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• I. Introduction, background, Solitons

• II. Compatible linear systems, Lax pairs, connection to
nonlinear evolution equations

• III. Inverse Scattering Transform (IST): KdV; KdV is related
to the time independent Schrödinger scattering problem

• IV. IST: NLS, mKdV, SG, nonlocal NLS... These eq are
related to 2x2 scattering problem with two potentials (q, r)
and suitable symmetry



I. Introduction–Background

• 1837–British Association for the Advancement of Science
(BAAS) sets up a “Committee on Waves”; one of two
members was J. S. Russell (Naval Scientist).

• 1837, 1840, 1844 (Russell’s major effort): “Report on Waves”
to the BAAS–describes a remarkable discovery



Russell-Wave of Translation

• Russell observed a localized wave: “rounded
smooth...well-defined heap of water”

• Called it the “Great Wave of Translation” – later known as
the solitary wave

• “ Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon...”



Russell Experiments
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Russell: to Mathematicians, Airy

Russell: “... it now remained for the mathematician to predict the
discovery after it had happened...”
Leading British fluid dynamics researchers doubted the importance
of Russell’s solitary wave. G. Airy (below): believed Russell’s wave
was linear



Stokes

1847–G. Stokes : Stokes worked with nonlinear water wave
equations and found a traveling periodic wave where the speed
depends on amplitude; he was ambivalent w/r Russell. Stokes
made many other critical contributions to fluid dynamics
–“Navier-Stokes equations”



Boussinesq, Korteweg-deVries

• 1871-77 – J. Boussinesq (left): new nonlinear eqs. and
solitary wave solution for shallow water waves

• 1895 –D. Korteweg (right) & G. deVries: also shallow water
waves (“KdV” eq.); NL periodic sol’n: “cnoidal” wave; limit
case: the solitary wave (also see E. deJager ’06: comparison
Boussinesq – KdV)

• Russell’s work was (finally) confirmed



KdV Equation –1895

KdV eq –1895
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where η(x , t) is wave elevation above mean height h; g is gravity
and T̂ is normalized surface tension (T̂ = T

ρgh2 )



KdV Eq.–con’t

• nondimensional KdV eq.

ut + 6uux + uxxx = 0

• solitary wave:

u = 2κ2sech2κ(x − 4κ2t − x0), κ, x0 const



KdV –Modern Times

• 1895-1960 – Korteweg & deVries (KdV): water waves...

• 1960’s – mathematicians developed approx methods to find
reduced eq governing physical systems; KdV is an important
“universal” eq

• 1960s M. Kruskal: ‘FPU’ (Fermi-Pasta-Ulam, 1955) problem
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with force law: F (∆) = −k(∆ + α ∆2), α const; M.K. finds
KdV eq in the continuum limit



KdV –Modern Times–con’t

• 1965 –computation on KdV eq.

ut + uux + δ2uxxx = 0

N. Zabusky, M. Kruskal introduced the term: Solitons

Figure: Calculations of the KdV Eq. with δ2 ≈ 0.02 — from
numerical calculations of ZK 1965



KdV –Modern Times–con’t

Kruskal and Miura study cons laws of KdV eq & modified KdV
(mKdV) eq. Below KdV eq. left; mKdV eq right:

ut + 6uux + uxxx = 0, vt − 6v2vx + vxxx = 0

Miura finds a transformation between KdV and mKdV:

u = −(vx + v2)



KdV leads the way to IST

• Miura Transf leads to scattering problem and linearization of
KdV: v = φx/φ

φxx + (k2 + u(x , t))φ = 0, φt =Mφ

kt = 0, k constant

• 1967 – Method to find solution of KdV for decaying data:
Gardner, Greene, Kruskal, Miura

• 1970’s-present – KdV developments led to new methods &
results in math physics

• Termed Inverse Scattering Transform (IST)–find solitons as
special solutions –connect to e-values



KdV Solitary Wave -Soliton

Normalized equation:

ut + 6uux + uxxx = 0

Soliton: us(x , t) = 2κ2 sech2 κ(x − 4κ2t − x0)

One eigenvalue: umax = 2κ2; speed = 2umax , x0 = 0



KdV –Two Soliton Interaction

KdV eq. with two eigenvalues: two solitons

Solitons: speed and amplitude preserved upon interaction



NLS is Integrable

Another important integrable eq. is the nonlinear Schrödinger eq.
–NLS (Zakharov & Shabat, 1972)

iqt = qxx ± 2q2q∗ = qxx + Vq; V = ±2qq∗(x , t), ∗ = cc

Related to

φx = Xφ =

(
−ik q(x , t)
r(x , t) ik

)
φ with r(x , t) = ∓q∗(x , t)

φt = Tφ, T = T [q, r ], 2x2

kt = 0, k is constant



Key IST Equations

With suitable ‘time’ operator T , AKNS (1973) find many
compatible eq–including:

r = ∓q∗ ∈ C : iqt = qxx ± 2q2q∗: NLS

r = ∓q ∈ R : qt + qxxx ± 6q2qx = 0: mKdV

r = −q = ux/2 ∈ R : uxt = sin u : Sine-Gordon eq (SinG)

r = q = ux/2 ∈ R : uxt = sinh u : Sinh-Gordon eq (SinhG)

r = −1 : qt + qxxx ± 6qqx = 0: KdV

–Plus a class of other eqs

AKNS carry out linearization/solution; term the method “IST”

Solitons correspond to eigenvalues of: φx = Xφ; can travel; can
remain stationary and oscillate in time (breather)...



NLS Soliton

r = −q∗ ∈ C : iqt = qxx + 2q2q∗: NLS

Soliton solution to NLS: k = ξ + iη eigenvalue of φx = Xφ

q(x , t) = 2ηe−2iξx+4i(ξ2−η2)−iψ0sech(2η(x − 4ξ − δ0))

Here ψ0, δ0 are related to the phase/amplitude of the ‘norming’
constant

Soliton solution has amplitude 2η and travels with velocity 4ξ



‘Nonlocal NLS’ is Integrable

Motivated by studies in PT symmetric systems

iqt = qxx + V (x)q; V (x) = V ∗(−x)

MJA & Z. Musslimani 2013 find a new symmetry of AKNS system:

r(x , t) = ∓q∗(−x , t)

and an integrable ‘nonlocal NLS’ eq

iqt = qxx + V (x , t)q; V (x , t) = ±2q(x , t)q∗(−x , t) = V ∗(−x , t)



Nonlocal mKdV, Sine-Gordon Equations

Also find: integrable nonlocal mKdV, SinGordon eq & others

Real nonlocal mKdV, r(x , t) = ∓q(−x ,−t) q ∈ R:

qt(x , t) + qxxx(x , t)± 6q(x , t)q(−x ,−t)qx(x , t) = 0

MJA, Z. Musslimani, 2016



II. Compatible linear systems, Lax Pairs 1 + 1d

Lax (1968) considered two operators; i.e. operator ‘pair’– in
general:

Lv = λv

vt =Mv

Here L,M depend on ‘potential’ u

Find KdV from compatibility of:

L = ∂2
x + u

M = ux + γ − (2u + 4λ)∂x = γ − 3ux − 6u
∂

∂x
− 4

∂3

∂x3

where γ is const and λ is a spectral parameter with λt = 0:
‘isospectral flow’



Lax Pairs –con’t

Take ∂/∂t of Lv = λv :

Ltv + Lvt = λtv + λvt ;

Use vt =Mv

Ltv + LMv = λtv + λMv = λtv +Mλv

= λtv +MLv =>

[Lt + (LM−ML)] v = λtv

Hence to find nontrivial ef v(x , t)

(∗) Lt + [L,M] = 0 where [L,M] = LM−ML

if and only if λt = 0; (*) called Lax eq



Compatible Matrix Systems

Extension:

vx = Xv , vt = Tv

where v is an n-d vector and X and T are n × n matrices :
X = X[u;λ],T = T[u;λ]; u is the potential

Require compatibility: vxt = vtx , then

Xt − Tx + [X,T] = 0

and require e-value dependence to be isospectral: λt = 0. Above
eq more general than original Lax pair: allows more gen’l e-value
dependence than Lv = λv



2× 2 Matrix Systems

After KdV developments and Lax’ ideas, ZS (1972) found
compatible pair and method of sol’n of NLS. AKNS (1973)
generalized this to class of eq including NLS, mKdV, SG, KdV etc

AKNS: E-value prob- or scattering problem (L) :

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1

Time dependence (M):

v1,t = Av1 + Bv2

v2,t = Cv1 + Dv2

with kt = 0 and A, B, C and D functionals of q(x , t), r(x , t) and k



2× 2 Matrix Systems–Special Cases

Note when r(x , t) = −1, then from

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1 = ikv2 − v1

we can solve for v1 in terms of v2; find v2 satisfies:

v2,xx + (k2 + q)v2 = 0

i.e the time independent Schrödinger e-value prob–which is related
to KdV

Method described below (AKNS) yields physically interesting NL
evolution eq when r = −1, r = ∓q∗, q ∈ C, r = ∓q, q ∈ R



2× 2 Matrix Systems–con’t

Consider the 2× 2 compatible matrix system

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1

v1,t = Av1 + Bv2

v2,t = Cv1 + Dv2

Namely require vj ,xt = vj ,tx , j = 1, 2, and dk/dt = 0: isospectral
flow

This yields two eq of form: Γ1
j v1 + Γ2

j v2 = 0, j = 1, 2; we take

Γ1
j = Γ2

j = 0



2× 2 Matrix Systems–con’t

This leads to D = −A and three eq for A,B,C

Ax = qC − rB

Bx + 2ikB = qt − 2Aq

Cx − 2ikC = rt + 2Ar

Note the e-value dependence k in coef of B,C in 2nd 3rd eq
Look for sol’ns A,B,C in finite powers of k

A =
n∑

j=0

Ajk
j , B =

n∑
j=0

Bjk
j , C =

n∑
j=0

Cjk
j

Substitution yields eq which determine Aj ,Bj ,Cj and leave two
additional constraints: NL evolution eq



2× 2 Matrix Systems–Example

Ax = qC − rB

Bx + 2ikB = qt − 2Aq

Cx − 2ikC = rt + 2Ar

Prototype: n = 2, A = A2k
2 + A1k + A0 etc.

The coefficients of k3 give B2 = C2 = 0; at order k2, we obtain
A2 = a = const etc.
Find after some algebra: coupled NL evoln eq (constraint on sol’ns
of A,B,C eq)

−1

2
aqxx = qt − aq2r

1

2
arxx = rt + aqr2



2× 2 Matrix Systems–NLS

If r = ∓q∗ and a = 2i , then find:

iqt = qxx ± 2q2q∗ NLS

Both focusing (+) and defocusing (−) cases inlcuded
Summary n = 2 with r = ∓q∗ find

A = 2ik2 ∓ iqq∗

B = 2qk + iqx

C = ±2q∗k ∓ iq∗x

provided that q(x , t) satisfies the NLS eq
and recall: dk/dt = 0: isospectral flow



2× 2 –KdV,mKdV

For n = 3: with r = −1, obtain the KdV eq:

qt + 6qqx + qxxx = 0

If r = ∓q, real, obtain the mKdV eq

qt ± 6q2qx + qxxx = 0



2× 2 –Sine-Gordon, Sinh-Gordon Eq

Another system: n = −1, let

A = a(x ,t)
k , B = b(x ,t)

k , C = c(x ,t)
k

Find eq for a, b, c; special cases are

(i) : a =
i

4
cos u, b = −c =

i

4
sin u, q = −r = −1

2
ux

and u satisfies the Sine–Gordon eq:

uxt = sin u

(ii): a = i
4 cosh u, b = −c = − i

4 sinh u, q = r = 1
2ux

and u satisfies the Sinh–Gordon eq

uxt = sinh u



2× 2– New Symmetry

If r(x , t) = ∓q∗(−x , t) then using method described earlier find

iqt = qxx ± 2q2(x , t)q∗(−x , t) Nonlocal NLS

or written as

iqt = qxx ± V [q]q(x , t), V [q] = q(x , t)q∗(−x , t)



2× 2–General Class of NL Eq

A,B,C eq are linear eq that be solved for decaying q, r subject to
constraint; find: (

r
−q

)
t

+ 2A∞(L)

(
r
q

)
= 0

where A∞(k) = lim|x |→∞ A(x , t, k); A∞(k) can be the ratio of two
entire functions; L is

L =
1

2i

(
∂x − 2r(I−q) 2r(I−r)
−2q(I−q) −∂x + 2q(I−r)

)

where ∂x ≡ ∂/∂x and (I−f )(x) ≡
∫ x

−∞
f (y)dy



2× 2–General Class of NL Eq–con’t

Ex. A∞(k) = 2ik2 find:

(
r
−q

)
t

= −4iL2

(
r
q

)
= −2L

(
rx
qx

)
= i

(
rxx − 2r2q
qxx − 2q2r

)
With r = ∓q∗ we have the NLS eq

iqt = qxx ± 2q2q∗ NLS



Other Eigenvalue Problems

There have been numerous applications and generalizations of
these method. For example the matrix generalization of 2× 2
system; to N × N systems i.e.

∂v

∂x
= ikJv + Qv ,

∂v

∂t
= Tv

where Q is an N × N matrix with Q ii = 0,
J = diag(J1, J2, . . . , JN), v(x , t) is an N-dimensional vector

T is an N × N matrix and kt = 0

T can be expanded in powers of k to find NL Evol Eq

Find numerous interesting compatible NL evol eq such as N wave
eq, Boussinesq eq, vector NLS system etc.



