Fricke S-duality and BPS-state counting

Daniel Persson Chalmers University of Technology

"New Moonshines, Mock Modular Forms and String Theory" LMS - EPSRC Durham Symposium, August 11, 2015

Talk based on: **[arXiv:1504.07260] (w/ R. Volpato)** [arXiv:1312.0622] (w/ R.Volpato) [arXiv:1302.5425] (w/ M. Gaberdiel, & R.Volpato) [arXiv:1211.7074] (w/ M. Gaberdiel, H. Ronellenfitsch, R.Volpato) Moonshine conjecture (Conway-Norton): The McKay-Thompson series are modular-invariant under some genus zero $\Gamma_g \subset SL(2,\mathbb{R})$

 Γ_g genus zero \longleftrightarrow $\Gamma_g \backslash \mathbb{H} \sim$

$$\begin{array}{l} \text{Moonshine conjecture (Conway-Norton): The McKay-Thompson}\\ \text{series are modular-invariant under some genus zero} \quad \Gamma_g \subset SL(2,\mathbb{R}) \end{array}$$

$$\Gamma_g \text{ genus zero} \quad \longleftarrow \quad \Gamma_g \backslash \mathbb{H} \sim \bigcirc$$

$$\Gamma_g = \langle \Gamma_0(N), W_N \rangle \qquad N = \mathcal{O}(g)$$

$$\begin{array}{l} \text{Moonshine conjecture (Conway-Norton): The McKay-Thompson}\\ \text{series are modular-invariant under some genus zero } \Gamma_g \subset SL(2,\mathbb{R}) \end{array}$$

$$\Gamma_g \text{ genus zero } \qquad \longleftarrow \qquad \Gamma_g \backslash \mathbb{H} \sim \bigcirc$$

$$\Gamma_g = \langle \Gamma_0(N), W_N \rangle \qquad N = \mathcal{O}(g)$$

subgroup that preserves the twisted boundary conditions in the CFT

$$\begin{array}{l} \text{Moonshine conjecture (Conway-Norton): The McKay-Thompson}\\ \text{series are modular-invariant under some genus zero} \quad \Gamma_g \subset SL(2,\mathbb{R}) \end{array}$$

$$\Gamma_g \text{ genus zero} \quad \longleftrightarrow \quad \Gamma_g \backslash \mathbb{H} \sim \bigcirc$$

$$\Gamma_g = \langle \Gamma_0(N), W_N \rangle \qquad N = \mathcal{O}(g)$$

$$\Gamma_0(N) \subset SL(2, \mathbb{Z})$$
$$W_N : \tau \to -\frac{1}{N\tau}$$

subgroup that preserves the twisted boundary conditions in the CFT

Fricke involution

no CFT understanding of this

$$\begin{array}{l} \text{Moonshine conjecture (Conway-Norton): The McKay-Thompson}\\ \text{series are modular-invariant under some genus zero} \quad \Gamma_g \subset SL(2,\mathbb{R}) \end{array}$$

$$\Gamma_g \text{ genus zero} \quad \longleftarrow \quad \Gamma_g \backslash \mathbb{H} \sim \bigcirc$$

$$\Gamma_g = \langle \Gamma_0(N), W_N \rangle \qquad N = \mathcal{O}(g)$$

$$\Gamma_0(N) \subset SL(2,\mathbb{Z})$$
$$W_N: \tau \to -\frac{1}{N\tau}$$

subgroup that preserves the twisted boundary conditions in the CFT

Fricke involution

no CFT understanding of this

This is a big remaining mystery of monstrous moonshine!

Is there any situation in string theory where we have discrete "S-duality symmetries"

$\Gamma \subset SL(2,\mathbb{R})$

but which lie outside of $SL(2,\mathbb{Z})$?

