Fricke S-duality and BPS-state counting

Daniel Persson

Chalmers University ofTechnology
"New Moonshines, Mock Modular Forms and String Theory" LMS - EPSRC Durham Symposium,

August II, 2015

Talk based on:
[arXiv:I504.07260] (w/ R. Volpato)
[arXiv:I3I2.0622] (w/ R.Volpato)
[arXiv:I302.5425] (w/ M. Gaberdiel, \& R.Volpato)
[arXiv:I2 I I.7074] (w/ M. Gaberdiel, H. Ronellenfitsch, R.Volpato)
Γ_{g} genus zero

$$
\Gamma_{g} \backslash \mathbb{H} \sim
$$

Moonshine conjecture (Conway-Norton): The McKay-Thompson series are modular-invariant under some genus zero $\Gamma_{g} \subset S L(2, \mathbb{R})$
Γ_{g} genus zero

$\Gamma_{g} \backslash \mathbb{H} \sim$
$\Gamma_{g}=\left\langle\Gamma_{0}(N), W_{N}\right\rangle$
$N=\mathcal{O}(g)$
Γ_{g} genus zero

$$
\Gamma_{g}=\left\langle\Gamma_{0}(N), W_{N}\right\rangle
$$

$$
N=\mathcal{O}(g)
$$

$\Gamma_{0}(N) \subset S L(2, \mathbb{Z})$
subgroup that preserves the twisted boundary conditions in the CFT

$$
\Gamma_{g}=\left\langle\Gamma_{0}(N), W_{N}\right\rangle \quad N=\mathcal{O}(g)
$$

$\Gamma_{0}(N) \subset S L(2, \mathbb{Z})$

$$
W_{N}: \tau \rightarrow-\frac{1}{N \tau}
$$

subgroup that preserves the twisted boundary conditions in the CFT

Fricke involution
no CFT understanding of this
Γ_{g} genus zero

$$
\Gamma_{g} \backslash \mathbb{H} \sim
$$

$$
\Gamma_{g}=\left\langle\Gamma_{0}(N), W_{N}\right\rangle
$$

$$
N=\mathcal{O}(g)
$$

$\Gamma_{0}(N) \subset S L(2, \mathbb{Z})$
$W_{N}: \tau \rightarrow-\frac{1}{N \tau}$
Fricke involution
no CFT understanding of this

This is a big remaining mystery of monstrous moonshine!

Is there any situation in string theory where we have discrete "S-duality symmetries"

$$
\Gamma \subset S L(2, \mathbb{R})
$$

but which lie outside of $S L(2, \mathbb{Z})$?

In our earlier work we defined a class of functions on the Siegel upper half plane:

$$
\Phi_{g, h}: \mathbb{H}^{(2)} \rightarrow \mathbb{C}
$$

for each commuting pair $g, h \in M_{24}$

$$
\Phi_{g, h}
$$

In our earlier work we defined a class of functions on the Siegel upper half plane:

$$
\Phi_{g, h}: \mathbb{H}^{(2)} \rightarrow \mathbb{C}
$$

for each commuting pair $g, h \in M_{24} \quad \Phi_{g, h}$

Theorem (D.P.-Volpato):

The functions $\Phi_{g, h}$ are Siegel modular forms for certain (para-modular) subgroups $\Gamma_{g, h}^{(2)} \subset S p(4, \mathbb{R})$
(this generalises earlier works by [Cheng][Westerholt-Raum])

In our earlier work we defined a class of functions on the Siegel upper half plane:

$$
\Phi_{g, h}: \mathbb{H}^{(2)} \rightarrow \mathbb{C}
$$

for each commuting pair $g, h \in M_{24} \quad \Phi_{g, h}$

Theorem (D.P.-Volpato):

The functions $\Phi_{g, h}$ are Siegel modular forms for certain (para-modular) subgroups $\Gamma_{g, h}^{(2)} \subset S p(4, \mathbb{R})$
(this generalises earlier works by [Cheng][Westerholt-Raum])
What is the physical interpretation of these Siegel modular forms?