2 + 1d ‘Scattering’ Problems

There are compatible systems in 2 + 1d e.g. N × N linear system:

∂v

∂x
= J

∂v

∂y
+ Qv ,

∂v

∂t
= Tv

NL wave eq are obtained by expanding T in powers of ∂
∂y

Find N wave eq, Davey-Stewartson (2× 2 system with r = ∓q∗),
and Kadomstsev-Petviashvili (KP) eq (2× 2 system with r = −1):

(qt + 6qqx + qxxx)x + σ2qyy = 0 KP

where σ2 = ∓1: so called KP I,II eq

2× 2 system with r = −1 yields:

σvy + vxx + uv = 0



Discrete Eigenvalue Problems

Recall the continuous 2× 2 system

v1,x = −ikv1 + q(x , t)v2

v2,x = ikv2 + r(x , t)v1

Discretizing vj ,x ≈
vj,n+1−vj,n

h and calling

z = e±ikh ≈ 1± ikh + · · · and Qn(t) = hqn,Rn(t) = hrn leads to
the following discrete 2× 2 eigenvalue problem

v1,n+1 = zv1,n + Qn(t)v2,n

v2,n+1 =
1

z
v2,n + Rn(t)v1,n



Discrete Eigenvalue Problems–con’t

To
v1,n+1 = zv1,n + Qn(t)v2,n

v2,n+1 =
1

z
v2,n + Rn(t)v1,n

we add time dependence

dv1,n

dt
= Av1,n + Bv2,n

dv2,n

dt
= Cv1,n + Dv2,n

Taking zt = 0 requiring compatiblity and expanding An,Bn,Cn,Dn

in finite Laurent series in z yields NL Evol eq as constraints



Discrete Eigenvalue Problems–con’t

Ex. Expanding
An =

∑2
j=−2 Aj ,nz

j similar for Bn,Cn,Dn eventually yields

i
d

dt
Qn = Qn+1 − 2Qn + Qn−1 − QnRn (Qn+1 + Qn−1)

−i d
dt

Rn = Rn+1 − 2Rn + Rn−1 − QnRn (Rn+1 + Rn−1)

With Rn = ∓Q∗n we have the integrable discrete NLS eq

i
d

dt
Qn = Qn+1 − 2Qn + Qn−1 ± |Qn|2 (Qn+1 + Qn−1)

or with Qn(t) = hqn(t)

i
d

dt
qn =

1

h2
(qn+1 − 2qn + qn−1)± |qn|

2 (qn+1 + qn−1)



Conclusions II.

• NL Evolution Eq are obtained from compatible linear systems

• Lax Pair:

Lv = λv

vt =Mv

with λt = 0. Or extension:

vx = Xv , vt = Tv

• From 2× 2 systems find NLS, mKdV, SG, KdV, nonlocal
NLS, ...

• May generalize to find higher order compatible matrix
systems, multidimensional eq; discrete eq....



III. Inverse Scattering Transform (IST) for KdV

Motivation: linear Fourier Transform (FT)
Consider the linear evol eq

ut =
N∑
j=0

aj∂
j
xu = a0u + a1ux + a2uxx + · · · , aj ∈ R const

The soln u(x , t) can be found via FT as

u(x , t) =
1

2π

∫
b(k , t)e ikxdk (FT)

Note:
∫

=
∫∞
−∞ and it is assumed that |u| → 0 rapidly as

|x | → ∞, and u is sufficiently smooth Note:
∫

=
∫∞
−∞



FourierTransform–con’t
Substituting FT into linear eq yields (assume interchanges etc)∫

eikx{bt − b
N∑
j=0

(ik)jaj} dk = 0 or bt = b
N∑
j=0

(ik)jaj

So

b(k, t) = b0(k)e−iω(k)t , ω(k) = i
N∑
j=0

(ik)jaj

When ω(k) ∈ R (a2j = 0, j = 0, 1...), it is called the dispersion
relation. Thus the soln is given by

u(x , t) =
1

2π

∫
b0(k)e i [kx−ω(k)t]dk

where: b0(k) =
∫
u0(x)e−ikxdx

u(x , t) ∈ R symmetry: b0(k) = b∗0(−k)



FourierTransform–Linearized KdV

The previous result shows that for the linearized KdV eq

ut + uxxx = 0

The FT soln is

u(x , t) =
1

2π

∫
b0(k)e i [kx+k3t]dk; b0(k) =

∫
u0(x)e−ikxdx dk

Schematically the soln process via FT is:

u(x , 0)
direct FT−−−−−→ b(k , 0) = b0(k)yt: time evolution

u(x , t)
inverse FT←−−−−−− b(k , t) = b0(k)e ik

3t = b0(k)e−iω(k)t



IST for KdV

Compatibility of the following system

Lv : vxx+(λ+u(x , t))v = 0 andMv : vt = (γ+ux)v+(4λ−2u)vx

where γ=const and λt = 0 yields the KdV eq

ut + 6uux + uxxx = 0 KdV

Soln via IST for decaying data: S(k) denotes scattering data

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)



Direct Scattering–con’t

Begin with discussion of direct scattering problem. Let λ = k2,
then L (scattering) operator is:

L : vxx +
(
u(x) + k2

)
v = 0

note suppression the time dependence in u. Assume that u(x) ∈ R
and decays sufficiently rapidly, e.g. u lies in the space of functions

L1
2 :

∫ ∞
−∞

(1 + |x |2)|u(x)|dx <∞

Associated with operator L are efcns for real k that are bounded
for all values of x , and have appropriate analytic extensions into
UHP–k , LHP–k



Direct Scattering–con’t

Appropriate efcns associated with operator L are defined from their
BCs; i.e. identify 4 efcns defined by the following asymptotic BCs

φ(x ; k) ∼ e−ikx , φ̄(x ; k) ∼ e ikx as x → −∞
ψ(x ; k) ∼ e ikx , ψ̄(x ; k) ∼ e−ikx as x →∞

So, e.g. φ(x , k) is a soln of the eq which tends to e−ikx as
x → −∞ etc. Note: φ̄ does not represent cc; rather *=cc
From BCs and u(x) ∈ R have symmetries:

φ(x ; k) = φ̄(x ;−k) = φ∗(x ,−k)

ψ(x ; k) = ψ(x ;−k) = ψ∗(x ,−k)



Direct Scattering–con’t

The Wronskian of 2 solns ψ, φ is defined as

W (φ, ψ) = φψx − φxψ

and from Abel’s Theorem, the Wronskian is const.
Hence from ±∞:

W (ψ, ψ̄) = −2ik = −W (φ, φ̄)

Since L is a linear 2nd order ODE, from linear independence of its
solutions we obtain the following completeness relationships
between the efcns

φ(x ; k) = a(k)ψ̄(x ; k) + b(k)ψ(x ; k)

φ̄(x ; k) = ā(k)ψ(x ; k) + b̄(k)ψ̄(x ; k)

For u(x) ∈ R only need first eq



Direct Scattering–con’t

a(k), b(k) can be expressed in terms of Wronskians:

a(k) =
W (φ(x ; k), ψ(x ; k))