In our earlier work we defined a class of functions on the Siegel upper half plane:

$$\Phi_{g,h}:\mathbb{H}^{(2)}\to\mathbb{C}$$

for each commuting pair $g,h\in M_{24}$ $\Phi_{g,h}$

In our earlier work we defined a class of functions on the Siegel upper half plane:

$$\Phi_{g,h}:\mathbb{H}^{(2)}\to\mathbb{C}$$

for each commuting pair $g,h\in M_{24}$ $\Phi_{g,h}$

Theorem (D.P.-Volpato): The functions $\Phi_{g,h}$ are Siegel modular forms for certain (para-modular) subgroups $\Gamma_{g,h}^{(2)} \subset Sp(4,\mathbb{R})$

(this generalises earlier works by [Cheng][Westerholt-Raum])

In our earlier work we defined a class of functions on the Siegel upper half plane:

$$\Phi_{g,h}:\mathbb{H}^{(2)}\to\mathbb{C}$$

for each commuting pair $g,h\in M_{24}$ $\Phi_{g,h}$

Theorem (D.P.-Volpato): The functions $\Phi_{g,h}$ are Siegel modular forms for certain (para-modular) subgroups $\Gamma_{g,h}^{(2)} \subset Sp(4,\mathbb{R})$

(this generalises earlier works by [Cheng][Westerholt-Raum])

What is the physical interpretation of these Siegel modular forms?

For (g,h) = (1,1) we obtain

$$q = e^{2\pi i\tau}, y = e^{2\pi iz}$$

$$\Phi_{1,1} = \Phi_{10} = pqy \prod_{(m,n,\ell)>0} (1 - p^m q^n y^\ell)^{c(mn,\ell)}$$

$$\Phi_{1,1} = \Phi_{10} = pqy \prod_{(m,n,\ell)>0} (1 - p^m q^n y^\ell)^{c(mn,\ell)}$$

$$\chi(K3;\tau,z) = \sum_{n \ge 0, \ell \in \mathbb{Z}} c(n,\ell) q^n y^\ell$$

$$\Phi_{1,1} = \Phi_{10} = pqy \prod_{(m,n,\ell)>0} (1 - p^m q^n y^\ell)^{c(mn,\ell)}$$

The 'lgusa cusp form' Φ_{10} is the generating function of I/4 BPS-states in N=4 string theory: [Dijkgraaf, Verlinde, Verlinde][Shih, Strominger, Yin]

$$\frac{1}{\Phi_{10}} = \sum_{Q^2/2, P^2/2, P \cdot Q \in \mathbb{Z}} B_6(P, Q) p^{Q^2/2} q^{P^2/2} y^{P \cdot Q}$$

$$\Phi_{1,1} = \Phi_{10} = pqy \prod_{(m,n,\ell)>0} (1 - p^m q^n y^\ell)^{c(mn,\ell)}$$

The 'lgusa cusp form' Φ_{10} is the generating function of I/4 BPS-states in N=4 string theory: [Dijkgraaf, Verlinde, Verlinde][Shih, Strominger, Yin]

$$\frac{1}{\Phi_{10}} = \sum_{Q^2/2, P^2/2, P \cdot Q \in \mathbb{Z}} B_6(P,Q) p^{Q^2/2} q^{P^2/2} y^{P \cdot Q}$$

electric-magnetic charges

$$(Q,P) \in \Gamma^{6,22} \oplus \Gamma^{6,22}$$

$$\Phi_{1,1} = \Phi_{10} = pqy \prod_{(m,n,\ell)>0} (1 - p^m q^n y^\ell)^{c(mn,\ell)}$$

The 'lgusa cusp form' Φ_{10} is the generating function of I/4 BPS-states in N=4 string theory: [Dijkgraaf, Verlinde, Verlinde][Shih, Strominger, Yin]

$$\frac{1}{\Phi_{10}} = \sum_{Q^2/2, P^2/2, P \cdot Q \in \mathbb{Z}} B_6(P, Q) p^{Q^2/2} q^{P^2/2} y^{P \cdot Q}$$

where the coefficients encode the sixth helicity supertrace: [Kiritsis]

$$B_6(P,Q) := \frac{1}{6!} \operatorname{Tr}_{\mathcal{H}_{P,Q}} \left((-1)^J (2J)^6 \right) \qquad \qquad J = \operatorname{helicity}$$

Conjecture (Cheng, Govindarajan, DP-Volpato): The Siegel modular forms $\Phi_{g,h}$ count 'twisted dyons' in N=4 orbifolds by the symmetry g (CHL-models) **Conjecture** (Cheng, Govindarajan, DP-Volpato): The Siegel modular forms $\Phi_{g,h}$ count 'twisted dyons' in N=4 orbifolds by the symmetry g (CHL-models)

