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Trefftz methods

Considera PDE Lu =0 thatis: () linear, (i) homogeneous
(RHS=0), (iii) with piecewise constant coefficients.

Trefftz methods are finite element schemes such that
test and trial functions are solutions of the PDE
in each element K of the mesh 7;,.

E.g.: piecewise harmonic polynomials if Lu = Au.
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Considera PDE Lu =0 thatis: () linear, (i) homogeneous
(RHS=0), (iii) with piecewise constant coefficients.

Trefftz methods are finite element schemes such that
test and trial functions are solutions of the PDE
in each element K of the mesh 7;,.

E.g.: piecewise harmonic polynomials if Lu = Au.

Our main interest is in wave propagation, in:

» Frequency domain, Helmholtz eq. “Au—Ku=0

lot of work done, h/p/hp-theory, Maxwell, elasticity. ..
(recent survey: Hiptmair, AM, Perugia, arXiv:1506.04521)

» Time domain, wave equation —AU + C%g—;U =0

Trefftz methods are in space-time,
as opposed to semi-discretisation + time-stepping.



Trefffz methods for wave equation

Why Trefftz methods? Comparing with standard DG,
» better accuracy per DOFs and higher convergence orders;
» PDE properties "known” by discrete space, e.g. dispersion;
» lower dimensional quadrature needed;
» simpler and more flexible;
» adapted bases and (one day) adaptivity. ..

No typical drawbacks of time-harmonic Treffiz (ill-cond., quad.).
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better accuracy per DOFs and higher convergence orders;
PDE properties “known” by discrete space, e.g. dispersion;
lower dimensional quadrature needed;

simpler and more flexible;

adapted bases and (one day) adaptivity. ..

No typical drawbacks of time-harmonic Treffiz (ill-cond., quad.).

Existing works on Trefftz for time-domain wave equation:

>

>

MACIAG, SOKALA, WAUER 2005-2011, Liu, Kuo 2016,
single element Trefftz;

PETERSEN, FARHAT, TEZAUR, WANG 2009&2014,
DG with Lagrange multipliers;

EGGER, KRETZSCHMAR, SCHNEPP, TSUKERMAN, WEILAND
3x2014-2015, Maxwell equations;
KRETZSCHMAR, MOIOLA, PERUGIA, SCHNEPP 2x 2015, analysis;

BANJAY, GEORGOULIS, LIJOKA, interior penalty-DG.



Simplest basis: Trefftz polynomials

Consider wave equation —AU + C%U” =0in K c R*"! (c const.).

FordeR", |d|=1,f:R — Rsmooth, f(d-x—ct) issolution.
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Consider wave equation —AU + C%U” =0in K c R*"! (c const.).

FordeR", |d|=1,f:R — Rsmooth, f(d-x—ct) issolution.
Choose Trefftz space of polynomials of deg. < p on element K:

TP(K) : = {v e PP(K), —Av+c 20" =0}
0<j<p,

= span {(djaé XtV | ol

}, with dimension
dim (T7(K)) =("*171) 22 =Opso0 (p") < dim (PP(K))=(*411")=Opsoo (p" )

Taylor polynomial of (smooth) U belongs to TP(K).



Simplest basis: Trefftz polynomials

Consider wave equation —AU + C%U” =0in K c R*"! (c const.).

FordeR", |d|=1,f:R — Rsmooth, f(d-x—ct) issolution.
Choose Trefftz space of polynomials of deg. < p on element K:

TP(K) : = {v e PP(K), —Av+c 20" =0}

0<j<p,

= span {(djaé XtV | ol

}, with dimension

dim (T7(K)) (") 225" =Oposoo (P") < dim (P (K) ) =("111") =Opsoo (P" )

Taylor polynomial of (smooth) U belongs to TP(K).

Choice of directions d; ;:  (corresponding tfo homog. polyn. deg. j)
» n=1,left/right directions d;1 =1,d;2=—1, TP(K) =span{(x + cty};

» n=2,anydistinct {dj¢}.1,... 21+1 give a basis;

,,,,,

» n=23,(dj¢ x— cty linearly indep. <= [Y&'(d)¢)]n<jm:e full rank.



