we obtain Dyson’s favorite

€9 9n
A NS u €l
Z ql ‘P2>\(17q’q27"'vq3) —Hma
A n=1
A <2
and

> PMPo(l,9.¢% ... ¢%)

A
A<2

e n 1 9n 1)( 9n 8)
I;I(]-_q 1_q9n 4)(1_q9n 5)'
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Normalizations

Definition
For each of the four families, if m, n > 1, then let

S, pc(m,n;7) = q”a~b’f(m’”) Z qa"\|P2>\(1, q,9°,...; qb”+c).

A
A1<m
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Integrality properties

Theorem 2 (Griffin-O-Warnaar)
If T is a CM point, then the following are true:

© The singular value ®.(m, n; T) is a unit over Z[1/K].
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Integrality properties

Theorem 2 (Griffin-O-Warnaar)
If T is a CM point, then the following are true:

© The singular value ®.(m, n; T) is a unit over Z[1/K].

@ The ratio ®12 _1(m, n;7)/ P22 _1(m, n; T) is an integral unit.
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Integrality properties

Theorem 2 (Griffin-O-Warnaar)
If T is a CM point, then the following are true:

© The singular value ®.(m, n; T) is a unit over Z[1/K].

@ The ratio ®12 _1(m, n;7)/ P22 _1(m, n; T) is an integral unit.

Remark

Theorem 2 (2) is the g*/>R(q) result when m = n = 1. J
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Example when m=n =2
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Example when m=n =2

e For 7 =i/3 the first 100 terms give:

®151(2,2;i/3) = 0577350 - - - =

®2.-1(2,2;i/3) = 0.217005 . ..
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Example when m=n =2

e For 7 =i/3 the first 100 terms give:

2 1

1, 1(2,2;i/3) = 0.577350 - = —

1,2,-1( /3) N
®yp 1(2,2;i/3) = 0.217095. ..

@ They are not algebraic integers, but are roots of:

3x2 -1
39x18 _37.37x12 —2.39%9 1+ 23.3% . 17x0 —2.353 — 1.



Rogers-Ramanujan and Umbral Moonshine
I. Framework of Rogers-Ramanujan identities
Answers

Example when m=n =2

e For 7 =i/3 the first 100 terms give:

2 1

1, 1(2,2;i/3) = 0.577350 - = —

1,2,-1( /3) N
®yp 1(2,2;i/3) = 0.217095. ..

@ They are not algebraic integers, but are roots of:
3x2 -1

39x18 _37.37x12 —2.39%9 1+ 23.3% . 17x0 —2.353 — 1.

o By Theorem 2 (1), both /3®1,(2,2;i/3) are integral units.
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Example when m = n = 2 continued.

@ Which gives Theorem 3 (3) that
¢1727_1(2, 2; I'/3)/¢2,27_1(2, 2; 1/3) = 4.60627 ...

is an algebraic integral unit.



Rogers-Ramanujan and Umbral Moonshine
I. Framework of Rogers-Ramanujan identities
Answers

Example when m = n = 2 continued.

@ Which gives Theorem 3 (3) that
®151(2,2:1/3)/®20.-1(2,2;i/3) = 4.60627 . ..
is an algebraic integral unit.
o Indeed, ®15 1(2,2;i/3)/P22,-1(2,2;i/3) is a root of

x18 — 102x15 + 420x12 — 304x° — 93x°% + 6x3 + 1.
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Classical proof of RR

Theorem (G. N. Watson (1929))

")

(aq, aq/bc)n XN: (b,c,aq/de,q~"), ;
(ag/b,aq/c)n = (q,2q/d, aq/e, beg="/a),

_ Z 1-— aq (aa b7 c, d7 €, q_N)I‘ 2qN+2
1—a (q, aq/b,aq/c,aq/d,aq/e), bcde ’
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Proof of the RR identities

e Letting b, c,d, e, N — oo suitably gives...
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Proof of the RR identities

e Letting b, c,d, e, N — oo suitably gives...

Corollary (Rogers-Selberg Identity)

i q 1 i 1= aq2r . (a; q)r ( 1)r 2rq5( )+2r

79)r (a0 9)oc —~ 1-a (q:9)




Rogers-Ramanujan and Umbral Moonshine
I. Framework of Rogers-Ramanujan identities
Answers

Proof of the RR identities

e Letting b, c,d, e, N — oo suitably gives...

