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genus zero �g\H ⇠�g

�g = h�0(N),WN i N = O(g)

�0(N) ⇢ SL(2,Z) subgroup that preserves the twisted 
boundary conditions in the CFT

WN : ⌧ ! � 1

N⌧
Fricke involution

no CFT understanding of this

This is a big remaining mystery of monstrous moonshine!



Is there any situation in string theory where we have 
discrete “S-duality symmetries”  

� ⇢ SL(2,R)

but which lie outside of                ? SL(2,Z)
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for each commuting pair g, h 2 M24

Theorem (D.P.-Volpato):
The functions           are Siegel modular forms for certain 
(para-modular) subgroups 

�g,h

�g,h

�(2)
g,h ⇢ Sp(4,R)

What is the physical interpretation of 
these Siegel modular forms?

(this generalises earlier works by [Cheng][Westerholt-Raum])
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q = e2⇡i⌧ , y = e2⇡izFor                       we obtain (g, h) = (1, 1)

B6(P,Q) :=
1

6!
TrHP,Q

�
(�1)J(2J)6

�
J = helicity

where the coefficients encode the sixth helicity supertrace: [Kiritsis]

The ‘Igusa cusp form’          is the generating function of 1/4 BPS-states in 
N=4 string theory: 
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The Siegel modular forms          count ‘twisted dyons’ in 
N=4 orbifolds by the symmetry    (CHL-models)g

�g,h

�g,h(�, ⌧, z) = �g,h0 (⌧/N,N�, z)

The curious modular property N = O(g)

then suggests a new ‘electric-magnetic duality’ in CHL-models:

In this talk I will show that this is a consequence of a 
novel Fricke S-duality in CHL-models!
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string theory

Het/T 6 IIA/K3⇥ T 2 IIB/K3⇥ T 2

N = 4

Gauge group is generically U(1)28

(P,Q) 2 � = �6,22 � �6,22Electric-magnetic charges

Duality group SL(2,Z)⇥O(6, 22;Z)

Moduli space 

SL(2,Z)\SL(2,Z)/SO(2)⇥O(6, 22;Z)\O(6, 22;R)/(O(6)⇥O(22))
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Consider                      and orbifold this theory by         : (g, �)

� a shift of order      along 

IIA/K3⇥ T 2

N T 2

a symmetry of the K3 non-linear sigma model:

This construction yields a class of  4d              string theoriesN = 4

[Chaudhuri, Hockney, Lykken][Chaudhuri, Lowe]

g 2 O(�4,20)
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exists at generic points where the gauge group is U(1)28
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h(g, �)i
IIA

�K3⇥ T 2
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�K3⇥ T 2
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At least 3 moduli in each sector:

Heterotic:  Shet Thet Uhet

IIA:  TIIASIIA UIIA

string-string duality

The S-duality group               is broken to SL(2,Z)

�1(N) =

⇢✓
a b
c d

◆
2 SL(2,Z)

�� a ⌘ 1modN, c ⌘ 0modN

�

Dualities of CHL-models
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Classification of CHL-models

All symmetries of K3 sigma models have been classified by
Gaberdiel, Hohenegger, Volpato:  

Each                      that preserves the sigma model 
corresponds to an element of the Conway group 

g 2 O(�4,20)
Co0

This implies that inequivalent CHL-models are characterised by the 
eigenvalues of     in the defining 24-dimensional reps of g

Co0

Frame shape: g $
Y

a|N

am(a)
X

a|N

am(a) = 24where

Ex: g = identity $ 124 product of 24 identity permutations
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The orbifold groups             are defined up to              -conjugation h(�, g)i O(�6,22)

O(�6,22)-classes h(�, g)i

conjugacy class [g] 2 Co0

Frame shape
Y

a|N

am(a)

Inequivalent CHL-models associated 
to pairs         are classified by the frame (�, g)

shape of [g] 2 Co0
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IIA
�K3⇥ T 2

h(�, g)i

IIA
� C0 ⇥ T 2

h(�0, g0)i

Fricke 
T-duality

TIIA ! � 1

NTIIA

UIIA ! � 1

NUIIA

SIIA ! SIIA

acts on the moduli by:

(similar to earlier work by Vafa in the non-compact setting) 
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3 possible cases