Initial-boundary value problem

First order initial-boundary value problem (Dirichlet): find (v, o)

Vv+d,d—‘z:0 iNQ=Qx(0,T) cR*"", neN,
1 ov .
: —Z-_0 in
\Y 0'+CZ En Q,
U('70) = Vo, 0'('70) =09 ONNN,
v(x,')=g on 99 x (0, T).

Equivalent o —~AU + ¢ 22U = 0sefting v = %Y and & = ~VU.

ot?
Velocity ¢ piecewise constant, Q C R" Lipschitz bounded.
» Neumann o -n = g & Robin 2v—¢-n = g BCs (v),
» Maxwell equations (v'),
Extensions: » elasticity,
» 15t order hyperbolic systems (~),
» Maxwell equations in dispersive materials. . .



Space-time mesh and assumptions
Introduce space-time polytopic mesh 7;, on Q.
Assume: ¢ = c(x) constant in elements.
Assume: each face F = 0K; N 9Ky with normal (n}, nk) is either
» space-like: cln}| < nk, denote F C F;°9°°, or
» time-like: nl. = 0, denote F c F™e.
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Space-time mesh and assumptions
Introduce space-time polytopic mesh 7;, on Q.
Assume: ¢ = c(x) constant in elements.
Assume: each face F = 0K; N 9Ky with normal (n}, nk) is either
» space-like: cln}| < nk, denote F C F;°9°°, or
» time-like: nl. = 0, denote F c F™e.

t FI DG no‘roJ)ionjr " S
T — fw) = K, 5 ‘K27 )= Ik, 5 ‘K27
> [W]y := Wy, ny, + w\Kznj‘(Z,
\\ [N =7, -k, + T, ‘M,
MT \\ Hwﬂt = w|K1 nftﬁ + w\KQ nft<2 = (w7 - w*)nf:,
T [7]e i= 71, ey + T, ey = (77 = 77)n,
ﬁ) £ i Fi=ax{0}, Fl=Qx{T}
h

Fiime - gpPace F2 =09 x [0,T).



Trefftz  T(7) = {(w.7) € L(Q), (wix, 7lx) € H' ()™,
space: or Low
Vw+ 5 =0, VoTic W_OVKeTh}.



DG elemental equation and numerical fluxes

Trefz  T(7) = {(w.7) € L*(Q), (wlk, 7lx) € H' (K)'*,
space: or

— ,2811)_
Vw+5_o7 V-t+c E—OVKGE}-

Multiplying PDEs with test (w, 7). infegrating by parts in K, using
Trefftz property and summing over K € Tx: Y(w, ) € T(Tn)

' 1
Z /9K<(UT+Uw)-nf(+<U~T+C2Uw> n,ﬂ)dSO.
KeTy "¢



DG elemental equation and numerical fluxes

Trefftz T(Th) = {(w,) € L*(Q), (wlx, Tlx) € H'(K)' ™,
space: or 2 0w

Vw+ ST =0, Verdc 7_oerTh}
Multiplying PDEs with test (w, 7). infegrating by parts in K, using
Trefftz property and summing over K € Tx: Y(w, ) € T(Tn)

Z /(;K((U7+crw)-nj§+<a-r+clsz> n,i)dSO.

KeT, /0

We approximate skeleton traces of (v, o) with numerical fluxes
(Onp, G 1p), defined as a, B € L (Fme y F9)

- spoce
oh on Fy

Unp Thp on FF,

Dhp := 4 Vo Thp = 00 on 7P,
fonp} + Blonp]n for} +alvmly  on Fe,
g Ohp —a(v—gng  on Fo.

o = =0 — KRETZSCHMAR-S.-T.-W., a8 > 7 — MONK=RICHTER.