For $(g, h)=(1,1)$ we obtain $\quad q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$

$$
\Phi_{1,1}=\Phi_{10}=p q y \prod_{(m, n, \ell)>0}\left(1-p^{m} q^{n} y^{\ell}\right)^{c(m n, \ell)}
$$

For $(g, h)=(1,1)$ we obtain $\quad q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$

$$
\Phi_{1,1}=\Phi_{10}=p q y \prod_{(m, n, \ell)>0}\left(1-p^{m} q^{n} y^{\ell}\right)^{c(m n, \ell)}
$$

$$
\chi(K 3 ; \tau, z)=\sum_{n \geq 0, \ell \in \mathbb{Z}} c(n, \ell) q^{n} y^{\ell}
$$

K3 elliptic genus

For $(g, h)=(1,1)$ we obtain $\quad q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$

$$
\Phi_{1,1}=\Phi_{10}=p q y \prod_{(m, n, \ell)>0}\left(1-p^{m} q^{n} y^{\ell}\right)^{c(m n, \ell)}
$$

The 'Igusa cusp form' Φ_{10} is the generating function of I/4 BPS-states in $\mathrm{N}=4$ string theory:
[Dijkgraaf, Verlinde, Verlinde][Shih, Strominger, Yin]

$$
\frac{1}{\Phi_{10}}=\sum_{Q^{2} / 2, P^{2} / 2, P \cdot Q \in \mathbb{Z}} B_{6}(P, Q) p^{Q^{2} / 2} q^{P^{2} / 2} y^{P \cdot Q}
$$

For $(g, h)=(1,1)$ we obtain $\quad q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$

$$
\Phi_{1,1}=\Phi_{10}=p q y \prod_{(m, n, \ell)>0}\left(1-p^{m} q^{n} y^{\ell}\right)^{c(m n, \ell)}
$$

The 'Igusa cusp form' Φ_{10} is the generating function of I/4 BPS-states in $\mathrm{N}=4$ string theory:
[Dijkgraaf, Verlinde, Verlinde][Shih, Strominger, Yin]

$$
\frac{1}{\Phi_{10}}=\sum_{Q^{2} / 2, P^{2} / 2, P \cdot Q \in \mathbb{Z}} B_{6}(P, Q) p^{Q^{2} / 2} q^{P^{2} / 2} y^{P \cdot Q}
$$

electric-magnetic charges

$$
(Q, P) \in \Gamma^{6,22} \oplus \Gamma^{6,22}
$$

For $(g, h)=(1,1)$ we obtain $\quad q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$

$$
\Phi_{1,1}=\Phi_{10}=p q y \prod_{(m, n, \ell)>0}\left(1-p^{m} q^{n} y^{\ell}\right)^{c(m n, \ell)}
$$

The 'Igusa cusp form' Φ_{10} is the generating function of I/4 BPS-states in $\mathrm{N}=4$ string theory:
[Dijkgraaf,Verlinde,Verlinde][Shih, Strominger,Yin]

$$
\frac{1}{\Phi_{10}}=\sum_{Q^{2} / 2, P^{2} / 2, P \cdot Q \in \mathbb{Z}} B_{6}(P, Q) p^{Q^{2} / 2} q^{P^{2} / 2} y^{P \cdot Q}
$$

where the coefficients encode the sixth helicity supertrace: [Kiritsis]

$$
B_{6}(P, Q):=\frac{1}{6!} \operatorname{Tr}_{\mathcal{H}_{P, Q}}\left((-1)^{J}(2 J)^{6}\right) \quad J=\text { helicity }
$$

Conjecture (Cheng, Govindarajan, DP-Volpato):

The Siegel modular forms $\Phi_{g, h}$ count 'twisted dyons' in $\mathrm{N}=4$ orbifolds by the symmetry g (CHL-models)

Conjecture (Cheng, Govindarajan, DP-Volpato):

The Siegel modular forms $\Phi_{g, h}$ count 'twisted dyons' in $\mathrm{N}=4$ orbifolds by the symmetry g (CHL-models)

The curious modular property

$$
N=\mathcal{O}(g)
$$

$$
\Phi_{g, h}(\sigma, \tau, z)=\Phi_{g, h^{\prime}}(\tau / N, N \sigma, z)
$$

then suggests a new 'electric-magnetic duality' in CHL-models:

$$
\binom{Q}{P} \longmapsto\binom{\frac{1}{\sqrt{N}} P}{-\sqrt{N} Q}
$$

Conjecture (Cheng, Govindarajan, DP-Volpato):

The Siegel modular forms $\Phi_{g, h}$ count 'twisted dyons' in $\mathrm{N}=4$ orbifolds by the symmetry g (CHL-models)

The curious modular property

$$
\Phi_{g, h}(\sigma, \tau, z)=\Phi_{g, h^{\prime}}(\tau / N, N \sigma, z)
$$

then suggests a new 'electric-magnetic duality' in CHL-models:

$$
\binom{Q}{P} \longmapsto\binom{\frac{1}{\sqrt{N}} P}{-\sqrt{N} Q}
$$

In this talk I will show that this is a consequence of a novel Fricke S-duality in CHL-models!

