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Applications (for indefinite metrics):
» Obstructions to the existence of a projectively equivalent partner
» Pseudo-Riemannian analog of the Fubini theorem
» New class of holonomy groups

» New class of symmetric spaces

v

Yano-Obata conjecture

v

Local description of Bochner-flat Kahler metrics



Let g be a semisimple Lie algebra, R : g* ~ g — g a symmetric linear operator.
Euler equations on g*

dx

o = 1%, R()] &)
are Hamiltonian with H = 2(R(x), x).
For which R, are the equations (1) integrable?



Let g be a semisimple Lie algebra, R : g* ~ g — g a symmetric linear operator.
Euler equations on g*
&~ 1, R()] &)
dt 7
are Hamiltonian with H = 2(R(x), x).
For which R, are the equations (1) integrable?
Definition
R : so(n) — so(n) is called a Manakov operator (with parameters A and B), if

[R(X),A] =[X,B] forall X € so(g) (2)

where A and B are some fixed symmetric matrices.



Let g be a semisimple Lie algebra, R : g* ~ g — g a symmetric linear operator.

Euler equations on g*
&~ 1, R()] &)
dt 7

are Hamiltonian with H = 2(R(x), x).

For which R, are the equations (1) integrable?

Definition

R : so(n) — so(n) is called a Manakov operator (with parameters A and B), if

[R(X),A] =[X,B] forall X € so(g) (2)
where A and B are some fixed symmetric matrices.
Theorem (Manakov, Mischenko, Fomenko)
Let R satisfy (2). Then
> (1) can be rewritten as % (X + AA) = [X + AA, R(X) + AB];

> Tr(X + MA)* are commuting first integrals of (1);
> if A is regular, then (1) are completely integrable.



Properties of Manakov operators



Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(-) is some polynomial.



Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(-) is some polynomial.

2. Ry = % —o p(A + tX) satisfies (2). If A is regular, then R is unique,
otherwise R = Ry + D where D : so(g) — ga = {Y €so(g), AY = YA} is

arbitrary.



Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(-) is some polynomial.

2. Ry = % —o p(A + tX) satisfies (2). If A is regular, then R is unique,
otherwise R = Ry + D where D : so(g) — ga = {Y €so(g), AY = YA} is
arbitrary.

3. if B=10= pmin(A), then Ro = %|,_, Pmin(A + tX) still defines
a non-trivial Manakov operator whose image is contained in ga. Moreover,

if for each eigenvalues of A there are at most 2 Jordan blocks, then the
image Ry coincides with ga.



Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(-) is some polynomial.

2. Ry = % —o p(A + tX) satisfies (2). If A is regular, then R is unique,
otherwise R = Ry + D where D : so(g) — ga = {Y €so(g), AY = YA} is
arbitrary.

3. if B=10= pmin(A), then Ro = %|,_, Pmin(A + tX) still defines
a non-trivial Manakov operator whose image is contained in ga. Moreover,
if for each eigenvalues of A there are at most 2 Jordan blocks, then the
image Ry coincides with ga.

4. Ry satisfies the Bianchi identity: Ro(u A v)w + (cyclic) =0.



Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(-) is some polynomial.

2. Ry = % —o p(A + tX) satisfies (2). If A is regular, then R is unique,
otherwise R = Ry + D where D : so(g) — ga = {Y €so(g), AY = YA} is
arbitrary.

3. if B =0 = pmin(A), then Ro = Z|,_ pmin(A + tX) still defines
a non-trivial Manakov operator whose image is contained in ga. Moreover,
if for each eigenvalues of A there are at most 2 Jordan blocks, then the
image Ry coincides with ga.

4. Ry satisfies the Bianchi identity: Ro(u A v)w + (cyclic) =0.

5. If in addition p(A) = 0, then Ry satisfies the second Bianchi identity
[Ro(X), Ro(Y)] = Ro[Ro(X), Y].



Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(-) is some polynomial.

2. Ry = % —o p(A + tX) satisfies (2). If A is regular, then R is unique,
otherwise R = Ry + D where D : so(g) — ga = {Y €so(g), AY = YA} is
arbitrary.