TDG formulation

Substituting the fluxes in the elemental equation and choosing
any finite-dimensional V,(7,) < T(7x), write TDG as:

Seek (vnp, ohp) € Vp(Th) 8.t., V(w,T) € Vp(Th),

A(Vnp, ohp; W, T) = L(W, T) where
.A 0 N U;P[[w]]t - - - ds
(Vnp, Ohp; W, T) 1= }ipoce( 2 + 0y [Tl + VpplTIN + o, - [[wﬂn)

+ [ ({0} + {nd - vl + ool - [l + BlonpInlrlv) 45

+ / (¢ VppWw + oy - T) dS +/ (ohp - Mo + avry)wAS,
F 7D

h

Lw, T) = /fo

h

(c?vow+ oo - T) dS+/ glaw — 1 -ng) dS.
7



Global, implicit and explicit schemes

1 Trefftz-DG formulation is global in space-time domain Q:
huge linear system! Might be good for adaptivity.



Global, implicit and explicit schemes

1 Trefftz-DG formulation is global in space-time domain Q:
huge linear system! Might be good for adaptivity.

2 If mesh is partitioned in time-slabs

Q x (-1, t), matrix is block lower-triangular:
for each time-slab a system can be solved
sequentially: implicit method.
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Global, implicit and explicit schemes

1 Trefftz-DG formulation is global in space-time domain Q:
huge linear system! Might be good for adaptivity.

2 If mesh is partitioned in time-slabs ﬁ

Q x (-1, t;), matrix is block lower-tfriangular: i Z
for each time-slab a system can be solved I S
sequentially: implicit method. ‘ 2
3 If mesh is suitably chosen, Trefftz-DG solution 1t

can be computed with a sequence of local

systems: explicit method, allows parallelism!

“Tent pitching algorithm” of UNG®R-SHEFFER, X

MONK-RICHTER, GOPALAKRISHNAN-MONK-SEPULVEDA,
GOPALAKRISHNAN-SCHOBERL-WINTERSTEIGER, . .

Versions 1-2-3 are algebraically equivalent (on the same mesh).



Tent-pitched elements

Tent-pitched elements/patches obtained from regular space

meshes in 2+1D give parallelepipeds or octahedra+tetrahedra:

Trefftz requires quadrature on faces only:
only the shape of space elements matters.

Simplices around a tent pole can be merged in single element.



TDG a priori error analysis

Using jumps and averages, define 2 mesh- and flux-dependent

seminorms ||| - |[|pc < ||| - [|lpe+ on HY(T)' ™, norms on T(Ty,).
Y(v,0), (w,T) € T(Th) : (a,8>0)
A(v,o;0,0) > |||(v,0)||5¢ coercivity,
|A(v, 05w, 7)| < 2||[(v,0)]lIpe+ [[[(w, T)lllpe  continuity,
J

Existence & uniqueness of discrete solution (only for Trefftz!)
Stability and quasi-optimality:

U — Uhpp,0 — Op G§3 inf UV— Whp, T — T} +.
(oo~ pllllog <3 inf (0= g, Tp) o

Energy dissipation: (ifg=0)
3 fo{T}(C_ZUfle +lon?)dx < 5 fQX{O}(C_ZU(ZJ + |oof?) dx.



Stability and error bound in L?(Q) norm

Error bound in space-time L?(Q) norm follows if we have

1<

g 1@ = Craplllw s V(w, ) € T(Tr).



Stability and error bound in L?(Q) norm

Error bound in space-time L?(Q) norm follows if we have

1<
¢ ll2(9)

This follows from stability of auxiliary inhomogeneous IBVP

7l < Craplll(w, T)lllpe V(w,7) € T(Th).

Vz+0¢/ot = inQ, ®ecL?*Q)",
V-¢+c 2az/a = inQ, el?Q),
('7 O) =0, C( ) on €,
z(x,)=0 on 9N x (0,T),
2’nt22 +2 né(z + il +’C‘?ﬁ2
CllL2(zPurn) L(FEPOFD || B (|2 (rmey 1| a2 ll2FimeurD)

= C(ZThya,B) ( ||‘I’Hi2(Q)n + HC¢H?}(Q) ) V(®,9) € LQ(Q)”“~



Stability and error bound in L?(Q) norm

Error bound in space-time L?(Q) norm follows if we have

1<

This follows from stability of auxiliary inhomogeneous IBVP

ve 71220y < CTrap (W, T)llIpe V(w, T) € T(Th).