I. Fricke S-duality in CHL-models

$\mathcal{N}=4$ string theory
$\mathrm{Het} / T^{6} \longleftrightarrow$ IIA $/ K 3 \times T^{2}$
IIB $/ K 3 \times T^{2}$

$\mathcal{N}=4$ string theory

Het $/ T^{6}$
IIA $/ K 3 \times T^{2}$
IIB $/ K 3 \times T^{2}$

- Gauge group is generically $U(1)^{28}$

Electric-magnetic charges $(P, Q) \in \Gamma=\Gamma^{6,22} \oplus \Gamma^{6,22}$

- Duality group $S L(2, \mathbb{Z}) \times O(6,22 ; \mathbb{Z})$

Moduli space

$$
S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{Z}) / S O(2) \times O(6,22 ; \mathbb{Z}) \backslash O(6,22 ; \mathbb{R}) /(O(6) \times O(22))
$$

CHL-models

Consider IIA $/ K 3 \times T^{2}$ and orbifold this theory by (g, δ) :

CHL-models

Consider IIA $/ K 3 \times T^{2}$ and orbifold this theory by (g, δ) :
δ a shift of order N along T^{2}

CHL-models

Consider IIA $/ K 3 \times T^{2}$ and orbifold this theory by (g, δ) :
δ a shift of order N along T^{2}
$g \in O\left(\Gamma^{4,20}\right)$ a symmetry of the K 3 non-linear sigma model:

- which has order N
- preserves all spacetime supersymmetries
- exists at generic points where the gauge group is $U(1)^{28}$

CHL-models

Consider IIA $/ K 3 \times T^{2}$ and orbifold this theory by (g, δ) :
δ a shift of order N along T^{2}
$g \in O\left(\Gamma^{4,20}\right)$ a symmetry of the K3 non-linear sigma model:

- which has order N
- preserves all spacetime supersymmetries
- exists at generic points where the gauge group is $U(1)^{28}$

This construction yields a class of $4 \mathrm{~d} \mathcal{N}=4$ string theories

Dualities of CHL-models

$$
\text { Het } / \frac{T^{4} \times T^{2}}{\langle(g, \delta)\rangle}
$$

$$
\longleftrightarrow \mathrm{IIA} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}
$$

$$
\longleftrightarrow \operatorname{IIB} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}
$$

Dualities of CHL-models

Het $/ \frac{T^{4} \times T^{2}}{\langle(g, \delta)\rangle}$

$$
\mathrm{IIB} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}
$$

- At least 3 moduli in each sector:
Heterotic: $\quad S_{\text {het }}$
$T_{\text {het }}$
$U_{\text {het }}$

Dualities of CHL-models

$$
\operatorname{Het} / \frac{T^{4} \times T^{2}}{\langle(g, \delta)\rangle} \quad \longleftrightarrow \operatorname{IIA} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle} \quad \longleftrightarrow \operatorname{IIB} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}
$$

- At least 3 moduli in each sector:

Heterotic: $\quad S_{\text {het }}$

$T_{\text {het }}$
$\stackrel{\uparrow}{\text { Kähler mod. }}$
of T^{2}
$U_{\text {het }}$

Cplx. str. mod. of T^{2}

Dualities of CHL-models

Het $/ \frac{T^{4} \times T^{2}}{\langle(g, \delta)\rangle}$

- At least 3 moduli in each sector:

Heterotic: $\quad S_{\text {het }}$
$T_{\text {het }}$
$U_{\text {het }}$

IIA: $\quad S_{\text {IIA }}$
$T_{\text {IIA }}$

$$
\longleftrightarrow \operatorname{IIB} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}
$$

Dualities of CHL-models

Het $/ \frac{T^{4} \times T^{2}}{\langle(g, \delta)\rangle}$

$$
\text { IIA } / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}
$$

$\operatorname{IIB} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}$

- At least 3 moduli in each sector:

Heterotic:
$T_{\text {het }}$

Dualities of CHL-models

Het $/ \frac{T^{4} \times T^{2}}{\langle(g, \delta)\rangle}$

$\operatorname{IIB} / \frac{K 3 \times T^{2}}{\langle(g, \delta)\rangle}$

- At least 3 moduli in each sector:

Heterotic: $\quad S_{\text {het }}$

- The S-duality group $S L(2, \mathbb{Z})$ is broken to

$$
\Gamma_{1}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}) \right\rvert\, a \equiv 1 \bmod N, c \equiv 0 \bmod N\right\}
$$