Corollary (Rogers-Selberg Identity)

i q 1 i 1= aq2r . (a; q)r ( 1)r 2rq5( )+2r

79)r (a0 9)oc —~ 1-a (q:9)

e Letting a =1, g on the LHS gives RR.
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Proof of the RR identities

e Letting b, c,d, e, N — oo suitably gives...

Corollary (Rogers-Selberg Identity)

i q 1 i 1= aq2r . (a; q)r ( 1)r 2rq5( )+2r

79)r (a0 9)oc —~ 1-a (q:9)

e Letting a =1, g on the LHS gives RR.

e What is the RHS when a=1,q7?
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Proof of the RR identities continued

Lemma (Jacobi Triple Product)

3 (-1)x"q6) = (g: ) - 6(x; q),

r=—o0
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Proof of the RR identities continued

Lemma (Jacobi Triple Product)

3 (-1)x"q6) = (g: ) - 6(x; q),

r=—o0

e Rogers-Selberg + JTP = RR. [
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Obtaining the framework

“Theorem” (Bartlett-Warnaar (2013))

There are “crazier” transformation, arising from Lie algebra root
systems, where

a <+ (x1,x2,...,Xn)
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Obtaining the framework

“Theorem” (Bartlett-Warnaar (2013))

There are “crazier” transformation, arising from Lie algebra root
systems, where

a <+ (x1,x2,...,Xn)

Remark
Their transformation laws make use of

n

Ac(x):=Ja-x) ] (&—x)x—1).

i=1 1<i<j<n
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Bartlett-Warnaar Transformation Law

Theorem 4.2 (C, Andrews transformation). For m a nonnegative integer and

N e Zn,
Ac(wg") L S (biwi, cemi)r, g \"
4.3 A bkt VAT B S
(4.3) OCTZ,_M Aclz) 11 H (gzi/be, qmifer)r, (bg(:,g)
*x i

(™ :c‘/.'l_!j, Tii)r. N
=1 (qai/a;, g™ ziz;)y,

n
1
= ]| (gzmj)n,
H - H,n (qzimi) w4,

ij=1 1<i<y
(gz: /@) N,
* Z H #H.}c(mr[r o (5q)
..... *57*131(;‘ ‘7'\'—1' =
m+1 o2 (bewiy comi) o)
q [Eaad| Edy CET )
x b;c (—) —_—
H {m’ £)r (-1 = |ri0 bece | Sy ey s

where r'% .= N and r™* =0,
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What next?

@ Make use of the added flexibility.
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What next?

@ Make use of the added flexibility.

@ Let parameters — oo and take a nonterminating limit.
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What next?

@ Make use of the added flexibility.
@ Let parameters — oo and take a nonterminating limit.

@ Analyze the RHS....using definition of Hall-Littlewood
polynomials.
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Theorem (Higher Rogers-Selberg Identity)

3" gMPs(xiq) = LR (x: q),

A
A1<m

where

Z A(c Xq

rezt
o Hxi2(m+1)r,-q(m+1)rl_2+n(f2i)‘ ﬁ (_ﬁ)n (Xin)ri )

i=1 i,j=l XJ (le'/XJ')"i
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Obtaining the framework

e It is easy to modify LHS for each theorem.
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Obtaining the framework

e It is easy to modify LHS for each theorem.

e Manipulating LES)(X; q) is difficult....requiring a complicated

recursive limiting argument.
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Obtaining the framework

e It is easy to modify LHS for each theorem.

e Manipulating LES)(X; q) is difficult....requiring a complicated

recursive limiting argument.
e Many pages of reformulations involving Macdonald identities for

p®,, B, DY,

n+1>

Weyl-Kac denominator formulas, and of course JTP. [
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[1. Monstrous and Umbral Moonshine
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Hint of moonshine

John McKay observed that

196884 = 1 + 196883
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John Thompson's generalizations

Thompson further observed:

196884
21493760
864299970

———
Coefficients of j(7)

14196883
14196883 + 21296876
141+ 196883 + 196883 + 21296876 + 842609326

Dimensions of irreducible representations of the Monster M
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John Thompson's generalizations

Thompson further observed:

196884 = 14196883
21493760 = 1+ 196883 + 21296876

864299970 = 1+ 1+ 196883 + 196883 + 21296876 + 842609326

—_———
Coefficients of j(7) Dimensions of irreducible representations of the Monster M