The curious modular property

$$N = \mathcal{O}(g)$$

$$\Phi_{g,h}(\sigma,\tau,z) = \Phi_{g,h'}(\tau/N,N\sigma,z)$$

then suggests a new 'electric-magnetic duality' in CHL-models:

$$\left(\begin{array}{c}Q\\P\end{array}\right)\longmapsto\left(\begin{array}{c}\frac{1}{\sqrt{N}}P\\-\sqrt{N}Q\end{array}\right)$$

Conjecture (Cheng, Govindarajan, DP-Volpato): The Siegel modular forms $\Phi_{g,h}$ count 'twisted dyons' in N=4 orbifolds by the symmetry g (CHL-models)

The curious modular property

$$N = \mathcal{O}(g)$$

$$\Phi_{g,h}(\sigma,\tau,z) = \Phi_{g,h'}(\tau/N,N\sigma,z)$$

then suggests a new 'electric-magnetic duality' in CHL-models:

$$\left(\begin{array}{c}Q\\P\end{array}\right)\longmapsto\left(\begin{array}{c}\frac{1}{\sqrt{N}}P\\-\sqrt{N}Q\end{array}\right)$$

In this talk I will show that this is a consequence of a novel Fricke S-duality in CHL-models!

I. Fricke S-duality in CHL-models

$\mathcal{N} = 4$ string theory

$\mathcal{N}=4\,$ string theory

$$\operatorname{Het}/T^6 \longleftrightarrow \operatorname{IIA}/K3 \times T^2 \longleftrightarrow \operatorname{IIB}/K3 \times T^2$$

- Gauge group is generically $U(1)^{28}$
- Electric-magnetic charges $(P,Q) \in \Gamma = \Gamma^{6,22} \oplus \Gamma^{6,22}$
- Duality group $SL(2,\mathbb{Z}) \times O(6,22;\mathbb{Z})$
- Moduli space

 $SL(2,\mathbb{Z})\backslash SL(2,\mathbb{Z})/SO(2) \times O(6,22;\mathbb{Z})\backslash O(6,22;\mathbb{R})/(O(6) \times O(22))$

Consider IIA/ $K3 \times T^2$ and orbifold this theory by (g, δ) :

Consider IIA/ $K3 \times T^2$ and orbifold this theory by (g, δ) :

 $\blacklozenge \delta$ a shift of order N along T^2

Consider IIA/ $K3 \times T^2$ and orbifold this theory by (g, δ) :

$$ightarrow \delta\,$$
 a shift of order N along T^2

 $\Rightarrow g \in O(\Gamma^{4,20})$ a symmetry of the K3 non-linear sigma model:

— which has order N

- preserves all spacetime supersymmetries
- exists at generic points where the gauge group is $U(1)^{28}$

Consider IIA/ $K3 \times T^2$ and orbifold this theory by (g, δ) :

$$ightarrow\delta\,$$
 a shift of order N along T^2

 $\Rightarrow g \in O(\Gamma^{4,20})$ a symmetry of the K3 non-linear sigma model:

— which has order N

- preserves all spacetime supersymmetries
- exists at generic points where the gauge group is $U(1)^{28}$

This construction yields a class of 4d $\mathcal{N}=4$ string theories

[Chaudhuri, Hockney, Lykken][Chaudhuri, Lowe]

$$\operatorname{Het} / \frac{T^4 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIA} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIB} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle}$$

$$\operatorname{Het} / \frac{T^4 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIA} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIB} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle}$$

• At least 3 moduli in each sector:

Heterotic: $S_{\rm het}$ $T_{\rm het}$ $U_{\rm het}$

$$\operatorname{Het} / \frac{T^4 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIA} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIB} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle}$$

• At least 3 moduli in each sector:

$$\operatorname{Het} / \frac{T^4 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIA} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIB} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle}$$

• At least 3 moduli in each sector:

Heterotic: $S_{\rm het}$ $T_{\rm het}$ $U_{\rm het}$

$$\operatorname{Het} / \frac{T^4 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIA} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIB} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle}$$