2ik
, b(k) = −W (φ(x ; k), ψ̄(x ; k))

2ik

Thus φ, ψ, ψ̄ determine a(k), b(k) which are part of the ‘scattering
data’
When u(x) ∈ R find symmetries: a(−k) = a∗(k); b(−k) = b∗(k)
and unitarity:

|a(k)|2 − |b(k)|2 = 1, k ∈ R



Direct Scattering–con’t

It is more convenient to work with modified efcns:

M(x ; k) = φ(x ; k)e ikx ∼ 1 as x → −∞
N̄(x ; k) = ψ̄(x ; k)e ikx ∼ 1 as x → +∞

and also N(x , k) = ψ(x ; k)e ikx . Completeness of efcns implies

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)N(x ; k)

where ρ(k) = b(k)
a(k)

τ(k) = 1/a(k) and ρ(k) are called the transmission and
reflection coefs



Direct Scattering–con’t

ψ(x ; k) = ψ̄(x ;−k) implies N(x ; k) = N̄(x ;−k)e2ikx

Due to this symmetry will only need 2 efcns. Namely, from
completeness:

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)e2ikx N̄(x ;−k) (∗)

where ρ(k) = b(k)
a(k)

(*) will be a fundamental eq. Later will show that (*) is a
generalized Riemann-Hilbert boundary value problem (RHBVP)



Analyticity of Efcns

Theorem
For u ∈ L1

2 :
∫∞
−∞(1 + |x |2)|u| <∞

(i) M(x ; k) and a(k) are analytic fcns of k for Imk > 0 and tend
to unity as |k| → ∞; they are continuous on Imk = 0;

(ii) N̄(x ; k) and ā(k) are analytic fcns of k for Imk < 0 and tend
to unity as |k| → ∞; they are continuous on Imk = 0

Using Green’s fcn techniques may show that M(x ; k), N̄(x ; k)
satisfy the following Volterra integral eq

M(x ; k) = 1 +
1

2ik

∫ x

−∞

{
1− e2ik(x−ξ)

}
u(ξ)M(ξ; k)dξ

N̄(x ; k) = 1− 1

2ik

∫ ∞
x

{
1− e−2ik(ξ−x)

}
u(ξ)N̄(ξ; k)dξ

Proof: Convergence of Neumann series



Potential and Efcns

From efcn can determine potential u

Using

N̄(x ; k) = 1− 1

2ik

∫ ∞
x

{
1− e−2ik(ξ−x)

}
u(ξ)N̄(ξ; k)dξ

then as k →∞, Riemann-Lesbegue Lemma implies:

N̄(x ; k) ∼ 1− 1

2ik

∫ ∞
x

u(ξ)dξ (∗∗)



Analyticity, RH Problem and Scattering Data

We will work with

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)e2ikx N̄(x ;−k) (∗)

where ρ(k) = b(k)
a(k)

Note: LHS: M(x ;k)
a(k) is analytic UHP-k/[zero’s of a(k)]; RHS:

N̄(x ; k) is analytic LHP-k;

We will consider remaining term as the ‘jump’ (change) in
analyticity across Real k axis



Required Scattering Data

Scattering data that will be needed: ρ(k) and information about
zero’s of a(k):

For real u(x) from operator L can show:

a(k) has a finite number of simple zero’s on img axis:
a(kj) = 0; {kj = iκj}, j = 1, ...J; κj > 0;

At every zero kj = iκj there are L2 bound states:

φj = φ(x , kj), ψj = ψ(x , kj) such that φj = bjψj => Mj = bjNj ;
for inverse problem we will need: Cj = bj/a

′(kj); j = 1, ...J

Cj are called ‘norming constants’



Next: Inverse Problem

Scattering data: S(k) = {ρ(k), {κj ,Cj}, j = 1, 2, ...J }

Recall scheme:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)

Next consider inverse problem at fixed time



Inverse Scattering–Projection Operators

Recall

M(x ; k)

a(k)
= N̄(x ; k) + ρ(k)e2ikx N̄(x ;−k) (∗)

(*) is fundamental eq.

Apart from poles at a(kj) = 0, M(x ;k)
a(k) is anal UHP; and N̄(x ; k) is

anal in LHP. (∗) a generalized (RH) problem; it leads to an
integral eq for N(x ; k)

Use projection operators
Consider the P± projection operator defined by

(P±f )(k) =
1

2πi

∫ ∞
−∞

f (ζ)dζ

ζ − (k ± i0)
= lim

ε↓0

{
1

2πi

∫ ∞
−∞

f (ζ)dζ

ζ − (k ± iε)

}



Projection Operators–con’t

If f (k) = f±(k) is anal in the UHP/LHP-k and f±(k)→ 0 as
|k | → ∞ (for Im k ><0), then from contour integration:

(P±f∓)(k) = 0

(P±f±)(k) = ±f±(k),

To most easily explain ideas, 1st assume that there are no poles,
that is a(k) 6= 0. Then operating on (*) with P−:

P−
[(

M(x ; k)

a(k)
− 1

)]
= P−

[
(N̄(x ; k)− 1) + ρ(k)e2ikx N̄(x ;−k)

]
From Proj: LHS=0 (since assumed no zero’s of a(k)); and
P−

[
(N̄(x ; k)− 1)

]
= −(N̄(x ; k)− 1) implies



Inverse Problem: no poles

N̄(x ; k) = 1 +
1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ − (k − i0)
(E1)

Symmetry: N(x ; k) = e2ikx N̄(x ;−k) => an integral eq

N(x ; k) = e2ikx

{
1 +

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + k + i0

}
Reconstruction of the potential u; As k →∞ (E1) implies

N̄(x ; k) ∼ 1− 1

2πik

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ (E2)

From direct integral eq (**): N̄(x ; k) ∼ 1− 1
2ik

∫∞
x u(ξ)dξ;

comparing (**) & (E2):

u(x) = − ∂

∂x

{
1

π

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

}



Inverse Problem: Including Poles

For the case when a(k) has zeros, one can extend the above result;
suppose

a(kj = iκj) = 0, κj > 0, j = 1, · · · J

We define
Nj(x) = N(x ; kj)

Evaluating the pole contributions and carrying out similar
calculations as before leads to

N(x ; k) = e2ikx

1−
J∑

j=1

CjNj(x)

k + iκj
+

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + k + i0





Inverse Problem: Including Poles–con’t
To complete the system, evaluate at k = kp = iκp

N(x ; k) = e2ikx

1−
J∑

j=1

CjNj(x)

k + iκj
+

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + k + i0



Np(x) = e−2κpx

1−
J∑

j=1

CjNj(x)

i(κp + κj)
+

1

2πi

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ

ζ + iκp


for p = 1, ...J. Above is a coupled system of integral eq for
N(x , k); {Nj(x) = N(x , kj = iκj)}, j = 1, · · · , J
From these eq u(x) is reconstructed from

u(x) =
∂

∂x

2
J∑

j=1

CjNj(x)− 1

π

∫ ∞
−∞

ρ(ζ)N(x ; ζ)dζ





IST – So Far

So far in the IST process direct and inverse problem have been
discussed

Direct problem (from operator L): u(x)→ S(k)