Definition
Klein's j-function

(e.9]

j(r)=744= 3 c(n)q"

n=-1

— g~ +196884q + 21493760g° + 864299970q° + . . ..

v
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The Monster characters

The character table for M (ordered by size) gives dimensions:

xi(e) =1

\o(e) = 196883
\a(e) = 21296876
Ya(e) = 842609326

X194(€e) = 258823477531055064045234375.
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Monster module

Conjecture (Thompson)

There is an infinite-dimensional graded module

vﬂ:évnh

n=-1

with

dim(V2) = c(n).
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The McKay-Thompson Series

Definition (Thompson)

Assuming the conjecture, if g € M, then define the
McKay—Thompson series

o0

Te(r) = t(g|Vi)a™

n=-—1




Rogers-Ramanujan and Umbral Moonshine
Il. Moonshine

Conway and Norton

Conjecture (Monstrous Moonshine)

For each g € M there is an explicit genus O discrete subgroup
g C SLa(R) for which T,(7) is the unique modular function with

Te(t) =g + 0(q).
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Borcherds' work

Theorem (Frenkel-Lepowsky—Meurman)

The moonshine module V! = @;’i_l V,-h, is a vertex operator

algebra of central charge 24 whose graded dimension is given by
J(7) — 744, and whose automorphism group is M.
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Borcherds' work

Theorem (Frenkel-Lepowsky—Meurman)

The moonshine module V! = @;’i_l V,-h, is a vertex operator
algebra of central charge 24 whose graded dimension is given by

J(7) — 744, and whose automorphism group is M.

Theorem (Borcherds)

The Monstrous Moonshine Conjecture is true. }
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The Monster and Supersingular elliptic curves

Theorem (Griess (1982))
The Monster group M exists. It has order

246.320 . 59.76.112.133.17.19.23.29.31-41-47-59-71.
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The Monster and Supersingular elliptic curves

Theorem (Griess (1982))
The Monster group M exists. It has order

246.320 . 59.76.112.133.17.19.23.29.31-41-47-59-71.

Theorem (Ogg, 1974)

Toutes les valuers supersinguliéres de j sont ¥, si, et seulement si

p € Oggss :==1{2,3,5,7,11,13,17,19,23,29,31,41, 47,59, 71}.
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Ogg's Jack Daniels Problem

Remargue 1. = Dans sa legon d'ouverture au Colldge de France, le 14 janvier 1975,
J. TITS mentionna le groupe de Fischer, "le monstre", qui, s'il existe, est un
groupe simple "sporadique™ d'ordre

2%,3% 59,76 .112.13%.17.19.23.29. 31.41.47.59.71 ,

i. e, divisible exactement par les quinze nombres premiers de la liste du corol-
laire, Une bouteille de Jack Daniels est offerte & celui qui expliguera cette
coIncidence.
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Ogg's Problem

Problem 1

Do order p elements in M know the FP supersingular j-invariants?
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Ogg's Problem

Problem 1
Do order p elements in M know the F,, supersingular j-invariants? J

Theorem (Dwork's Generating Function)

If p > 5 is prime, then

(i(r) — 744) | U(p) =
Ale) Boe)i(r) + Gole)
"X mma 2 T ogGmy o (mede)

a€SS, g(x)eSs;
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Answer to Problem 1

o If g € M and p is prime, then Moonshine implies that

Te+pTg | U(p) = Ter.
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Answer to Problem 1

o If g € M and p is prime, then Moonshine implies that
Tg+pTg | Ulp) = Tge.
@ And so if g has order p, then

T+ pTg | U(p) =j — 744.
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Answer to Problem 1

o If g € M and p is prime, then Moonshine implies that
Tg+pTg | Ulp) = Tge.
@ And so if g has order p, then
Te+pTe | Ulp) =) — 744,
@ Which implies that

Tg =j— 744 (mod p).
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Answer to Problem 1

o If g € M and p is prime, then Moonshine implies that
Tg+pTg | Ulp) = Tge.
@ And so if g has order p, then
T+ pTg | U(p) =j — 744.
@ Which implies that
Tg =j— 744 (mod p).
@ ....giving us Dwork’s generating function

Tg | U(p)=(j—744) | U(p) (mod p). O
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Ogg's Problem

Problem 2
If p & Oggss, then why do we expect p { #M? J
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Ogg's Problem

Problem 2
If p & Oggss, then why do we expect p { #M?