• At least 3 moduli in each sector:

$$\operatorname{Het} / \frac{T^4 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIA} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle} \longleftrightarrow \operatorname{IIB} / \frac{K3 \times T^2}{\langle (g, \delta) \rangle}$$

• At least 3 moduli in each sector:

• The S-duality group $SL(2,\mathbb{Z})$ is broken to

$$\Gamma_1(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL(2,\mathbb{Z}) \mid a \equiv 1 \mod N, c \equiv 0 \mod N \right\}$$

Classification of CHL-models

All symmetries of K3 sigma models have been classified by Gaberdiel, Hohenegger, Volpato:

Each $g \in O(\Gamma^{4,20})$ that preserves the sigma model corresponds to an element of the Conway group Co_0

Classification of CHL-models

All symmetries of K3 sigma models have been classified by Gaberdiel, Hohenegger, Volpato:

Each $g \in O(\Gamma^{4,20})$ that preserves the sigma model corresponds to an element of the Conway group Co_0

This implies that inequivalent CHL-models are characterised by the eigenvalues of g in the defining 24-dimensional reps of Co_0

Classification of CHL-models

All symmetries of K3 sigma models have been classified by Gaberdiel, Hohenegger, Volpato:

Each $g \in O(\Gamma^{4,20})$ that preserves the sigma model corresponds to an element of the Conway group Co_0

This implies that inequivalent CHL-models are characterised by the eigenvalues of g in the defining 24-dimensional reps of Co_0

Frame shape:
$$g \leftrightarrow \prod_{a|N} a^{m(a)}$$
 where $\sum_{a|N} am(a) = 24$

Ex: $g = \text{identity} \leftrightarrow 1^{24}$ product of 24 identity permutations

The orbifold groups $\langle (\delta,g)\rangle$ are defined up to $\,O(\Gamma^{6,22})\text{-conjugation}$

The orbifold groups $\langle (\delta,g) \rangle$ are defined up to $O(\Gamma^{6,22})$ -conjugation

$\mathrm{IIA} / \frac{K3 \times T^2}{\langle (\delta, a) \rangle}$

 $T^2 = S^1 \times \tilde{S}^1$

special circle on which δ acts by an order $N\,$ shift

(similar to earlier work by Vafa in the non-compact setting)

3 possible cases

The image of the Fricke T-duality is a non-linear sigma model \mathcal{C}'

Compute the Witten index (Euler characteristic):

$$I^{\mathcal{C}'} = \operatorname{Tr}_{\mathcal{C}'}(-1)^{F_L + F_R}$$

3 possible cases

The image of the Fricke T-duality is a non-linear sigma model C'Compute the Witten index (Euler characteristic):

$$I^{\mathcal{C}'} = \operatorname{Tr}_{\mathcal{C}'}(-1)^{F_L + F_R} = \sum_{a|N} m(a/N)a$$

Non-linear sigma model on K3: $I^{\mathcal{C}'} = 24$

Non-linear sigma model on T^4 : $I^{\mathcal{C}'} = 0$

3 possible cases

The image of the Fricke T-duality is a non-linear sigma model C'Compute the Witten index (Euler characteristic):

$$I^{\mathcal{C}'} = \operatorname{Tr}_{\mathcal{C}'}(-1)^{F_L + F_R} = \sum_{a|N} m(a/N)a$$

We find 3 possibilities

$$\bullet \ I^{\mathcal{C}'} = 24 \ \ {\rm and} \ \ (g,g') \ {\rm have the same Frame shape}$$

• $I^{\mathcal{C}'} = 24$ and (g,g') have different Frame shapes

• $I^{\mathcal{C}'} = 0$

Case I

Frame shape is **balanced**: m(a) = m(N/a)

The CHL-model is self-dual under Fricke T-duality: $T_{\text{IIA}} \rightarrow -\frac{1}{NT_{\text{TTA}}}$

In the heterotic picture this yields a new Fricke S-duality

$$S_{\rm het} \rightarrow -\frac{1}{NS_{\rm het}}$$

This is a new symmetry of CHL-models which lies outside of the $SL(2,\mathbb{Z})$ -symmetry of the parent theory Het/T^6 !