IC
0
= TrC0(�1)FL+FR =

X

a|N

m(a/N)a

The image of the Fricke T-duality is a non-linear sigma model C0

and               have the same Frame shape 

We find 3 possibilities

IC
0
= 24 (g, g0)

and               have different Frame shapes IC
0
= 24 (g, g0)

IC
0
= 0

Compute the Witten index (Euler characteristic):



Case 1

m(a) = m(N/a)Frame shape is balanced:

The CHL-model is self-dual under Fricke T-duality: TIIA ! � 1

NTIIA

In the heterotic picture this yields a new Fricke S-duality

Shet ! � 1

NShet

This is a new symmetry of CHL-models which lies outside of 
the                -symmetry of the parent theory               ! SL(2,Z) Het

�
T 6



TIIA $ � 1

NTIIAS-duality

Fricke
T-duality

Fricke

IIA
.K3⇥ S1

ZN
⇥ S̃1

Het
.T 4 ⇥ S1

ZN
⇥ S̃1

Case 1 (self-dual)

Shet $ TIIA

Shet $ � 1

NShet



TIIA $ � 1

NTIIAS-duality

Fricke
T-duality

Fricke

Case 2 (non-self-dual)

Het
.T 4 ⇥ S1

ZN
⇥ S̃1

Het
.T 4 ⇥ S01

ZN
⇥ S̃01

IIA
.K3⇥ S1

ZN
⇥ S̃1

IIA
.K3⇥ S01

ZN
⇥ S̃01

Shet $ TIIA

S0
het $ T 0

IIA

Shet $ � 1

NShet



TIIA $ � 1

NTIIAS-duality

Fricke
T-duality

Fricke

Case 3 (non-self-dual)

IIA
.T 4 ⇥ S01

Z0
N

⇥ S̃01 IIA
.T 4 ⇥ S01

ZN
⇥ S̃01

IIA
.K3⇥ S1

ZN
⇥ S̃1

Het
.T 4 ⇥ S1

ZN
⇥ S̃1

Shet $ TIIA

S0
het $ T 0

IIA

Shet $ � 1

NShet



Electric-magnetic duality and N-modularity

Consider now the self-dual case. The full S-duality group is

�g =

⌧
�0(N),

✓
0 �1/

p
Np

N 0

◆�

This acts by:

Shet !
aShet + b

cShet + d
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◆
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Q
P

◆

axiodilaton

electric-magnetic charges 



Restricting to the Fricke part we find

electric-magnetic charges 
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As a consequence the charge lattices                         must satisfy� = �e � �m

�m
⇠=

p
N�e

But we also have                 which yields�m
⇠= �⇤

e

�⇤
e
⇠=

p
N�e N -modular

This is a non-trivial prediction of Fricke S-duality! 



3. BPS-state counting



Counting of Dabholkar-Harvey states

has a set of 1/2 BPS-states corresponding to right-moving Het
�
T 6

ground states and arbitrary left-moving excitations



Counting of Dabholkar-Harvey states

has a set of 1/2 BPS-states corresponding to right-moving Het
�
T 6

ground states and arbitrary left-moving excitations

These can be taken to have purely electric charges Q 2 �6,22



Counting of Dabholkar-Harvey states

has a set of 1/2 BPS-states corresponding to right-moving Het
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T 6

ground states and arbitrary left-moving excitations

These can be taken to have purely electric charges Q 2 �6,22

The degeneracy           of such states is captured by ⌦(Q)
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⌘(⌧)24
=

X

n2Z
d(n)qn

⌦(Q) = d(Q2/2)

In the type IIB picture these correspond to certain bound states 

of D0-D4-NS5-branes on              with momentum along the torus. 

These are ‘small black holes’ with zero classical entropy: 

log⌦(Q) ⇠ 4⇡
p

Q2

K3⇥ T 2
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Topological BPS-couplings

In general, 1/2 BPS-states in             theories are counted by N = 4
the 4th helicity supertrace:

B4 = Tr(�1)FJ4

[Kiritsis]

In                        this determines the topological 1-loop amplitude:

F1 =

Z

SL(2,Z)\H

d2⌧

⌧2
B4(T, U)

= log(T 24
2 |�(T )|4) + log(U24

2 |�(U)|4) + const

IIA
�
K3⇥ T 2

[Harvey, Moore]