Inverse problem: S(k) = {ρ(k), {κj ,Cj} } → u(x)

Direct and inverse problems are the NL analogues of the direct and
inverse Fourier transform

Next need time dependence; recall:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)



IST: Time Dependence

For time dependence use associated time evolution operator: M
which for the KdV eq is

vt =Mv = (ux + γ)v + (4k2 − 2u)vx

with γ const. With v = φ(x , k) and using

φ(x , t; k) = M(x , t; k)e−ikx ,

M then satisfies

Mt = (γ − 4ik3 + ux + 2iku)M + (4k2 − 2u)Mx

Also recall

M(x , t; k) = a(k, t)N̄(x , t; k) + b(k , t)N(x , t; k)



IST: Time Dependence
The asymptotic behavior of M(x , t; k) is given by

M(x , t; k)→ 1, as x → −∞
M(x , t; k)→ a(k , t) + b(k , t)e2ikx as x →∞

From

Mt = (γ − 4ik3 + ux + 2iku)M + (4k2 − 2u)Mx

and using the fact that u → 0 rapidly as x → ±∞, find

γ − 4ik3 = 0, x → −∞

at + bte
2ikx = 8ik3be2ikx , x → +∞

and by equating coef of e0, e2ikx find

at = 0, bt = 8ik3b



IST: Time Dependence–con’t

Solving a, b eq yields

a(k, t) = a(k , 0), b(k , t) = b(k , 0) exp(8ik3t) so

ρ(k, t) =
b(k , t)

a(k, t)
= ρ(k, 0)e8ik3t

a(kj) = 0 implies
kj = iκj = constant

Since the e-values are const in time, this is an “isospectral flow”
Also find the time dependence of the Cj(t) is given by

Cj(t) = Cj(0)e8ik3
j t = Cj(0)e8κ3

j t j = 1, . . . J



IST– With Time Dependence

Thus we have the time dependence scattering data:

S(k , t) = {ρ(k, t), {κj ,Cj(t)} j = 1, . . . , J}; with

ρ(k , t) = ρ(k , 0)e8ik3t ;κj = const;Cj(t) = Cj(0)e8κ3
j t , j = 1, ...J

Next we will add time dependence to inverse problem

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)



Inverse Problem: Including Poles–time included
Inegral-algebraic system with time included:

N(x , t; k) = e2ikx

1−
J∑

j=1

Cj(t)Nj(x , t)

k + iκj
+

∫ ∞
−∞

ρ(ζ, t)N(x , t; ζ)dζ

2πi(ζ + k + i0)



Np(x , t) = e−2κpx

1−
J∑

j=1

Cj(t)Nj(x , t)

i(κp + κj)
+

∫ ∞
−∞

ρ(ζ, t)N(x , t; ζ)dζ

2πi(ζ + iκp)


for p = 1, ..., J
From these eq u(x) is reconstructed from

u(x , t) =
∂

∂x

2
J∑

j=1

Cj(t)Nj(x , t)− 1

π

∫ ∞
−∞

ρ(ζ, t)N(x , t; ζ)dζ





‘Pure’ Solitons–Reflectionless Potls

‘Pure’ solitons are obtained by assuming ρ(k , 0) = 0 ‘reflectionless’
potentials. From IST–need only the discrete contributions

Np(x , t) = e−2κpx

1−
J∑

j=1

Cj(t)Nj(x , t)

i(κp + κj)

 , p = 1, · · · , J

Above is a linear algebraic system for
{Np(x , t) = N(x , t, kp)}, p = 1, .., J

From these eq u(x , t) is reconstructed from

u(x , t) =
∂

∂x

2
J∑

j=1

Cj(t)Nj(x , t)





IST–One Soliton

When there is only one ev (J = 1) find

N1(x , t)− iC1(0)

2κ1
e−2κ1x+8κ3

1tN1(x , t) = e−2κ1x

which yields N1(x , t) and u(x , t):

N1(x , t) =
2κ1e

−2κ1x

2κ1 − iC1(0)e−2κ1x+8κ3
1t

u(x , t) = 2
∂

∂x

{
e8κ3

1t iC1(0)N1(x , t)
}

which leads to the familiar one soliton soln:

u(x , t) = 2κ2
1 sech2

{
κ1(x − 4κ2

1t − x1)
}

where x1 is defined via −iC1(0) = 2κ1 exp(2κ1x1)



Conserved Quantities

May relate a(k), which is a constant of motion, to an infinite
number of conserved quantities from

a(k) =
1

2ik
W (φ, ψ)

=
1

2ik
(φψx − φxψ) = lim

x→+∞

1

2ik

(
φikeikx − φxeikx

)
and developing large k expn for φ(x , t; k) as a functional of u
The first few nontrivial conserved quantities are found to be:

C1 =

∫ ∞
−∞

udx , C3 =

∫ ∞
−∞

u2dx , C5 =

∫ ∞
−∞

(2u3 − u2
x )dx , ...

May use similar ideas to find conservation laws:
∂tTj + ∂xFj = 0, j = 1, 2...



IST–via Gel’fand-Levitan-Marchenko (GLM) Eq

The GLM eq may be derived from the RHBVP formulation
N(x , t; k) is written in terms of a triangular kernel:

N(x , t; k) = e2ikx

{
1 +

∫ ∞
x

K (x , s; t)e ik(s−x)ds

}
Subst above into inverse integral eq and take a FT yields

K (x , y ; t)+F (x+y ; t)+

∫ ∞
x

K (x , s; t)F (s+y ; t) ds = 0 y ≥ x

where F (x ; t) =
J∑

j=1

(−i)Cj(t)e−κjx +
1

2π

∫ ∞
−∞

ρ(k , t)e ikxdk

and also find: u(x , t) = 2∂xK (x , x ; t)
May get soliton solns from GLM; Rigorous inverse pb:
Deift-Trubowitz (’79); Marchenko (’86); ...