Classification of CHL-models

All symmetries of $K 3$ sigma models have been classified by Gaberdiel, Hohenegger,Volpato:

Each $g \in O\left(\Gamma^{4,20}\right)$ that preserves the sigma model corresponds to an element of the Conway group $C o_{0}$

Classification of CHL-models

All symmetries of $K 3$ sigma models have been classified by Gaberdiel, Hohenegger, Volpato:

Each $g \in O\left(\Gamma^{4,20}\right)$ that preserves the sigma model corresponds to an element of the Conway group $C o_{0}$

This implies that inequivalent CHL-models are characterised by the eigenvalues of g in the defining 24-dimensional reps of $C o_{0}$

Classification of CHL-models

All symmetries of K 3 sigma models have been classified by Gaberdiel, Hohenegger, Volpato:

Each $g \in O\left(\Gamma^{4,20}\right)$ that preserves the sigma model corresponds to an element of the Conway group Co_{0}

This implies that inequivalent CHL-models are characterised by the eigenvalues of g in the defining 24-dimensional reps of $C o_{0}$

Frame shape: $\quad g \leftrightarrow \prod_{a \mid N} a^{m(a)} \quad$ where $\quad \sum_{a \mid N} a m(a)=24$

Ex: $g=$ identity $\leftrightarrow 1^{24} \quad$ product of 24 identity permutations

The orbifold groups $\langle(\delta, g)\rangle$ are defined up to $O\left(\Gamma^{6,22}\right)$-conjugation

$$
O\left(\Gamma^{6,22}\right) \text {-classes }\langle(\delta, g)\rangle
$$

Frame shape $\prod a^{m(a)}$
$a \mid N$

The orbifold groups $\langle(\delta, g)\rangle$ are defined up to $O\left(\Gamma^{6,22}\right)$-conjugation

Inequivalent CHL-models associated to pairs (δ, g) are classified by the frame shape of $[g] \in C o_{0}$

$$
O\left(\Gamma^{6,22}\right) \text {-classes }\langle(\delta, g)\rangle
$$

```
conjugacy class [g] }\inC\mp@subsup{o}{0}{
```

Frame shape $\prod a^{m(a)}$
${ }_{a \mid N}$

Fricke T-duality

$$
\operatorname{IIA} / \frac{K 3 \times T^{2}}{\langle(\delta, g)\rangle}
$$

$$
T^{2}=S^{1} \times \tilde{S}^{1}
$$

special circle on which δ acts by an order N shift

Fricke T-duality

$$
\text { IIA } / \frac{K 3 \times T^{2}}{\langle(\delta, g)\rangle}
$$

Fricke T-duality

IIA $/ \frac{K 3 \times T^{2}}{\langle(\delta, g)\rangle}$

IIA $/ \frac{\mathcal{C}^{\prime} \times T^{2}}{\left\langle\left(\delta^{\prime}, g^{\prime}\right)\right\rangle}$

Fricke T-duality

Fricke T-duality

$$
\begin{aligned}
& \text { IIA } / \frac{K 3 \times T^{2}}{\langle(\delta, g)\rangle} \\
& \\
& \begin{array}{c}
\text { Fricke } \\
\text { T-duality }
\end{array} \\
& \text { IIA } / \frac{\mathcal{C}^{\prime} \times T^{2}}{\left\langle\left(\delta^{\prime}, g^{\prime}\right)\right\rangle}
\end{aligned}
$$

acts on the moduli by:

$$
\begin{aligned}
& T_{\mathrm{IIA}} \rightarrow-\frac{1}{N T_{\mathrm{IIA}}} \\
& U_{\mathrm{IIA}} \rightarrow-\frac{1}{N U_{\mathrm{IIA}}} \\
& S_{\mathrm{IIA}} \rightarrow S_{\mathrm{IIA}}
\end{aligned}
$$

3 possible cases

The image of the Fricke T-duality is a non-linear sigma model \mathcal{C}^{\prime}
Compute the Witten index (Euler characteristic):

$$
I^{\mathcal{C}^{\prime}}=\operatorname{Tr}_{\mathcal{C}^{\prime}}(-1)^{F_{L}+F_{R}}
$$

3 possible cases

The image of the Fricke T-duality is a non-linear sigma model \mathcal{C}^{\prime}
Compute the Witten index (Euler characteristic):

$$
I^{\mathcal{C}^{\prime}}=\operatorname{Tr}_{\mathcal{C}^{\prime}}(-1)^{F_{L}+F_{R}}=\sum_{a \mid N} m(a / N) a
$$