Case 1 (self-dual)

Case 2 (non-self-dual)

Case 3 (non-self-dual)

Electric-magnetic duality and N-modularity

Consider now the **self-dual case**. The full **S-duality group** is

$$\Gamma_g = \left\langle \Gamma_0(N), \begin{pmatrix} 0 & -1/\sqrt{N} \\ \sqrt{N} & 0 \end{pmatrix} \right\rangle$$

This acts by:

Restricting to the Fricke part we find

$$\left(\begin{array}{c}Q\\P\end{array}\right) \rightarrow \left(\begin{array}{c}\frac{1}{\sqrt{N}}Q\\-\sqrt{N}P\end{array}\right)$$

As a consequence the charge lattices $\ \Gamma = \Gamma_e \oplus \Gamma_m$ must satisfy

$$\Gamma_m \cong \sqrt{N} \Gamma_e$$

But we also have $\[Gamma]_m \cong \Gamma_e^*$ which yields

$$\Gamma_e^* \cong \sqrt{N} \Gamma_e$$

N-modular

This is a non-trivial prediction of Fricke S-duality!

3. BPS-state counting

Counting of Dabholkar-Harvey states

 Het/T^6 has a set of I/2 BPS-states corresponding to right-moving ground states and arbitrary left-moving excitations

Counting of Dabholkar-Harvey states

 ${\rm Het}/T^6$ has a set of I/2 BPS-states corresponding to right-moving ground states and arbitrary left-moving excitations

These can be taken to have purely electric charges $Q\in\Gamma^{6,22}$

Counting of Dabholkar-Harvey states

 ${\rm Het}/T^6$ has a set of I/2 BPS-states corresponding to right-moving ground states and arbitrary left-moving excitations

These can be taken to have purely electric charges $Q \in \Gamma^{6,22}$ The degeneracy $\Omega(Q)$ of such states is captured by

$$\frac{1}{\Delta(\tau)} = \frac{1}{\eta(\tau)^{24}} = \sum_{n \in \mathbb{Z}} d(n)q^n$$

$$\Omega(Q) = d(Q^2/2)$$

 $\Omega(Q) = d(Q^2/2)$

In the type IIB picture these correspond to certain bound states of D0-D4-NS5-branes on $K3 \times T^2$ with momentum along the torus.

These are 'small black holes' with zero classical entropy:

$$\log \Omega(Q) \sim 4\pi \sqrt{Q^2}$$

Topological BPS-couplings

In general, I/2 BPS-states in $\mathcal{N} = 4$ theories are counted by the **4th helicity supertrace**: [Kiritsis]

$$B_4 = \operatorname{Tr}(-1)^F J^4 \qquad \qquad J = \text{helicity}$$

Topological BPS-couplings

In general, I/2 BPS-states in $\mathcal{N} = 4$ theories are counted by the **4th helicity supertrace**: [Kiritsis]

$$B_4 = \operatorname{Tr}(-1)^F J^4 \qquad \qquad J = \text{helicity}$$

In $IIA/K3 \times T^2$ this determines the topological 1-loop amplitude:

$$F_1 = \int_{SL(2,\mathbb{Z})\backslash\mathbb{H}} \frac{d^2\tau}{\tau_2} B_4(T,U)$$

$$= \log(T_2^{24} |\Delta(T)|^4) + \log(U_2^{24} |\Delta(U)|^4) + \text{const}$$

[Harvey, Moore]

$$F_1 = \log(T_2^{24} |\Delta(T)|^4) + \log(U_2^{24} |\Delta(U)|^4) + \text{const}$$

Notice that the discriminant $\,\Delta\,$ now appears as a function of the spacetime moduli (T,U) rather than the worldsheet $\,\tau\,$

$$F_1 = \log(T_2^{24} |\Delta(T)|^4) + \log(U_2^{24} |\Delta(U)|^4) + \text{const}$$

Notice that the discriminant $\,\Delta\,$ now appears as a function of the spacetime moduli (T,U) rather than the worldsheet $\,\tau\,$

This is not a coincidence but follows from the OSV-conjecture:

$$Z_{CFT} = Z_{BH} = |Z_{top}|^2$$

which requires a particular identification of worldsheet and spacetime variables. In the case at hand we indeed have:

$$Z_{CFT}(\tau) = \frac{1}{\Delta(\tau)} \qquad \qquad Z_{BH}(T) = e^{F_1^{hol}(T)} = e^{-\log \Delta(T)}$$

which coincide provided we identify $\ \tau = T$

[Ooguri, Strominger, Vafa] [Dabholkar] [Dabholkar, Denef, Moore, Pioline]