Conclusions– III: IST for KdV

• Steps of IST are analogous to Fourier transforms

• Method:

u(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

u(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)

• Direct Scattering from u(x , 0) formulate a RHBVP in terms of
known scattering data:
S(k , 0) = {ρ(k , 0), {κj ,Cj(0)} j = 1, . . . , J}

• Find how scattering data evolve:

ρ(k , t) = ρ(k , 0)e8ik3t ; κj = const; Cj(t) = Cj(0)e8κ3
j t

• Inverse scattering: convert RHBVP to a set of integral eq
defined from above data; reconstruct u(x , t)



IV. IST: 2× 2 Systems

Next study following 2× 2 compatible systems:

vx = Lv =

(
−ik q
r ik

)
v

vt =Mv =

(
A B

C −A

)
v



IST–2× 2 Systems Direct Scattering

Recall: Soln process via IST:

q(x , 0), r(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

q(x , t), r(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)



Summary of IST –Main Steps

• Direct scattering:

• Define 4 efcns and scattering data

Required scattering data at t = 0:
S(k , 0) : {ρ(k , 0), ρ̄(k , 0); kj ,Cj(0); k̄j , C̄j(0)}

• Establish analytic properties of efcns

• Construct a RHBVP relating efcns and scattering data –from
direct problem

• Find all symmetries on scattering side



Summary of IST –Main Steps–con’t

• Inverse scattering:
• Use analyticity to reformulate RHBVP in terms of a closed

system of integral-algebraic eqs

• Find time dependence of scattering data:
S(k , t) : {ρ(k, t), ρ̄(k , t); kj ,Cj(t); k̄j , C̄j(t)}

• Reconstruct potentials q(x , t), r(x , t) from efcns via linear
integral eq from RHBVP

• Special case pure solitons: ρ(k , t) = ρ̄(k , t) = 0; inverse
problem reduces to algebraic system of eq

• Can also reformulate inverse integral eq in terms of GLM eq



IST–2× 2 Systems Direct Scattering

For

vx = =

(
−ik q
r ik

)
v

when q, r → 0 sufficiently rapidly as x → ±∞ the efcns are
asymptotic to the solns of

vx ∼
(
−ik 0

0 ik

)
v



Efcns–2× 2 Systems
Key efcns defined by the following BCs:

φ(x , k) ∼
(

1
0

)
e−ikx , φ̄(x , k) ∼

(
0
1

)
e ikx as x → −∞

ψ(x , k) ∼
(

0
1

)
e ikx , ψ̄(x , k) ∼

(
1
0

)
e−ikx as x → +∞

Convenient to work with efcns which have const BCs at infinity:
As x → −∞:

M(x , k) = e ikxφ(x , k) ∼
(

1
0

)
, M̄(x , k) = e−ikx φ̄(x , k) ∼

(
0
1

)
As x →∞:

N(x , k) = e−ikxψ(x , k) ∼
(

0
1

)
, N̄(x , k) = e ikx ψ̄(x , k) ∼

(
1
0

)



Wronskian and Lin Indepence of Efcns

Let u(x , k) =
(
u(1)(x , k), u(2)(x , k)

)T
and

v(x , k) =
(
v (1)(x , k), v (2)(x , k)

)T
be 2 solns of L eq

The Wronskian of u and v is

W (u, v) = u(1)v (2) − u(2)v (1)

which satisfies

d

dx
W (u, v) = 0 =>W (u, v) = W0 const

From the asymptotic behavior of the efcns find:

W
(
φ, φ̄

)
= lim

x→−∞
W
(
φ(x , k), φ̄(x , k)

)
= 1

W
(
ψ, ψ̄

)
= lim

x→+∞
W
(
ψ(x , k), ψ̄(x , k)

)
= −1

Thus the solns φ and φ̄ are linearly independent, as are ψ and ψ̄



Efcns and Scattering Data

Completeness of efcns implies

φ(x , k) = b(k)ψ(x , k) + a(k)ψ̄(x , k)

φ̄(x , k) = ā(k)ψ(x , k) + b̄(k)ψ̄(x , k)

It follows that a(k), ā(k), b(k), b̄(k) (scatt data) satisfy:

a(k) = W (φ, ψ), ā(k) = W (ψ̄, φ̄)

b(k) = W (ψ̄, φ), b̄(k) = W
(
φ̄, ψ

)



Efcns and Scattering Data–con’t

In terms of M,N, M̄, N̄ completeness implies:

M(x , k)

a(k)
= N̄(x , k) + ρ(k)e2ikxN(x , k)

M̄(x , k)

ā(k)
= N(x , k) + ρ̄(k)e−2ikx N̄(x , k)

where the reflection coefficients are

ρ(k) = b(k)/a(k), ρ̄(k) = b̄(k)/ā(k)

The above eqs will be considered as generalized Riemann-Hilbert
(RH) pbs. Need analyticity–next



Analyticity of Efcns

By converting DEs to integral eq, and using Neumann series, may
prove

Theorem
If q, r ∈ L1(R), then {M(x , k),N(x , k), a(k)} are analytic
functions of k for Imk > 0 and continuous for Imk = 0, and
{M̄(x , k), N̄(x , k), ā(k)} are analytic functions of k for Imk < 0
and continuous for Imk = 0.

Proof: Convergence of Neumann series



RHBVP-Direct Side

In terms of M,N, M̄, N̄ we found:

M(x , k)

a(k)
= N̄(x , k) + ρ(k)e2ikxN(x , k)

M̄(x , k)

ā(k)
= N(x , k) + ρ̄(k)e−2ikx N̄(x , k)

where the reflection coefficients are

ρ(k) = b(k)/a(k), ρ̄(k) = b̄(k)/ā(k)

We have that M(x , k),N(x , k), a(k) are analytic in UHP and
M̄(x , k)N̄(x , k), ā(k) are analytic in LHP

The above eqs can be considered as generalized RHBVP pb



Summary of IST –Next Steps

• Additional scattering data needed: eigenvalues, ‘norming
const’

• Find all symmetries on scattering side

• Use analyticity to reformulate RHBVP in terms of integral eq

• Find time dependence of scattering data:
S(k , t) : {ρ(k, t), ρ̄(k , t); kj ,Cj(t); k̄j , C̄ (t)j}

• Reconstruct potentials q(x , t), r(x , t) from efcns via integral
eq with t dependence from RHBVP

• Special case pure solitons: ρ(k , t) = ρ̄(k , t) = 0; inverse
problem reduces to algebraic system of eq

• Can also reformulate inverse integral eq in terms of GLM(t) eq



Required Scattering Data

Scattering data that will be needed–in general position: ρ(k), ρ̄(k)
and information about zero’s (evalues) of a(k), ā(k)

For general q(x), r(x) proper e-values correspond to L2 bound
states; they are assumed simple and not on the real k axis

At: a(kj) = 0, kj = ξj + iηj , ηj > 0, j = 1, 2, ..., J with

φj(x) = bjψj(x) where φj(x) = φ(x , kj) etc

Similarly at: ā(k̄j) = 0, k̄j = ξ̄j − i η̄j , η̄j > 0, j = 1, 2, ..., J̄ with

φ̄j(x) = b̄j ψ̄j(x)



Required Scattering Data–con’t

In terms of M,N, M̄, N̄ proper e-values correspond to

Mj(x) = bje
2ikjxNj(x) , M̄j(x) = b̄j e

−2i k̄jx N̄j(x)

For the inverse problem need ‘norming const”:
Cj = bj/a

′(kj), C̄j = b̄j/ā
′(k̄j)

Scattering data that will be needed:

S(k) = {ρ(k), {kj ,Cj}, j = 1, ..., J; ρ̄(k), {k̄j , C̄j}, j = 1, ..., J̄}



Symmetry Reductions

When r(x) = ∓q∗(x):

N̄(x , k) =

(
N(2)(x , k∗)