3. if B =0 = pmin(A), then Ro = Z|,_ pmin(A + tX) still defines
a non-trivial Manakov operator whose image is contained in ga. Moreover,
if for each eigenvalues of A there are at most 2 Jordan blocks, then the
image Ry coincides with ga.

4. Ry satisfies the Bianchi identity: Ro(u A v)w + (cyclic) =0.

5. If in addition p(A) = 0, then Ry satisfies the second Bianchi identity
[Ro(X), Ro(Y)] = Ro[Ro(X), Y].

6. Let R satisfy two identities [R(X), A] = [X, B] and [R(X), A’] = [X, B'],
where A’ £ aA+ b-id. Then R(X) = k- X mod ga. In particular, if A is
regular, then R = k - id.



Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(-) is some polynomial.

2. Ry = % —o p(A + tX) satisfies (2). If A is regular, then R is unique,
otherwise R = Ry + D where D : so(g) — ga = {Y €so(g), AY = YA} is
arbitrary.

3. if B=10= pmin(A), then Ro = %|,_, Pmin(A + tX) still defines
a non-trivial Manakov operator whose image is contained in ga. Moreover,
if for each eigenvalues of A there are at most 2 Jordan blocks, then the
image Ry coincides with ga.

4. Ry satisfies the Bianchi identity: Ro(u A v)w + (cyclic) =0.

5. If in addition p(A) = 0, then Ry satisfies the second Bianchi identity
[Ro(X), Ro(Y)] = Ro[Ro(X), Y].

6. Let R satisfy two identities [R(X), A] = [X, B] and [R(X), A’] = [X, B'],
where A’ £ aA+ b-id. Then R(X) = k- X mod ga. In particular, if A is
regular, then R = k - id.

7. Let A1,..., Ak be the eigenvalues of A. Then w are eigenvalues of
iTAj
R. Moreover, if A has a nontrivial Jordan Ai-block, then p’();) is an

eigenvalue of R.



Riemann curvature tensor (quick reminder and “new” point of view)

Let V be the Levi-Civita connection of a pseudo-Riemannian metric g.

Definition
The Riemann curvature tensor R = (R}; ) is defined by (formula from a

text-book):
R(X,Y)Z =VxVyZ —VyVxZ — Vix,yZ.

In other words, R can be understood as a map

R:(X,Y)—= R(X,Y)=VxVy —VyVx — Vix,v] € End(TM).
Algebraic symmetries:
R(X,Y)=—R(X,Y),ie, R: NV = gl(V), V = T.M;
g(R(X,Y)Z,W)=—g(R(X,Y)W,2Z),ie R(X,Y)€so(g)
R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0 (Bianchi identity);
g(R(X, Y)Z, W) = —g(R(Z, W)X, Y).
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Conclusion: R :so(g) — so(g) which is symmetric and satisfying Bianchi.
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Definition
The Riemann curvature tensor R = (R}; ) is defined by (formula from a
text-book):

R(X,Y)Z =VxVyZ —VyVxZ — Vix,yZ.

In other words, R can be understood as a map

R:(X,Y)—= R(X,Y)=VxVy —VyVx — Vix,v] € End(TM).
Algebraic symmetries:
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g(R(X,Y)Z,W)=—g(R(X,Y)W,2Z),ie R(X,Y)€so(g)
R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0 (Bianchi identity);
g(R(X, Y)Z, W) = —g(R(Z, W)X, Y).

v

vV VvV VY

Conclusion: R :so(g) — so(g) which is symmetric and satisfying Bianchi.

Easy observations:

» constant curvature < R =const-id

> Weyl tensor vanishes <  R(X) =AX + XA
(cf., in rigid body dynamics: M(Q2) = JQ + QJ)
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Projectively equivalent metrics

Definition
g and g are projectively equalent if they have the same (unparametrised)

geodesics. Notation: g ~
proj

1
Main equation: Let A= (j::g) i 2 'g. Then g ~ g if and only if
proj

VA= (u@dtrA+ (u® dtrA)*).
Theorem (B., Matveev)

Let g ~ g. Then the Riemann curvature tensor of g is a Manakov operator:
proj

[R(X),A] = [B,X] forall X € so(g),where B =}V (grad trA).
Proof.