Answer

o By Ogg, if p & Oggss, then X, (p) has positive genus, and
there is no hauptmodul.
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Ogg's Problem

Problem 3
If p € Oggss, then why do we expect (a priori) that p | #M? }
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Ogg's Problem

Problem 3
If p € Oggss, then why do we expect (a priori) that p | #M?

Weak Answer
o Let hy(T) be the hauptmodul for T§ (p).
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Ogg's Problem

Problem 3
If p € Oggss, then why do we expect (a priori) that p | #M?

Weak Answer
o Let hy(T) be the hauptmodul for T§ (p).
o Hecke implies that h, | U(p) = (j — 744) | U(p) (mod p).
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Ogg's Problem

Problem 3
If p € Oggss, then why do we expect (a priori) that p | #M?

Weak Answer
o Let hy(T) be the hauptmodul for T§ (p).
o Hecke implies that h, | U(p) = (j — 744) | U(p) (mod p).
o Implies j'(hp | U(p)) € Sp+1(1) (mod p).
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Ogg's Problem

Problem 3
If p € Oggss, then why do we expect (a priori) that p | #M?

Weak Answer
o Let hy(T) be the hauptmodul for T§ (p).
o Hecke implies that h, | U(p) = (j — 744) | U(p) (mod p).
o Implies j'(hp | U(p)) € Sp+1(1) (mod p).
e Moonshine “implies” j'(h, | U(p)) comes from ©'s.
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Ogg's Problem

Problem 3
If p € Oggss, then why do we expect (a priori) that p | #M?

Weak Answer
o Let hy(T) be the hauptmodul for T§ (p).
o Hecke implies that h, | U(p) = (j — 744) | U(p) (mod p).
o Implies j'(hp | U(p)) € Sp+1(1) (mod p).
e Moonshine “implies” j'(h, | U(p)) comes from ©'s.
e But Serre implies j'(hp | U(p)) € S2(p) (mod p).
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Ogg's Problem

Problem 3
If p € Oggss, then why do we expect (a priori) that p | #M?

Weak Answer

Let hy(7) be the hauptmodul for T'{(p).

Hecke implies that h, | U(p) = (j — 744) | U(p) (mod p).
Implies j'(hp | U(p)) € Sp+1(1) (mod p).

Moonshine “implies” j'(h, | U(p)) comes from ©'s.

But Serre implies j'(hp | U(p)) € S2(p) (mod p).

Pizer proved ©'s from quaternion alg’s suffice iff p € Oggss.

(]
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Recent moonshine

Observation (Eguchi, Ooguri, Tachikawa (2010))

Using the K3 surface elliptic genus, there is a mock modular form

H(r) = q~& (=2 + 45q + 231¢> + 770% + 2277¢* + 5796 + ...)
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Recent moonshine

Observation (Eguchi, Ooguri, Tachikawa (2010))

Using the K3 surface elliptic genus, there is a mock modular form
_1 2 3 4 5

H(r) = g & (=2 +45q + 231¢> + 770q> + 2277q" + 5796¢° + ...)

The degrees of the irreducible repn’s of the Mathieu group M4 are:

1,23,45,231, 252, 253, 483, 770, 990, 1035,
1265, 1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395.

o
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Mathieu Moonshine

Theorem (Gannon (2013))

There is an infinite dimensional graded Mo4-module whose
McKay-Thompson series are specific mock modular forms.
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Mathieu Moonshine

Theorem (Gannon (2013))

There is an infinite dimensional graded Mo4-module whose
McKay-Thompson series are specific mock modular forms.

Remark

There are well known connections with even unimodular positive
definite rank 24 lattices:

Myy <+— A%“ lattice.
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Conjecture (Cheng, Duncan, Harvey (2013))

Let LX (up to isomorphism) be an even unimodular
positive-definite rank 24 lattice, and let :

@ X be the corresponding ADE-type root system.
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Conjecture (Cheng, Duncan, Harvey (2013))

Let LX (up to isomorphism) be an even unimodular
positive-definite rank 24 lattice, and let :

@ X be the corresponding ADE-type root system.
o WX the Weyl group of X.
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Conjecture (Cheng, Duncan, Harvey (2013))

Let LX (up to isomorphism) be an even unimodular
positive-definite rank 24 lattice, and let :