Vz+0¢/ot = inQ, ®ecL?*Q)",
V.Cte 2az/a = inQ, velL*Q),
('7 O) - 07 C( ) on Qv
z(x,)=0 on 9N x (0,T),
1 2 1 2 X |2
2’,13, +2 (nZ¢ +|| = +’C =
CllL2(zPurn) L2(FPurhn || B2 rmey I a2 llzmeurp)
< Clra ( ||‘I’Hi2(Q)n + chufﬁ(g) ) V(®,9) € L (@)

This holds under further assumptions on mesh and BCs,

otherwise we prove stability in weaker mesh-independent norm.



Convergence bounds: hpin 1+1D, hin n+1D

We prove fully-explicit hp best-approximation bounds in 1+1D.

Combined with quasi-optimality — convergence bounds:

(2hk) ™2
-1
|||(U — Unp, 0 — Uhp)|||DG <87 E SK |(C v,0) Wkt (k)
KeTh S

with K = (XK,XK+hK)X(tK,tK+ hK/C),a_l =pF=c 1<sg<pk

» Exponential convergence for analyfic solutions:
~ exp(—b#DOFs) instead of exp(—by/#DOFs).



Convergence bounds: hpin 1+1D, hin n+1D

We prove fully-explicit hp best-approximation bounds in 1+1D.

Combined with quasi-optimality — convergence bounds:

)+
110 = rpr 0 — onpllloe <87 3 T o1y,
K

KeTh

WKHLo (k)

with K = (XK,XK+hK)X(tK7tK+ hK/C),a_l =pF=c 1<sg<pk

» Exponential convergence for analyfic solutions:
~ exp(—b#DOFs) instead of exp(—by/#DOFs).

For n > 1, approximation in pis hard, in h follows from Taylor/BH:

[[(v—pp, & — Uhp)IIIDG

Sk+4
8(n+2) + 1)hg) ™2 ‘(0*1/211 c'2g)
— 1+n/2 _ | ’ sg+1
KZeTh P n/ (sK 1)! HEXT(K)

pk = "chunkiness”, a~! = 8 = ¢, 1 < sk < pk. (Cartesian mesh).



Two polynomial Trefftz spaces
If n > 2, not all solutions (v,e) of Vo + 22 =0,V -0+ 5% =0
satisfy (v,0) = (2 U, ~VU) for U solution of AU — ¢ 22Y =0
(e.g. if curlog # 0).

1 So. if we approximate 15t order IBVP coming from a 2"¢ order
one, we use as basis (£, —V)(d;, - x — ct), as before.



Two polynomial Trefftz spaces
If n > 2, not all solutions (v,e) of Vo + 22 =0,V -0+ 5% =0
satisfy (v,0) = (2 U, ~VU) for U solution of AU — ¢ 22Y =0
(e.g. if curlog # 0).
1 So. if we approximate 15t order IBVP coming from a 2"¢ order
one, we use as basis (£, —V)(d;, - x — ct), as before.

2 Otherwise, we generate basis by “evolving” polynomial initial
conditions. Elements are in the form

(U, U) = Z (av,k,axatk7 adl,k,axa tk7 ey aan,k,axa tk)y
keNg,aeNg
k+|a|<p
for ay ic,a0s Aoy le,cxs - - - » Aoy le,a € R sQtiSfying recurrence relations
A&
aU7k70¢ = _i (Olm+ 1)a<7mak*1’04+em7 k: 17"'7p7
m=1
1
ao'm,k,a = _E(am + 1)auqk*170’-+em? ‘a‘ S pi ki 1

2 different discrete spaces, same orders of approximation in h.