Non-linear sigma model on K3: $I^{\mathcal{C}^{\prime}}=24$
Non-linear sigma model on $T^{4}: I^{\mathcal{C}^{\prime}}=0$

3 possible cases

The image of the Fricke T-duality is a non-linear sigma model \mathcal{C}^{\prime}
Compute the Witten index (Euler characteristic):

$$
I^{\mathcal{C}^{\prime}}=\operatorname{Tr}_{\mathcal{C}^{\prime}}(-1)^{F_{L}+F_{R}}=\sum_{a \mid N} m(a / N) a
$$

We find 3 possibilities

- $I^{\mathcal{C}^{\prime}}=24$ and $\left(g, g^{\prime}\right)$ have the same Frame shape
- $I^{\mathcal{C}^{\prime}}=24$ and $\left(g, g^{\prime}\right)$ have different Frame shapes
- $I^{\mathcal{C}^{\prime}}=0$

Case I

Frame shape is balanced: $\quad m(a)=m(N / a)$
The CHL-model is self-dual under Fricke T-duality: $\quad T_{\text {IIA }} \rightarrow-\frac{1}{N T_{\text {IIA }}}$
In the heterotic picture this yields a new Fricke S-duality

$$
S_{\mathrm{het}} \rightarrow-\frac{1}{N S_{\mathrm{het}}}
$$

This is a new symmetry of CHL-models which lies outside of the $S L(2, \mathbb{Z})$-symmetry of the parent theory $\operatorname{Het} / T^{6}$!

Case 1 (self-dual)

$\begin{gathered}\text { Fricke } \\ \text { S-duality }\end{gathered} S_{\text {het }} \leftrightarrow-\frac{1}{N S_{\text {het }}}$
$\begin{gathered}\text { Fricke } \\ \text { T-duality }\end{gathered} T_{\text {IIA }} \leftrightarrow-\frac{1}{N T_{\text {IIA }}}$

Case 2 (non-self-dual)

$$
\text { Het } / \frac{T^{4} \times S^{1}}{\mathbb{Z}_{N}} \times \tilde{S}^{1} \quad \stackrel{S_{\text {het }} \leftrightarrow T_{\text {IIA }}}{\longleftrightarrow} \quad \text { IIA } / \frac{K 3 \times S^{1}}{\mathbb{Z}_{N}} \times \tilde{S}^{1}
$$

$$
\begin{gathered}
\text { Fricke } \\
\text { S-duality } \\
\downarrow \\
S_{\text {het }} \leftrightarrow-\frac{1}{N S_{\text {het }}}
\end{gathered} \quad T_{\text {IIA }} \leftrightarrow-\frac{1}{N T_{\text {IIA }}} \quad \begin{gathered}
\text { Fricke } \\
\text { T-duality }
\end{gathered}
$$

$$
\operatorname{Het} / \frac{T^{4} \times S^{\prime}}{\mathbb{Z}_{N}} \times \tilde{S}^{\prime 1}
$$

$$
\operatorname{IIA} / \frac{K 3 \times S^{\prime 1}}{\mathbb{Z}_{N}} \times \tilde{S}^{\prime 1}
$$

Case 3 (non-self-dual)

$$
\operatorname{Het} / \frac{T^{4} \times S^{1}}{\mathbb{Z}_{N}} \times \tilde{S}^{1}
$$

$$
\operatorname{IIA} / \frac{K 3 \times S^{1}}{\mathbb{Z}_{N}} \times \tilde{S}^{1}
$$

Fricke
S-duality

$$
S_{\mathrm{het}} \leftrightarrow-\frac{1}{N S_{\mathrm{het}}}
$$

$$
T_{\text {IIA }} \leftrightarrow-\frac{1}{N T_{\text {IIA }}} \uparrow \begin{gathered}
\text { Fricke } \\
\text { T-duality }
\end{gathered}
$$

$$
\operatorname{IIA} / \frac{T^{4} \times S^{\prime}}{\mathbb{Z}_{N}^{\prime}} \times \tilde{S}^{\prime 1}
$$

$$
\operatorname{IIA} / \frac{T^{4} \times S^{\prime}}{\mathbb{Z}_{N}} \times \tilde{S}^{\prime 1}
$$

Electric-magnetic duality and N-modularity

Consider now the self-dual case. The full S-duality group is

$$
\Gamma_{g}=\left\langle\Gamma_{0}(N),\left(\begin{array}{cc}
0 & -1 / \sqrt{N} \\
\sqrt{N} & 0
\end{array}\right)\right\rangle
$$