@ X be the corresponding ADE-type root system.
o WX the Weyl group of X.
o The umbral group GX := Aut(LX)/WX.
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Conjecture (Cheng, Duncan, Harvey (2013))

Let LX (up to isomorphism) be an even unimodular
positive-definite rank 24 lattice, and let :

@ X be the corresponding ADE-type root system.
o WX the Weyl group of X.
o The umbral group GX := Aut(LX)/WX.

o For each g € GX let Hgf(r) be a specific mock modular
form with “minimal principal parts”.
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Conjecture (Cheng, Duncan, Harvey (2013))

Let LX (up to isomorphism) be an even unimodular
positive-definite rank 24 lattice, and let :

@ X be the corresponding ADE-type root system.
o WX the Weyl group of X.
o The umbral group GX := Aut(LX)/WX.

o For each g € GX let Hgf(r) be a specific mock modular
form with “minimal principal parts”.

Then there is an infinite dimensional graded GX module KX for
which Hgf(T) is the McKay-Thompson series for g.
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What are mock modular forms?

Notation. Throughout, let

T=x+iy € H with x,y € R.
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What are mock modular forms?

Notation. Throughout, let

T=x+iy e H with x,y € R.

Hyperbolic Laplacian.

0? 0? 0 0
Aii=y <8x2 + 8y2> iky (ax + Iﬁy) ’
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Harmonic Maass forms

Definition
A harmonic Maass form of weight k on a subgroup I C SLy(7Z) is
any smooth function M : H — C satisfying:
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Harmonic Maass forms

Definition
A harmonic Maass form of weight k on a subgroup I C SLy(7Z) is
any smooth function M : H — C satisfying:

o ForaIIA:(gg)EFandeH,wehave

M<3T+b
cTt +d

) = (cz + d)* M(7).
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Harmonic Maass forms

Definition
A harmonic Maass form of weight k on a subgroup I C SLy(7Z) is
any smooth function M : H — C satisfying:

o ForaIIA:(gg)EFandeH,wehave

M<3T+b

p— d) = (cz + d)* M(7).

@ We have that AyM = 0.
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Fourier expansions

Fundamental Lemma

If M € Hy_x and T(a, x) is the incomplete I -function, then

M(r)= Y c*(n)q"+ ) c (ml(k—1,4r|nly)q".

n>>—oo n<0

! 0

Mock modular form M Nonholomorphic part M~

v
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Fourier expansions

Fundamental Lemma

If M € Hy_x and T(a, x) is the incomplete I -function, then

M(r)= Y c*(n)q"+ ) c (ml(k—1,4r|nly)q".

n>>>—00 n<0
0 !
Mock modular form M Nonholomorphic part M~

v

Remark

If € := 2iy>~* L then the shadow of M is & (M) € Sy.

’
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Our results....

Theorem (Duncan, Griffin, Ono)
The Umbral Moonshine Conjecture is true. }
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Our results....

Theorem (Duncan, Griffin, Ono)
The Umbral Moonshine Conjecture is true. }

Remark

This result is a “numerical proof”. It is analogous to the work of
Atkin, Fong and Smith in the case of monstrous moonshine.
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Beautiful examples

Example

For M1 the MT series include Ramanujan’s mock thetas:

n2

= q
Q=1+ 2 P P P

n2

> q

n?

— . q
X(q)—1+nz_;(1_q+q2)(1_q2+q4)...(1_qn+q2n)
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Strategy of Proof
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Strategy of Proof

For each X we compute non-negative integers mX(n) for which

KX = i > mE(n)Vy,.

n=-1 xi
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7(7)

@ Define the weight 1/2 harmonic Maass form

TX(r) == ‘Gl S @ HX (7).

’gEGX
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7(7)

@ Define the weight 1/2 harmonic Maass form

TX(r) == ‘Gl S @ HX (7).