Consider the compatibility condition for the main equation. O

Theorem (B., Matveev, Kiosak)

Let g, g and g be projectively equivalent. Assume that these metrics are
linearly independent and g and g are strictly non-proportional, then g, g and g
are metrics of constant sectional curvature.

Proof.
Apply Property 6. [



New class of holonomy groups in pseudo-Riemannian geometry

Definition

Let M be a smooth manifold endowed with an affine symmetric connection V.
The holonomy group of V is a subgroup Hol(V) C GL(TM) that consists of
the linear operators A: TxM — T,M being 'parallel transport transformations’
along closed loops v(t) with y(0) = v(1) = x.

Problem. Given a subgroup H C GL(n,R), can it be realised as the holonomy
group for an appropriate symmetric connection on M"?

Riemannian case and irreducible case: the problem is completely solved
(Marcel Berger, D. V. Alekseevskii, R. Bryant, D. Joyce, L. Schwahh&fer,
S. Merkulov).

Pseudo-Riemannian case: many fundamental results but still open (L. Bérard
Bergery, A. lkemakhen, C. Boubel, D. V. Alekseevskii, T. Leistner, A. Galaev).
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Let M be a smooth manifold endowed with an affine symmetric connection V.
The holonomy group of V is a subgroup Hol(V) C GL(TM) that consists of
the linear operators A: TxM — T,M being 'parallel transport transformations’
along closed loops v(t) with y(0) = v(1) = x.

Problem. Given a subgroup H C GL(n,R), can it be realised as the holonomy
group for an appropriate symmetric connection on M"?

Riemannian case and irreducible case: the problem is completely solved
(Marcel Berger, D. V. Alekseevskii, R. Bryant, D. Joyce, L. Schwahh&fer,
S. Merkulov).

Pseudo-Riemannian case: many fundamental results but still open (L. Bérard
Bergery, A. lkemakhen, C. Boubel, D. V. Alekseevskii, T. Leistner, A. Galaev).

Theorem (B., Tsonev)

For every g-symmetric operator A: V — V, its centraliser in SO(g)
(the identity connected component of)

Ga={Y €80(g) | YA =AY}

is a holonomy group for a certain (pseudo)-Riemannian metric.



Classical approach

Definition
A map R: A’V — gl(V) is called a formal curvature tensor if it satisfies the
Bianchi identity

Runv)w+ R(vAw)u+ R(wAu)v=0 for all u,v,w € V.

Definition

Let h C gl(V) be a Lie subalgebra. Consider the set of all formal curvature
tensors R : A*V — gl(V) such that Im R C b:

R(H) ={R: NV = b | RuAv)w+R(vAwW)u+R(wAu)v =0, u,v,w € V}.

We say that § is a Berger algebra if it is generated as a vector space by the
images of the formal curvature tensors R € R(h), i.e.,

h =span{R(uAv)| Re€R(H), uveV}
Berger test:

Let V be a symmetric affine connection on TM. Then the Lie algebra hol (V)
of its holonomy group Hol (V) is Berger.
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Ideally, we want one single formal curvature tensor R such that Im R = ga.

Question: How to find R?



Step one: Berger test for g4 and Magic Formula 1

We have
ga = {X €s0(g) | XA = AX}

and we need to construct formal curvature tensors R : so(g) — so(g) whose
images generate ga.
Ideally, we want one single formal curvature tensor R such that Im R = ga.

Question: How to find R?

Answer: Apply Properties 3 and 4, i.e. define a linear mapping
R :so(g) — so(g) by:

d
R(X) = g Pin(A+ 1X), (3)

where pmin(A) is the minimal polynomial of A.

Conclusion: ga is a Berger algebra.