∓N(1)(x , k∗)

)∗
, M̄(x , k) =

(
∓M(2)(x , k∗)

M(1)(x , k∗)

)∗
ā(k) = a∗(k∗) , b̄(k) = ∓b∗(k∗) ,

Thus the zeros of a(k) and ā(k) are paired, equal in number:
J̄ = J

k̄j = k∗j , b̄j = −b∗j j = 1, . . . , J

Only have e-values when r(x) = −q∗(x): no e-values when
r(x) = +q∗(x)



Symmetry Reductions–con’t

For r(x) = ∓q(x)

N̄(x , k) =

(
N(2)(x ,−k)

∓N(1)(x ,−k)

)
, M̄(x , k) =

(
∓M(2)(x ,−k)

M(1)(x ,−k)

)
ā(k) = a(−k) , b̄(k) = ∓b(−k) ,

Thus zeros of a(k) and ā(k) are paired, equal in number: J̄ = J

k̄j = −kj , b̄j = −b∗j j = 1, . . . , J

Only have e-values when r(x) = −q(x) no e-values when
r(x) = +q(x)

Since r(x) = −q(x) ∈ R satisfies r(x) = −q(x)∗ both symmetry
conditions hold; so when kj is an e-value so is −k∗j ; i.e. either the
e-values come in pairs: {kj ,−k∗j } or they are pure Img



Symmetry Reductions–con’t

For r(x) = ∓q∗(−x)

N(x , k) =

(
±M(2)(−x ,−k∗)
M(1)(−x ,−k∗)

)∗
, N̄(x , k) =

(
±M̄(2)(−x ,−k∗)
M̄(1)(−x ,−k∗)

)∗
and the scattering data satisfies

a(k) = a∗(−k∗), ā(k) = ā∗(−k∗), b̄(k) = ∓b∗(−k∗)

It follows that if kj = ξj + iηj is a zero of a(k) in UHP-k then
−k∗j = −ξj + iηj is also a zero of a(k) in UHP-k etc



Inverse Problem

Recall: Soln process via IST:

q(x , 0), r(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

q(x , t), r(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)

−−−−−−−−−−−−−−−−−−−−−−−
Operating with projection operators on the completeness relations
after subtracting behavior at infinity and pole contributions

M(x , k)

a(k)
= N̄(x , k) + ρ(k)e2ikxN(x , k)

M̄(x , k)

ā(k)
= N(x , k) + ρ̄(k)e−2ikx N̄(x , k)

yields integral eqs



Inverse Problem–Integral Eq

Genl q(x), r(x):

N̄(x , k) =

(
1
0

)
+

J∑
j=1

Cje
2ikjx

k − kj
Nj(x) +

∫ +∞

−∞

ρ(ζ)e2iζxN(x , ζ)dζ

2πi(ζ − (k − i0))

N(x , k) =

(
0
1

)
+

J̄∑
j=1

C̄je
−2i k̄jx

k − k̄j
N̄j(x)−

∫ +∞

−∞

ρ̄(ζ)e−2iζx N̄(x , ζ)dζ

2πi(ζ − (k + i0))

where Nj(x) = N(x , kj), N̄j(x) = N̄(x , k̄j) We close the system by
evaluating above eq at kp and k̄p

By considering large k behavior from above eq and from direct
Volterra integral eq we find reconstruction formulae for r(x), q(x)



Inverse Problem–Reconstruction Formulae

Genl q(x), r(x):

r(x) = −2i
J∑

j=1

e2ikjxCjN
(2)
j (x) +

1

π

∫ +∞

−∞
ρ(ζ)e2iζxN(2)(x , ζ)dζ

q(x) = 2i
J̄∑

j=1

e−2i k̄jx C̄j N̄
(1)
j (x) +

1

π

∫ +∞

−∞
ρ̄(ζ)e−2iζx N̄(1)(x , ζ)dζ



Summary of IST –Next Steps

• Find time dependence of scattering data:
S(k , t) : {ρ(k, t), ρ̄(k , t); kj ,Cj(t); k̄j , C̄j(t)}

• Can now use integral equations from inverse side to
reconstruct potentials q(x , t), r(x , t)

• Special case pure solitons: ρ(k , t) = ρ̄(k , t) = 0; inverse
problem reduces to algebraic system of eq

• Can also reformulate inverse integral eq in terms of GLM(t) eq



IST: Next Time Dependence

Soln process via IST:

q(x , 0), r(x , 0)
Direct Scattering−−−−−−−−−−→ L : S(k , 0)yt: time evolution: M

q(x , t), r(x , t)
Inverse Scattering←−−−−−−−−−− S(k , t)



IST: 2× 2 Time Dependence

The associated M operator determines the evolution of the efcns
Taking into account BCs φ(x , k , t) satisfies

∂tφ =

(
A− A∞ B

C −A− A∞

)
φ (E )

where A∞ = lim
|x |→∞

A(x , k)

Using completeness and evaluating x →∞:

φ(x , k , t) = b(k , t)ψ(x , k , t) + a(k , t)ψ̄(x , k , t) ∼
(

a(t)e−ikx

b(t)e ikx

)
Then as x →∞, (E) yields:(

ate
−ikx

bte
ikx

)
=

(
0

−2A∞be ikx

)



IST: 2× 2 Time Dependence–con’t

Doing the same for φ̄(x , k, t) find

∂ta = 0, ∂t ā = 0

∂tb = −2A∞b, ∂t b̄ = 2A∞b̄

Thus then zero’s of a(k), ā(k) (evalues) kj , k̄j are const in time

For ρ(k , t) = b(k , t)/a(k, t); ρ̄ = b̄(k, t)/ā(k , t):

ρ(k , t) = ρ(k , 0)e−2A∞(k)t , ρ̄(k, t) = ρ̄(k, 0)e2A∞(k)t

Similarly find:

Cj(t) = Cj(0)e−2A∞(kj )t , C̄j(t) = C̄j(0)e2A∞(k̄j )t

In inverse problem use time dependence of scattering data ...



