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Introduction

I Integrability arose in classical applied maths.

I Twistor theory (50 years old) has roots in relativity etc.

I Similar structures, for example geometric.

I Twistor-integrable side: impact in geometry & math phys.
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Integrability via Lax Pairs

I Integrability from commuting linear operators [L1, L2] = 0.

I The La depend on a parameter ζ (spectral parameter).

I Require [L1(ζ), L2(ζ)] = 0 for all ζ ∈ C.

I −→ conserved quantities, construction of solutions etc.
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Example: sine-Gordon Equation

With f = f (u, v), g = g(u, v), φ = φ(u, v), take

L1 = 2∂u +

(
f 0
0 −f

)
+ ζ

(
0 eiφ/2

e−iφ/2 0

)
,

L2 = −2ζ∂v + ζ

(
g 0
0 −g

)
+

(
0 e−iφ/2

eiφ/2 0

)
,

where ∂u = ∂/∂u. Then [L1, L2] = 0 is equivalent to

φuv + sinφ = 0.

The Lax pair has the form
L1 = (∂1 + A1) + ζ(∂3 + A3), L2 = (∂2 + A2) + ζ(∂4 + A4):
four dimensions, quaternionic structure.
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Geometry and Gauge Theory

I Coordinates zµ, with µ = 1, . . . , 4.

I n × n matrices Aµ, operators Dµ = ∂µ + Aµ.

I Geometry: vector bundle with fibre Cn over each z .

I Connection with covariant derivative Ψ 7→ DµΨ.

I Curvature Fµν = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν ].

I Physics: gauge potential Aµ and gauge field Fµν .

I Gauge transformation
Ψ 7→ Λ−1Ψ, DµΨ 7→ Λ−1DµΨ, Fµν 7→ Λ−1FµνΛ.
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General Lax Pairs and SDYM

I So generally L1 = D1 + ζD3 and L2 = D2 + ζD4.

I Then [L1, L2] = 0 is equivalent to

F12 = F34 = F14 + F32 = 0. (SDYM)

I These are the self-dual Yang-Mills equations.

I Nonlinear coupled PDEs for Aµ(zν), integrable.

I Sine-Gordon, KdV, nonlinear Schrödinger, Toda etc are
reductions of SDYM.
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Twistor Space as a Quotient

I Take zµ ∈ C4 and ζ ∈ CP1 = C ∪ {∞}.
I So (zµ, ζ) ∈ F = C4 × CP1.

I The vector fields ∂1 + ζ∂3 and ∂2 + ζ∂4 live in F.

I Quotient is 3-dim complex manifold T: twistor space.

I Correspondence C4 ↔ T is classical algebraic geometry.

I Solutions of SDYM on C4 correspond to holomorphic
vector bundles on T: a nonlinear integral transform.

I No equations on T-side, except holomorphic structure.

I Analogous to Inverse Scattering Transform.
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Twistor Correspondence
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Reductions and Generalizations.

I Impose boundary and global conditions.
I Eg dimensional reduction and algebraic constraints.
I BPS monopoles: take (t, x1, x2, x3) real, and put

z1 = t+ix3, z4 = t−ix3, z2 = i(x1+ix2), z3 = i(x1−ix2).

I Assume fields independent of t, write Φ = At , get

D1Φ = F23, D2Φ = F31, D3Φ = F12. (Bog)

I BC |Φ| → 1 & |Fjk | → 0 as r →∞ in R3.
I Topological classification → monopole number p.
I Higher-dim generalization: Lax 2m-plet with m ≥ 2.
I Reductions give hierarchies such as KdV and NLS.
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Moduli Spaces

I In many cases, solution space is ∪pMp.

I Mp is the moduli space of p static solitons.

I For SU(2) monopoles, Mp is a 4p-dim manifold.

I Comes equipped with a natural hyperkähler metric.

I Dynamics not integrable, but approximated by geodesics.
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Reciprocity

I Kind of duality transform (nonlinear integral transform).

I ADHM transform, Nahm transform, and generalizations.

I Related to Fourier-Mukai transform in algebraic geometry.

I SDYM in R4: let Sd ,k be the reduced system where
• the fields depend on only d coordinates;
• they are periodic in k coordinates;
• they satisfy appropriate BCs in d − k dimensions.

I Then Sd ,k ∼= S4−d+k,k .

I The soliton number p and the rank n get interchanged.

I k = 0, d = 3: monopoles (PDE) from Nahm eqns (ODE).
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Self-Dual Einstein Equations

I Historically, this came before the gauge-theory version.

I Use vector fields V = V µ(xα)∂µ on a 4-dim manifold.

I Lax pair L1 = V1 + ζV2, L2 = V3 + ζV4.

I Surfaces P̃ etc become ‘curved’.

I Encodes a curved metric on the 4-dimensional space:

I Self-dual solution of Einstein’s vacuum equations.

I Generalizes to 4k dimensions: hyperkähler structure.

I Of great interest in geometry, GR, string theory etc.
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Discrete Systems from ADHM Data

I SDYM instanton fields on R4 correspond to algebraic data
(ADHM): matrices satisfying quadratic algebraic relations.

I Imposing symmetry in R4 makes these into lattice eqns.

I Circle symmetry → discrete version of Nahm equations

d

ds
Tj =

1

2
εjkl [Tk ,Tl ].

I T 2 symmetry → discrete version of Hitchin equations.

I On R2, two Higgs fields (Φ1,Φ2), gauge field F = Fxy ,

F = [Φ1,Φ2], DxΦ1 = −DyΦ2, DxΦ2 = DyΦ1.
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Lattice Gauge Theory & Discrete Hitchin Eqns

I 2-dim lattice with x , y ∈ Z2, gauge group U(p).

I Local U(p) gauge invariance on lattice: ψ 7→ Λ−1ψ.

I Standard lattice gauge assigns A ∈ U(p) to each link.

I In our case, assign A ∈ GL(p,C) to each link.

I Write B for the x-links, C for the y -links.

I Lattice curvature is Ω = C−1B−1
+yC+xB .

I One of our lattice eqns is Ω = 1, and the other is

(BB∗)−x + (CC ∗)−y = B∗B + C ∗C .
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Some Features

I Corresponding lattice linear system is

B∗ψ+x + ζ(Cψ)−y = 0, C ∗ψ+y − ζ(Bψ)−x = 0.

I Continuum limit: lattice spacing h, let h→ 0 with

B = 1− h(Ax − iΦ1), C = 1− h(Ay − iΦ2).

I U(1) case: solving Ω = 1 gives B = exp(∆+
x φ),

C = exp(∆+
Yφ), leaving nonlinear discrete Laplace eqn

∆−
x exp(2∆+

x φ) + ∆−
y exp(2∆+

y φ) = 0.

I T 2-sym instantons correspond to solns of this (with BCs).
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