This acts by:

$$
\text { axiodilaton } \quad S_{\mathrm{het}} \rightarrow \frac{a S_{\mathrm{het}}+b}{c S_{\mathrm{het}}+d}
$$

electric-magnetic charges

$$
\binom{Q}{P} \rightarrow\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\binom{Q}{P}
$$

Restricting to the Fricke part we find
electric-magnetic charges $\quad\binom{Q}{P} \rightarrow\binom{\frac{1}{\sqrt{N}} Q}{-\sqrt{N} P}$
As a consequence the charge lattices $\Gamma=\Gamma_{e} \oplus \Gamma_{m}$ must satisfy

$$
\Gamma_{m} \cong \sqrt{N} \Gamma_{e}
$$

But we also have $\Gamma_{m} \cong \Gamma_{e}^{*}$ which yields

$$
\Gamma_{e}^{*} \cong \sqrt{N} \Gamma_{e} \quad N \text {-modular }
$$

This is a non-trivial prediction of Fricke S-duality!

3. BPS-state counting

Counting of Dabholkar-Harvey states

Het $/ T^{6}$ has a set of I/2 BPS-states corresponding to right-moving ground states and arbitrary left-moving excitations

Counting of Dabholkar-Harvey states

Het $/ T^{6}$ has a set of I/2 BPS-states corresponding to right-moving ground states and arbitrary left-moving excitations
These can be taken to have purely electric charges $Q \in \Gamma^{6,22}$

Counting of Dabholkar-Harvey states

Het $/ T^{6}$ has a set of I/2 BPS-states corresponding to right-moving ground states and arbitrary left-moving excitations
These can be taken to have purely electric charges $Q \in \Gamma^{6,22}$
The degeneracy $\Omega(Q)$ of such states is captured by

$$
\begin{gathered}
\frac{1}{\Delta(\tau)}=\frac{1}{\eta(\tau)^{24}}=\sum_{n \in \mathbb{Z}} d(n) q^{n} \\
\Omega(Q)=d\left(Q^{2} / 2\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{\Delta(\tau)}=\frac{1}{\eta(\tau)^{24}}=\sum_{n \in \mathbb{Z}} d(n) q^{n} \\
\Omega(Q)=d\left(Q^{2} / 2\right)
\end{gathered}
$$

In the type IIB picture these correspond to certain bound states of D0-D4-NS5-branes on $K 3 \times T^{2}$ with momentum along the torus.

These are 'small black holes' with zero classical entropy:

$$
\log \Omega(Q) \sim 4 \pi \sqrt{Q^{2}}
$$

Topological BPS-couplings

In general, $\mathrm{I} / 2 \mathrm{BPS}$-states in $\mathcal{N}=4$ theories are counted by the 4th helicity supertrace: [Kiritsis]

$$
B_{4}=\operatorname{Tr}(-1)^{F} J^{4} \quad J=\text { helicity }
$$

Topological BPS-couplings

In general, I/2 BPS-states in $\mathcal{N}=4$ theories are counted by the 4th helicity supertrace: [Kiritsis]

$$
B_{4}=\operatorname{Tr}(-1)^{F} J^{4} \quad J=\text { helicity }
$$

In IIA/ $K 3 \times T^{2}$ this determines the topological I-loop amplitude:

$$
\begin{aligned}
F_{1} & =\int_{S L(2, \mathbb{Z}) \backslash \mathbb{H}} \frac{d^{2} \tau}{\tau_{2}} B_{4}(T, U) \\
& =\log \left(T_{2}^{24}|\Delta(T)|^{4}\right)+\log \left(U_{2}^{24}|\Delta(U)|^{4}\right)+\mathrm{const}
\end{aligned}
$$

$$
F_{1}=\log \left(T_{2}^{24}|\Delta(T)|^{4}\right)+\log \left(U_{2}^{24}|\Delta(U)|^{4}\right)+\text { const }
$$

Notice that the discriminant Δ now appears as a function of the spacetime moduli (T, U) rather than the worldsheet τ

$$
F_{1}=\log \left(T_{2}^{24}|\Delta(T)|^{4}\right)+\log \left(U_{2}^{24}|\Delta(U)|^{4}\right)+\text { const }
$$

Notice that the discriminant Δ now appears as a function of the spacetime moduli (T, U) rather than the worldsheet τ