Numerical example

Gaussian wave, uniform mesh of squares, p-convergence:

Global Relative Error eg

Very weak dependence on flux parameters, even for a, 5 = 0.
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Maxwell’s equations

VXE+8(S?):O, VXHfa(;f:):O inQ c R3*!,

n5 x E =n§ x g(x, t) Dirichlet/PEC BCs,
{H;z(:% _x::: — (tangential) jumps.
Trefftz-DG formulation:

Apt (B, Hyps v, W) = f;me(eE;p- [V]c + uHy,- [W]e — By - [Wlr + Hy,,- [V]r ) dS

+/T(6Ehp-v+uth-W) dSJr/a (Hpp + a(n§ x Epp)) - (0§ x v)dS
Th T

# [ o (~ {Bwp} - Wlr + {Hi b - vl + alBplr - Ve + B[l - [wlx) d,
}—r:me

0(€E0'V+HHO'W)dS+/f8(n?z x g (—w+ a(nf xv))dsS.
h

lpm (V,W) = /]:h
Well-posedness and stability identical to wave equation.
Explicit approximation boundsin h. Impedance BCs also fine.
Error bounds in L?(Q)° for tent-pitched meshes and impedance.



Symmetric hyperbolic systems
As in MONK-RICHTER: piecewise-constant A > 0, constant A;

Auc+) Ay =0 inQx(0,T), Dlox = 3™ Ay
’ T LUK Y
J

D— N)ju= on o x (0, T
( ju=g x(0,T), +conditions on N.

u=1up on Q x {0},

Decomposition Mok 1= nkA + > meAy = M + M such that
M* >0, M~ <0, Mg +Mg, =00ndK,NdK,, leadsto

Aw,w) =) / ul-M;;(wl—wz)dSJr/ u-MwdS
T, ) oK1N0K,

o
4—l (D+N)u-wds,
2 Jaax(o,r)
Z(w):—/ uo~deS—%/ g -wdS.
Fp a0 (0,T)

M+ — M-
e =Aww) = 3 [ ) M () w) s
K, R, ) OK1NOKy

JF_ —
+/ u~uuds+l/ u-NudsS.
Frurp 2 2 0% (0,T)



Extensions and open problems

We have described and (a priori) analysed a Trefftz scheme for
the wave equation. Basis functions are piecewise-solution
polynomials.

vvyVvyVvVyy

vvyyvyy

More general space-time meshes (not aligned to t);
non/less dissipative methods (is our dissipation too much?);
analysis of non-penalised methods (o = 8 = 0);

L? stability in more general cases;

Maxwell, elasticity, first-order hyperbolic systems,
dispersive/Drude-type models for plasmas, ... ;

Trefftz hp-approximation theory in dimensions > 1;
other bases: non-polynomial, tfrigonometric, directional. . . ;
(directional) adaptivity;



Extensions and open problems

We have described and (a priori) analysed a Trefftz scheme for
the wave equation. Basis functions are piecewise-solution
polynomials.

vvyVvyVvVyy

vvyyvyy

More general space-time meshes (not aligned to t);
non/less dissipative methods (is our dissipation too much?);
analysis of non-penalised methods (o = 8 = 0);

L? stability in more general cases;

Maxwell, elasticity, first-order hyperbolic systems,
dispersive/Drude-type models for plasmas, ... ;

Trefftz hp-approximation theory in dimensions > 1;
other bases: non-polynomial, tfrigonometric, directional. . . ;
(directional) adaptivity;

Thank youl!






When does “adjoint stability” hold?

1 1D, constant ¢, decomposing solution in left and right waves,
C ~ T(N, + N;)'/? on a Cartesian-product N, x N; mesh.

2 1D, general ¢, with Gronwall + energy + integration by parts +
ah* bh*

: v BNk = o
min{cy hg,, ¢, hi,} U min{hg , hy )

YKiNKy =

= C~ (1/maxger, {h$} +eTNP2  )1/2, hp-type bound.

interfaces

3 nD, no time-like faces (Fi™e = (), impedance BCs only,
=C~ Th[l/2 on uniform meshes.

All bounding constants are explicit.
For general case, need bound on traces of z, ¢ - n, in L2(FjMe),

20
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