Step two: Realisation and Magic Formula 2

We need to find an example of g such that hol(V) = ga. The idea is natural:
> set A(x) = const

> try to find the desired metric g(x) in the form constant + quadratic:

gi(x) =gj + Z Bijpaxx7. (4)

Question: How to find B?
It is more convenient to work with “operators” rather than “forms”:

B=) C.®Da — B=)Y Ca®Da,

where C, and D, are the go-symmetric operators corresponding to C, and D,.
In terms of B, the answer is amasingly simple B = 1 R(®), i.e.

d

d
RIX) = 2| g Pan(A+1X) = B =

1

E : E }tzopmm(L +t- @)7
Conclusion: The metric g defined by (4) satisfies two properties:

1) Ais covariantly constant, i.e. hol(V) C ga and

2) the curvature tensor at the origin is R(X) = %’t:o Ppmin (A + tX), and
therefore Im R = ga C hol(V) (hence solving the realisation problem)



A new (?) class of pseudo-Riemannian symmetric spaces

Construction via Z»-graded Lie algebras
A homogeneous space G/H is (pseudo-)Riemannian symmetric if the
corresponding Lie algebras ) C g satisfy the following conditions:

> g=1bh+ Visa Zy-grading, i.e. [h,h] Ch, [h,V]C V and [V,V]CH,

» V admits an bh-invariant inner product.



A new (?) class of pseudo-Riemannian symmetric spaces

Construction via Z»-graded Lie algebras
A homogeneous space G/H is (pseudo-)Riemannian symmetric if the
corresponding Lie algebras ) C g satisfy the following conditions:

> g=1bh+ Visa Zy-grading, i.e. [h,h] Ch, [h,V]C V and [V,V]CH,

» V admits an bh-invariant inner product.

In our situation, we take Ry : so(g, V) — so(g, V) defined by

Ro(X) = %h:op(A + £X) with p(A) = 0 and X € so(g).
Then we simply set h = Im Ry and consider g = h + V. To complete the
construction and get a Z,-grading on g, we need to define [u, v] € b for

u,v € V. The answer is given by the formal curvature tensor Ry:
[u,v] = Ro(u A v).

The Jacobi identity for g follows from the first and second Bianchi identities
(Properties 4 and 5).

Conclusion: The decomposition g = h 4+ V defines a Z,-grading and therefore
G/H is a symmetric (pseudo)-Riemannian space.



Kahler manifolds and c-projective equivalence

Observation 1. For Kahler manifolds, the curvature tensor can be understood
as a linear map on the unitary Lie algebra

R:u(g) = u(g)
Observation 2. The definition of Manakov operators still makes sense:
[R(X),A] = [X,B], for X € u(g) and A, B being g-Hermitian (5)
and Properties 1-7 have natural generalisations.
Definition
A curve y(t) on a Kahler manifold (M, g, J) is called J-planar, if
V'v’-Y =

where o, 8 € R, and J is the complex structure on M. Two Kahler metrics g
and g on a complex manifold (M, J) are called c-projectively equivalent, if they
have the same J-planar curves.

Observation 3. Let g and g be c-projectively equivalent Kahler metrics. Then
the Riemann curvature tensor of g is a Manakov operator in the sense of (5),

1
where A = (detg) W glg and B= 5V (gradtr A).

det g
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Yano-Obata conjecture and Bochner-flat Kahler metrics of arbitrary

signature

Definition

A vector field £ on a Kdhler manifold is called c-projective, if the flow of £
preserves J-planar curves. A c-projective vector field is called essential if its
flow changes the Levi-Civita connection.

Theorem (B., Matveev, Rosemann)

Let (M, g,J) be a closed connected Kihler manifold of arbitrary signature
which admits an essential c-projective vector field. Then the manifold is
isometric to CP" with the Fubini-Study metric.

One of the ingredients of the proof is Property 7 for Jordan blocks.



Yano-Obata conjecture and Bochner-flat Kahler metrics of arbitrary

signature

Definition

A vector field £ on a Kdhler manifold is called c-projective, if the flow of £
preserves J-planar curves. A c-projective vector field is called essential if its
flow changes the Levi-Civita connection.

Theorem (B., Matveev, Rosemann)

Let (M, g,J) be a closed connected Kihler manifold of arbitrary signature
which admits an essential c-projective vector field. Then the manifold is
isometric to CP" with the Fubini-Study metric.

One of the ingredients of the proof is Property 7 for Jordan blocks.

Theorem (B., Matveev, Rosemann (in progress))
A local description of Bochner-flat Kahler metrics of arbitrary signature.

The proof uses a Kahler modification of the Magic formula and Kahler analogs
of the pseudo-Riemannian symmetric spaces discussed above.
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