In general the n:th helicity supertraces can be calculated via: [Kiritsis]

$$B_n = \left(\frac{1}{2\pi i}\frac{\partial}{\partial v} + \frac{1}{2\pi i}\frac{\partial}{\partial \bar{v}}\right)^n Z(v,\bar{v})\Big|_{v=\bar{v}=0}$$

where the generating function is defined by

$$Z(v,\bar{v}) = \text{Tr}(-1)^F e^{2\pi i v J_3^R} e^{2\pi i \bar{v} J_3^L} q^{L_0} \bar{q}^{\bar{L}_0}$$

For the type IIA CHL-model $\operatorname{IIA}/\frac{K3 \times T^2}{\langle (\delta,g) \rangle}$ with Frame shape

$$g \leftrightarrow \prod_{a|N} a^{m(a)}$$

For the type IIA CHL-model $\operatorname{IIA}/\frac{K3 \times T^2}{\langle (\delta,g) \rangle}$ with Frame shape $g \leftrightarrow \prod_{a|N} a^{m(a)}$

we show that the 4:th helicity supertrace counting 1/2 BPS states is

$$B_4^{[g]} = \sum_{a|N} m(a)\Theta_{\Gamma^{2,2}}(aT, aU)$$

For the type IIA CHL-model $IIA/\frac{K3 \times T^2}{\langle (\delta,g) \rangle}$ with Frame shape $g \leftrightarrow \prod_{a|N} a^{m(a)}$

we show that the 4:th helicity supertrace counting 1/2 BPS states is

$$B_4^{[g]} = \sum_{a|N} m(a) \Theta_{\Gamma^{2,2}}(aT, aU)$$

Siegel-Narain theta function for the lattice $\Gamma^{2,2}$

The associated 1/2 BPS-saturated topological amplitude is

$$F_1^{[g]} = \int_{SL(2,\mathbb{Z})\backslash\mathbb{H}} \frac{d^2\tau}{\tau_2} B_4^{[g]}$$

The associated 1/2 BPS-saturated topological amplitude is

$$F_1^{[g]} = \int_{SL(2,\mathbb{Z})\backslash\mathbb{H}} \frac{d^2\tau}{\tau_2} B_4^{[g]}$$

and we obtain

$$F_1^{[g]}(T) = \log \prod_{a|N} \left(aT_2 |\eta(aT)|^4 \right)^{m(a)} = \log \left(T_2^{24} |\eta_g(T)|^4 \right)$$

where the eta-product is defined by

$$\eta_g(T) = \prod_{a|N} \eta(aT)^{m(a)}$$

$$F_1^{[g]}(T) = \log \prod_{a|N} \left(aT_2 |\eta(aT)|^4 \right)^{m(a)} = \log \left(T_2^{24} |\eta_g(T)|^4 \right)$$

This generalizes earlier results in the literature. For example:

$$F_1^{[g]}(T) = \log \prod_{a|N} \left(aT_2 |\eta(aT)|^4 \right)^{m(a)} = \log \left(T_2^{24} |\eta_g(T)|^4 \right)$$

This generalizes earlier results in the literature. For example: Frame shape Coupling

1²⁴ $F_1^{[g]} = 24 \log(T_2 |\eta(T)^4|)$

$$F_1^{[g]}(T) = \log \prod_{a|N} \left(aT_2 |\eta(aT)|^4 \right)^{m(a)} = \log \left(T_2^{24} |\eta_g(T)|^4 \right)$$

This generalizes earlier results in the literature. For example:

Frame shape

Coupling

1²⁴
$$F_1^{[g]} = 24 \log(T_2 |\eta(T)^4|)$$

$1^{8}2^{8}$	$F_1^{[g]} = 16\log(T_2 \eta(T)^3\theta_4(T))$

$$F_1^{[g]}(T) = \log \prod_{a|N} \left(aT_2 |\eta(aT)|^4 \right)^{m(a)} = \log \left(T_2^{24} |\eta_g(T)|^4 \right)$$