Solitons–Reflectionless Potls
Can obtain pure soliton solutions; for genl q(x , t), r(x , t) systems
IST with: ρ = 0, ρ̄ = 0 i.e. reflectionless potls; inverse prob
reduces to a linear algebraic system:

N̄l(x , t) =

(
1
0

)
+

J∑
j=1

Cj(t)e2ikjxNj(x , t)

k̄l − kj

Np(x , t) =

(
0
1

)
+

J̄∑
m=1

C̄m(t)e−2i k̄mx N̄m(x , t)

kp − k̄m
,

with reconstruction:

r(x , t) = −2i
J∑

j=1

e2ikjxCj(t)N
(2)
j (x , t)

q(x , t) = 2i
J̄∑

j=1

e−2i k̄jx C̄j(t)N̄
(1)
j (x , t)



One Soliton Solution–General Case

Using the time-dependence of C1(t) and symmetry:
r(x , t) = −q(x , t)∗

General one soliton soln:

q(x) = 2ηe−2iξx+2i ImA∞(k1)t−iψ0 sech [2 (η(x − x0) + ReA∞(k1)t)]

where
k1 = ξ + iη, C1(0) = 2ηe2ηx0+i(ψ0+π/2)



One Soliton Solutions-Key Eqs

Special one soliton cases:

i) NLS:
r(x , t) = −q∗(x , t) ∈ C, k1 = ξ + iη, A∞(k1) = 2ik2

1

q(x , t) = 2ηe−2iξx+4i(ξ2−η2)t−iψ0 sech [2η (x − 4ξt − x0)]

ii) mKdV:
r(x , t) = −q(x , t) ∈ R, k1 = iη, A∞(k1) = −4ik3

1 = −4η3

q(x , t) = 2η sech
[
2η
(
x − 4η2t − x0

)]



One Soliton Solutions-Key Eqs–con’t

Special one soliton cases–con’t

iii) SG:
r(x , t) = −q(x , t) ∈ R, k1 = iη, A∞(k1) = i

4k1
= 1

4η

q(x , t) = −ux
2

= −2η sech

[
2η

(
x +

1

4η
t − x0

)]
,

or in terms of u, a simple ‘kink’:

u(x , t) = 4 tan−1exp

[
2η

(
x +

1

4η
t − x0

)]



One Soliton –Nonlocal NLS

Nonlocal NLS: r(x , t) = −q∗(−x , t) : k1 = iη1, k̄1 = −i η̄1

C1(t) = C1(0)e+4iη2
1t = |c |e i(ϕ+π/2)e+4iη2

1t , |c| = η1 + η1

C 1(t) = C 1(0)e−4iη2
1t = |c |e i(ϕ+π/2)e−4iη2

1t , |c | = η1 + η1

Find a two parameter ‘breathing’ one soliton solution

q(x , t) = − 2(η1 + η1)e iϕe−4iη2
1te−2η1x

1 + e i(ϕ+ϕ)e4i(η2
1−η2

1)te−2(η1+η1)x

Note |c | = |c| = η1 + η1 eigenvalues and ‘norming’ const related!

1-soliton reduces to NLS 1-soliton when η1 = η1 and ϕ+ ϕ = 0



One Soliton With Symmetry–con’t

Recall: two parameter ‘breathing’ one soliton solution

q(x , t) = − 2(η1 + η1)e iϕe−4iη2
1te−2η1x

1 + e i(ϕ+ϕ)e4i(η2
1−η2

1)te−2(η1+η1)x

Note that there are singularities at x = 0 with:

1 + e i(ϕ+ϕ)e4i(η2
1−η2

1)t = 0 or at

t = tn =
(2n + 1)π − (ϕ+ ϕ)

4(η2
1 − η2

1)
, n ∈ Z

Singularity disappears when η1 = η1 and ϕ+ϕ 6= (2n + 1)π, n = Z



Conserved quantities

a(k , t) is conserved in time; it can be related to the conserved
quantities. This follows from the relation

a(k , t) = lim
x→+∞

φ(1)(x , k ; t)e ikx

and the large k asymptotic expn for the efcn: φ =
(
φ(1), φ(2)

)T
The first few conserved quantities are:

C1 = −
∫

q(x)r(x)dx , C2 = −
∫

q(x)rx(x)dx

C3 =

∫ (
qx(x)rx(x) + (q(x)r(x))2

)
dx

Similar ideas lead to conservation laws



Conserved quantities–con’t

For example, with the reductions r = ∓q∗ these constants of the
motion can be written as

C1 = ±
∫
|q(x)|2 dx , C2 = ±

∫
q(x)q∗x (x)dx

C3 =

∫ (
∓|qx(x)|2 + |q(x)|4

)
dx



Inverse Pb–Triangular Representations: Towards GLM

For general q(x), r(x):

Assuming triangular representations for N, N̄

N(x , k) =

(
0
1

)
+

∫ +∞

x
K (x , s)e ik(s−x)ds, s > x , Imk ≥ 0

N̄(x , k) =

(
1
0

)
+

∫ +∞

x
K̄ (x , s)e−ik(s−x)ds, s > x , Imk ≤ 0

substituting into prior integral eq and taking FTs, GLM eq follow



Inverse Problem–via GLM Eq–con’t

For general q(x), r(x) find for y ≥ x

K̄ (x , y) +

(
0
1

)
F (x + y) +

∫ +∞

x
K (x , s)F (s + y)ds = 0

K (x , y) +

(
1
0

)
F̄ (x + y) +

∫ +∞

x
K̄ (x , s)F̄ (s + y)ds = 0

where

F (x) =
1

2π

∫ +∞

−∞
ρ(ξ)e iξxdξ − i

J∑
j=1

Cje
ikjx

F̄ (x) =
1

2π

∫ +∞

−∞
ρ̄(ξ)e−iξxdξ + i

J̄∑
j=1

C̄je
−i k̄jx



GLM: Reconstruction – Symmetry

Reconstruction for general q(x), r(x)

q(x) = −2K (1)(x , x), r(x) = −2K̄ (2)(x , x)

Symmetry reduces the GLM eq; with r(x) = ∓q(x)∗ find

F̄ (x) = ∓F ∗(x), K̄ (x , y) =

(
K (2)(x , y)

∓K (1)(x , y)

)∗
In this case the GLM eq reduces to

K (1)(x , y) = ±F ∗(x+y)∓
∫ +∞

x
ds

∫ +∞

x
ds ′K (1)(x , s ′)F (s+s ′)F ∗(y+s)

When r(x) = ∓q(x) ∈ R then F (x) and K (x , y) are ∈ R
Finally: add time dependence of scattering data to GLM eq



Conclusion and Remarks

• Discussed in these lectures:

• Compatible linear systems–Lax Pairs–2× 2 systems and
extensions

• IST method–nonlinear Fourier transform

• IST associated with KdV

• IST for general q, r : 2× 2 systems

• q, r systems with symmetry:
• r(x , t) = ∓q∗(x , t): NLS
• r(x , t) = ∓q(x , t) ∈ R; mKdV, SG
• r(x , t) = ∓q∗(−x , t): nonlocal NLS

• Not discussed: long time asymptotic analysis where solitons
and similarity solns/Painleve fcns (e.g. for KdV/mKdV) play
important roles



Conclusion and Remarks

• May also do IST for many other systems, some physically
interesting

• Higher order and more complex 1 + 1d PDE evolution systems:
N Wave, Boussinesq, vector NLS eq

• Nonlocal eq such as Benjamin-Ono (BO) and Intermediate
Long wave eq

• Discrete problems: e.g. Toda lattice, discrete ladder systems,
integrable discrete NLS

• 2 + 1d systems such as Kadomtsev-Petviashvili (KP),
Davey-Stewartson, N Wave systems

• In 2 + 1d there are some important extensions/new ideas
needed for IST: notably nonlocal RH and DBAR problems: e.g.
KPI and KPII eq
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