This is not a coincidence but follows from the OSV-conjecture:

$$
Z_{C F T}=Z_{B H}=\left|Z_{t o p}\right|^{2}
$$

which requires a particular identification of worldsheet and spacetime variables. In the case at hand we indeed have:

$$
Z_{C F T}(\tau)=\frac{1}{\Delta(\tau)} \quad Z_{B H}(T)=e^{F_{1}^{h o l}(T)}=e^{-\log \Delta(T)}
$$

which coincide provided we identify $\tau=T$

BPS-counting in CHL-models

In general the n :th helicity supertraces can be calculated via: [Kiritsis]

$$
B_{n}=\left.\left(\frac{1}{2 \pi i} \frac{\partial}{\partial v}+\frac{1}{2 \pi i} \frac{\partial}{\partial \bar{v}}\right)^{n} Z(v, \bar{v})\right|_{v=\bar{v}=0}
$$

where the generating function is defined by

$$
Z(v, \bar{v})=\operatorname{Tr}(-1)^{F} e^{2 \pi i v J_{3}^{R}} e^{2 \pi i \bar{v} J_{3}^{L}} q^{L_{0}} \bar{q}^{\bar{L}_{0}}
$$

BPS-counting in CHL-models

For the type IIA CHL-model IIA $/ \frac{K 3 \times T^{2}}{\langle(\delta, g)\rangle}$ with Frame shape

$$
g \leftrightarrow \prod_{a \mid N} a^{m(a)}
$$

BPS-counting in CHL-models

For the type IIA CHL-model IIA $/ \frac{K 3 \times T^{2}}{\langle(\delta, g)\rangle}$ with Frame shape

$$
g \leftrightarrow \prod_{a \mid N} a^{m(a)}
$$

we show that the 4:th helicity supertrace counting I/2 BPS states is

$$
B_{4}^{[g]}=\sum_{a \mid N} m(a) \Theta_{\Gamma^{2,2}}(a T, a U)
$$

BPS-counting in CHL-models

For the type IIA CHL-model IIA $/ \frac{K 3 \times T^{2}}{\langle(\delta, g)\rangle}$ with Frame shape

$$
g \leftrightarrow \prod_{a \mid N} a^{m(a)}
$$

we show that the 4:th helicity supertrace counting I/2 BPS states is

$$
B_{4}^{[g]}=\sum_{a \mid N} m(a) \Theta_{\Gamma^{2,2}}(a T, a U)
$$

Siegel-Narain theta function for the lattice $\Gamma^{2,2}$

The associated I/2 BPS-saturated topological amplitude is

$$
F_{1}^{[g]}=\int_{S L(2, \mathbb{Z}) \backslash \mathbb{H}} \frac{d^{2} \tau}{\tau_{2}} B_{4}^{[g]}
$$

The associated I/2 BPS-saturated topological amplitude is

$$
F_{1}^{[g]}=\int_{S L(2, Z) \backslash \mathbb{H}} \frac{d^{2} \tau}{\tau_{2}} B_{4}^{[g]}
$$

and we obtain

$$
F_{1}^{[g]}(T)=\log \prod_{a \mid N}\left(a T_{2}|\eta(a T)|^{4}\right)^{m(a)}=\log \left(T_{2}^{24}\left|\eta_{g}(T)\right|^{4}\right)
$$

where the eta-product is defined by

$$
\eta_{g}(T)=\prod_{a \mid N} \eta(a T)^{m(a)}
$$

$$
F_{1}^{[g]}(T)=\log \prod_{a \mid N}\left(a T_{2}|\eta(a T)|^{4}\right)^{m(a)}=\log \left(T_{2}^{24}\left|\eta_{g}(T)\right|^{4}\right)
$$

This generalizes earlier results in the literature. For example:

$$
F_{1}^{[g]}(T)=\log \prod_{a \mid N}\left(a T_{2}|\eta(a T)|^{4}\right)^{m(a)}=\log \left(T_{2}^{24}\left|\eta_{g}(T)\right|^{4}\right)
$$

This generalizes earlier results in the literature. For example:
Coupling

$$
F_{1}^{[g]}=24 \log \left(T_{2}\left|\eta(T)^{4}\right|\right)
$$

$$
F_{1}^{[g]}(T)=\log \prod\left(a T_{2}|\eta(a T)|^{4}\right)^{m(a)}=\log \left(T_{2}^{24}\left|\eta_{g}(T)\right|^{4}\right)
$$

This generalizes earlier results in the literature. For example:

Coupling

$$
F_{1}^{[g]}=24 \log \left(T_{2}\left|\eta(T)^{4}\right|\right)
$$

$1^{8} 2^{8}$

$$
F_{1}^{[g]}=16 \log \left(T_{2}\left|\eta(T)^{3} \theta_{4}(T)\right|\right)
$$

$$
F_{1}^{[g]}(T)=\log \prod_{a \mid N}\left(a T_{2}|\eta(a T)|^{4}\right)^{m(a)}=\log \left(T_{2}^{24}\left|\eta_{g}(T)\right|^{4}\right)
$$

This generalizes earlier results in the literature. For example:

Frame shape

Coupling

1^{24}

$$
F_{1}^{[g]}=24 \log \left(T_{2}\left|\eta(T)^{4}\right|\right)
$$

$1^{8} 2^{8}$

$$
F_{1}^{[g]}=16 \log \left(T_{2}\left|\eta(T)^{3} \theta_{4}(T)\right|\right)
$$

2^{12}

$$
F_{1}^{[g]}=12 \log \left(T_{2}\left|\eta(T)^{2} \theta_{4}(T)^{2}\right|\right)
$$

Matches with [Antoniadis, Gava, Narain, Taylor][Dabholkar, Denef, Moore, Pioline]

Fricke duality of BPS-couplings

Whenever the type IIA CHL-model is self-dual we expect that the BPS-coupling to be invariant under Fricke T-duality

$$
T \longrightarrow-\frac{1}{N T}
$$

Fricke duality of BPS-couplings

Whenever the type IIA CHL-model is self-dual we expect that the BPS-coupling to be invariant under Fricke T-duality

$$
T \longrightarrow-\frac{1}{N T}
$$

Check this:

$$
F_{1}^{[g]}(-1 / N T)=\log \prod_{a \mid N}\left(a T_{2}|\eta(a T)|^{4}\right)^{m(N / a)}
$$

This is invariant if the Frame shape is balanced: $m(N / a)=m(a)$

Fricke duality of BPS-couplings

Whenever the type IIA CHL-model is self-dual we expect that the BPS-coupling to be invariant under Fricke T-duality

$$
T \longrightarrow-\frac{1}{N T}
$$

Check this:

$$
F_{1}^{[g]}(-1 / N T)=\log \prod_{a \mid N}\left(a T_{2}|\eta(a T)|^{4}\right)^{m(N / a)}
$$

This is invariant if the Frame shape is balanced: $m(N / a)=m(a)$
This is precisely the case for the self-dual models!
By heterotic-type II duality the corresponding heterotic coupling is invariant under Fricke S-duality

$$
S \longrightarrow-\frac{1}{N S}
$$

Summary

Uncovered novel Fricke dualities in a large class of CHL-models

Demonstrated consistency with heterotic-type II duality

Checked the prediction of N -modularity of charge lattices

Demonstrated that I/2 BPS-couplings are Fricke invariant

Physical interpretation of the modular properties of Siegel modular forms arising in Mathieu moonshine

Outlook

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?
[Alim, Scheidegger, Yau, Zhou]

Outlook

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?
[Alim, Scheidegger, Yau, Zhou]
Counting of I/4-BPS states and Mathieu moonshine?
[D.P.,Volpato] (in progress)

Outlook

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?
[Alim, Scheidegger, Yau, Zhou]
Counting of I/4-BPS states and Mathieu moonshine?
[D.P.,Volpato] (in progress)

Conjecture:

$$
\int_{S L(2, Z) \backslash H} B_{6}^{[g]}=\log \left((\operatorname{det} \Im \Omega)^{w_{g, e}}\left|\Phi_{g, e}(T, U, V)\right|^{2}\right)
$$

Outlook

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?
[Alim, Scheidegger, Yau, Zhou]
Counting of I/4-BPS states and Mathieu moonshine?
[D.P.,Volpato] (in progress)
Do the Siegel modular forms $\Phi_{g, e}$ count reduced
Gromov-Witten invariants on $\left.\left(K 3 \times T^{2}\right) /\langle(\delta, g)\rangle\right)$?
This would generalise a recent conjecture of [Oberdieck, Pandharipande] corresponding to the case $g=e$

Outlook

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?
[Alim, Scheidegger, Yau, Zhou]
Counting of I/4-BPS states and Mathieu moonshine?
[D.P.,Volpato] (in progress)
Do the Siegel modular forms $\Phi_{g, e}$ count reduced
Gromov-Witten invariants on $\left.\left(K 3 \times T^{2}\right) /\langle(\delta, g)\rangle\right)$?

Can we make a similar "CHL-version" of the monster CFT to shed light on the elusive genus zero property of moonshine?
[Paquette, D.P.,Volpato] (in progress)
See Roberto's talk tomorrow!

Thank you!