This generalizes earlier results in the literature. For example:

Coupling

Frame shape

1²⁴
$$F_1^{[g]} = 24 \log(T_2 |\eta(T)^4|)$$

1⁸2⁸
$$F_1^{[g]} = 16\log(T_2|\eta(T)^3\theta_4(T)|)$$

2¹²
$$F_1^{[g]} = 12\log(T_2|\eta(T)^2\theta_4(T)^2|)$$

Matches with [Antoniadis, Gava, Narain, Taylor][Dabholkar, Denef, Moore, Pioline]

Fricke duality of BPS-couplings

Whenever the type IIA CHL-model is self-dual we expect that the BPS-coupling to be invariant under Fricke T-duality

$$T \longrightarrow -\frac{1}{NT}$$

Fricke duality of BPS-couplings

Whenever the type IIA CHL-model is self-dual we expect that the BPS-coupling to be invariant under Fricke T-duality

$$T \longrightarrow -\frac{1}{NT}$$

Check this:

$$F_1^{[g]}(-1/NT) = \log \prod_{a|N} \left(aT_2 |\eta(aT)|^4 \right)^{m(N/a)}$$

This is invariant if the Frame shape is balanced: m(N/a) = m(a)

Fricke duality of BPS-couplings

Whenever the type IIA CHL-model is self-dual we expect that the BPS-coupling to be invariant under Fricke T-duality

$$T \longrightarrow -\frac{1}{NT}$$

Check this:

$$F_1^{[g]}(-1/NT) = \log \prod_{a|N} \left(aT_2 |\eta(aT)|^4 \right)^{m(N/a)}$$

This is invariant if the Frame shape is balanced: m(N/a) = m(a)

This is precisely the case for the self-dual models!

By heterotic-type II duality the corresponding heterotic coupling is invariant under Fricke S-duality

$$S \longrightarrow -\frac{1}{NS}$$
Summary

Uncovered novel Fricke dualities in a large class of CHL-models

Demonstrated consistency with heterotic-type II duality

Checked the prediction of N-modularity of charge lattices

Demonstrated that I/2 BPS-couplings are Fricke invariant

Physical interpretation of the modular properties of Siegel modular forms arising in Mathieu moonshine

Do Fricke dualities exist also in models with less susy?

– connection with Fricke symmetries observed in topological strings?

[Alim, Scheidegger, Yau, Zhou]

Do Fricke dualities exist also in models with less susy?

– connection with Fricke symmetries observed in topological strings?

[Alim, Scheidegger, Yau, Zhou]

Counting of I/4-BPS states and Mathieu moonshine?

[D.P., Volpato] (in progress)

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?

[Alim, Scheidegger, Yau, Zhou]

Counting of I/4-BPS states and Mathieu moonshine? [D.P., Volpato] (in progress)

Conjecture:

$$\int_{SL(2,\mathbb{Z})\backslash\mathbb{H}} B_6^{[g]} = \log\left((\det\Im\Omega)^{w_{g,e}} |\Phi_{g,e}(T,U,V)|^2\right)$$

Do Fricke dualities exist also in models with less susy?

– connection with Fricke symmetries observed in topological strings?

[Alim, Scheidegger, Yau, Zhou]

- Counting of I/4-BPS states and Mathieu moonshine? [D.P., Volpato] (in progress)
- Do the Siegel modular forms $\Phi_{g,e}$ count reduced Gromov-Witten invariants on $(K3 \times T^2)/\langle (\delta,g) \rangle$? This would generalise a recent conjecture of [Oberdieck, Pandharipande]
 - corresponding to the case g = e

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?
 [Alim, Scheidegger, Yau, Zhou]
- Counting of I/4-BPS states and Mathieu moonshine? [D.P., Volpato] (in progress)
- Do the Siegel modular forms $\Phi_{g,e}$ count reduced Gromov-Witten invariants on $(K3 \times T^2)/\langle (\delta,g) \rangle$?

Can we make a similar "CHL-version" of the monster CFT to shed light on the elusive genus zero property of moonshine? [Paquette, D.P., Volpato] (in progress)

See Roberto's talk tomorrow!

Thank you!