’gEGX

@ We have that

Té(T) = “period integral of a ©-function” + Z mX(n)q".

n=-1
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7(7)

@ Define the weight 1/2 harmonic Maass form

TX(r) =

@ We have that

Té(T) = “period integral of a ©-function” + Z mX(n)q".

n=-—1

@ Method of holomorphic projection gives:

Thol - Hi — I\Nﬂg = {wgt 2 quasimodular forms}.
2
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Holomorphic projection
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Holomorphic projection

Definition

Let f be a wgt k > 2 (not necessarily holomorphic) modular form

f(r) =2 ar(ny)q".

nez

Then its holomorphic projection is
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Holomorphic projection

Definition
Let f be a wgt k > 2 (not necessarily holomorphic) modular form

= Z af(”?)/)q

nez

Then its holomorphic projection is

(mhotF)(7) = (mhey F)(7) = co + Z
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Holomorphic projection

Definition

Let f be a wgt k > 2 (not necessarily holomorphic) modular form

= Z af(”?)/)q

nez

Then its holomorphic projection is

(mhotF)(7) = (mhey F)(7) = co + Z

where for n > 0 we have

n k—1 00
c(n) = ((4/(_)2)|/0 af(n,y)e_47r”yyk_2dy.
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Holomorphic projection continued

Fundamental Lemma

If f is a wgt k > 2 nonholomorphic modular form on T'o(N), then
the following are true.
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Holomorphic projection continued

Fundamental Lemma

If f is a wgt k > 2 nonholomorphic modular form on T'o(N), then
the following are true.

@ If f is holomorphic, then py(f) = f(7).
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Holomorphic projection continued

Fundamental Lemma

If f is a wgt k > 2 nonholomorphic modular form on T'o(N), then
the following are true.

@ If f is holomorphic, then mpo(f) = f(7).
@ The function mho(f) lies in the space My (Fo(N)).




Rogers-Ramanujan and Umbral Moonshine
1. Moonshine
Sketch of the proof

Holomorphic projection continued

Fundamental Lemma

If f is a wgt k > 2 nonholomorphic modular form on T'o(N), then
the following are true.

@ If f is holomorphic, then mpo(f) = f(7).
@ The function mho(f) lies in the space My (Fo(N)).

Remark

Holomorphic projections appeared earlier in works of Sturm, and
Gross-Zagier, and work of Imamoglu, Raum, and Richter, Mertens,
and Zwegers in connection with mock modular forms.
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Sketch of the proof of umbral moonshine

e Compute each wgt 1/2 harmonic Maass form Té(T).
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Sketch of the proof of umbral moonshine

e Compute each wgt 1/2 harmonic Maass form Té(T).

@ Compute holomorphic projections of products with shadows.
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Sketch of the proof of umbral moonshine

e Compute each wgt 1/2 harmonic Maass form Té(T).

@ Compute holomorphic projections of products with shadows.

@ The m;,(n) are integers iff these holomorphic projections

satisfy certain congruences.
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Sketch of the proof of umbral moonshine

e Compute each wgt 1/2 harmonic Maass form Té(T).

@ Compute holomorphic projections of products with shadows.

@ The m;,(n) are integers iff these holomorphic projections
satisfy certain congruences.
e The mfé_(n) can be estimated using “infinite sums” of

Kloosterman sums weighted by /-Bessel functions.
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Sketch of the proof of umbral moonshine

e Compute each wgt 1/2 harmonic Maass form Té(T).

@ Compute holomorphic projections of products with shadows.

@ The m;,(n) are integers iff these holomorphic projections

satisfy certain congruences.

e The mfé_(n) can be estimated using “infinite sums” of

Kloosterman sums weighted by /-Bessel functions. For
sufficiently large n this establishes non-negativity.
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Sketch of the proof of umbral moonshine

e Compute each wgt 1/2 harmonic Maass form Té(T).
@ Compute holomorphic projections of products with shadows.

@ The m;,(n) are integers iff these holomorphic projections
satisfy certain congruences.

e The mfé_(n) can be estimated using “infinite sums” of
Kloosterman sums weighted by /-Bessel functions. For
sufficiently large n this establishes non-negativity.

@ Check the finitely many (less than 400) cases directly.
L]
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Executive Summary

© Framework of RR identities arising from Hall-Littlewood
symmetric functions with nice algebraic properties.
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Executive Summary

© Framework of RR identities arising from Hall-Littlewood
symmetric functions with nice algebraic properties.

@ The Monster knows about supersingular elliptic curves.



Rogers-Ramanujan and Umbral Moonshine
Il. Moonshine
Sketch of the proof

Executive Summary

© Framework of RR identities arising from Hall-Littlewood
symmetric functions with nice algebraic properties.

@ The Monster knows about supersingular elliptic curves.

© Umbral Moonshine Conjecture is true.
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