J = helicity
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= log(T 24
2 |�(T )|4) + log(U24

2 |�(U)|4) + const

F1

Notice that the discriminant          now appears as a function of the 
spacetime moduli              rather than the worldsheet

�
(T, U) ⌧

This is not a coincidence but follows from the OSV-conjecture:

ZCFT = ZBH = |Ztop|2

which requires a particular identification of worldsheet and 
spacetime variables. In the case at hand we indeed have:

ZCFT (⌧) =
1

�(⌧) ZBH(T ) = eF
hol

1 (T ) = e� log �(T )

which coincide provided we identify ⌧ = T
[Ooguri, Strominger, Vafa][Dabholkar][Dabholkar, Denef, Moore, Pioline]



BPS-counting in CHL-models

In general the n:th helicity supertraces can be calculated via:

Bn =

✓
1

2⇡i

@

@v
+

1

2⇡i

@

@v̄

◆n

Z(v, v̄)
���
v=v̄=0

where the generating function is defined by

Z(v, v̄) = Tr(�1)F e2⇡ivJ
R
3 e2⇡iv̄J

L
3 qL0 q̄L̄0

[Kiritsis]
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BPS-counting in CHL-models

IIA
�K3⇥ T 2

h(�, g)iFor the type IIA CHL-model                        with Frame shape

g $
Y

a|N

am(a)

we show that the 4:th helicity supertrace counting 1/2 BPS states is

Siegel-Narain theta function for the lattice �2,2

B[g]
4 =

X

a|N

m(a)⇥�2,2(aT, aU)
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and we obtain 
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Frame shape Coupling

F [g]
1 = 24 log(T2|⌘(T )4|)

F [g]
1 = 16 log(T2|⌘(T )3✓4(T )|)

F [g]
1 = 12 log(T2|⌘(T )2✓4(T )2|)

Matches with [Antoniadis, Gava, Narain, Taylor][Dabholkar, Denef, Moore, Pioline]
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Fricke duality of BPS-couplings

Whenever the type IIA CHL-model is self-dual we expect that the 
BPS-coupling to be invariant under Fricke T-duality

T �! � 1

NT
Check this:

F [g]
1 (�1/NT ) = log

Y

a|N

�
aT2|⌘(aT )|4

�m(N/a)

This is invariant if the Frame shape is balanced: m(N/a) = m(a)

This is precisely the case for the self-dual models!

By heterotic-type II duality the corresponding heterotic coupling is 
invariant under Fricke S-duality

S �! � 1

NS



Summary

Uncovered novel Fricke dualities in a large class of  CHL-models

Demonstrated consistency with heterotic-type II duality

Checked the prediction of N-modularity of charge lattices

Demonstrated that 1/2 BPS-couplings are Fricke invariant

Physical interpretation of the modular properties of 
Siegel modular forms arising in Mathieu moonshine
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- connection with Fricke symmetries observed in topological strings?
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Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?

[Alim, Scheidegger, Yau, Zhou]

Counting of 1/4-BPS states and Mathieu moonshine?

Z

SL(2,Z)\H
B[g]

6 = log

�
(det=⌦)wg,e |�g,e(T, U, V )|2

�
Conjecture:

[D.P., Volpato] (in progress)



Outlook

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?

[Alim, Scheidegger, Yau, Zhou]

Do the Siegel modular forms         count reduced �g,e

Gromov-Witten invariants on                                  ? (K3⇥ T 2)/ h(�, g)i)
This would generalise a recent conjecture of [Oberdieck, Pandharipande] 
corresponding to the case  g = e

Counting of 1/4-BPS states and Mathieu moonshine?
[D.P., Volpato] (in progress)



Outlook

Do Fricke dualities exist also in models with less susy?

- connection with Fricke symmetries observed in topological strings?

[Alim, Scheidegger, Yau, Zhou]

Can we make a similar “CHL-version’’ of the monster CFT 
to shed light on the elusive genus zero property of moonshine?

[Paquette, D.P., Volpato] (in progress)

Do the Siegel modular forms         count reduced �g,e

Gromov-Witten invariants on                                  ? (K3⇥ T 2)/ h(�, g)i)

Counting of 1/4-BPS states and Mathieu moonshine?
[D.P., Volpato] (in progress)

See Roberto’s talk tomorrow!



Thank you!


