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What is it about?

Review on joint papers with V.Matveev, V.Kiosak, S.Rosemann, D.Tsonev and
A.Konyaev

Around the following observation:

The curvature tensors of some interesting Riemannian metrics
coincide with

the Hamiltonians of multi-dimensional rigid bodies

Applications (for indefinite metrics):

I Obstructions to the existence of a projectively equivalent partner

I Pseudo-Riemannian analog of the Fubini theorem

I New class of holonomy groups

I New class of symmetric spaces

I Yano-Obata conjecture

I Local description of Bochner-flat Kähler metrics



What is it about?

Review on joint papers with V.Matveev, V.Kiosak, S.Rosemann, D.Tsonev and
A.Konyaev

Around the following observation:

The curvature tensors of some interesting Riemannian metrics
coincide with

the Hamiltonians of multi-dimensional rigid bodies

Applications (for indefinite metrics):

I Obstructions to the existence of a projectively equivalent partner

I Pseudo-Riemannian analog of the Fubini theorem

I New class of holonomy groups

I New class of symmetric spaces

I Yano-Obata conjecture

I Local description of Bochner-flat Kähler metrics



What is it about?

Review on joint papers with V.Matveev, V.Kiosak, S.Rosemann, D.Tsonev and
A.Konyaev

Around the following observation:

The curvature tensors of some interesting Riemannian metrics
coincide with

the Hamiltonians of multi-dimensional rigid bodies

Applications (for indefinite metrics):

I Obstructions to the existence of a projectively equivalent partner

I Pseudo-Riemannian analog of the Fubini theorem

I New class of holonomy groups

I New class of symmetric spaces

I Yano-Obata conjecture

I Local description of Bochner-flat Kähler metrics



Pre-history

Let g be a semisimple Lie algebra, R : g∗ ' g→ g a symmetric linear operator.
Euler equations on g∗

dx

dt
= [x ,R(x)] (1)

are Hamiltonian with H = 1
2
〈R(x), x〉.

For which R, are the equations (1) integrable?

Definition
R : so(n)→ so(n) is called a Manakov operator (with parameters A and B), if

[R(X ),A] = [X ,B] for all X ∈ so(g) (2)

where A and B are some fixed symmetric matrices.

Theorem (Manakov, Mischenko, Fomenko)

Let R satisfy (2). Then

I (1) can be rewritten as d
dt

(X + λA) = [X + λA,R(X ) + λB];

I Tr(X + λA)k are commuting first integrals of (1);

I if A is regular, then (1) are completely integrable.
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Properties of Manakov operators

1. A and B commute, moreover, B belongs to the centre of the centraliser
of A. In particular, B = p(A), where p(·) is some polynomial.

2. R0 = d
dt

∣∣
t=0

p(A + tX ) satisfies (2). If A is regular, then R is unique,
otherwise R = R0 + D where D : so(g)→ gA = {Y ∈ so(g), AY = YA} is
arbitrary.

3. if B = 0 = pmin(A), then R0 = d
dt

∣∣
t=0

pmin(A + tX ) still defines
a non-trivial Manakov operator whose image is contained in gA. Moreover,
if for each eigenvalues of A there are at most 2 Jordan blocks, then the
image R0 coincides with gA.

4. R0 satisfies the Bianchi identity: R0(u ∧ v)w + (cyclic) = 0.

5. If in addition p(A) = 0, then R0 satisfies the second Bianchi identity
[R0(X ),R0(Y )] = R0[R0(X ),Y ].

6. Let R satisfy two identities [R(X ),A] = [X ,B] and [R(X ),A′] = [X ,B ′],
where A′ 6= a A + b · id. Then R(X ) = k · X mod gA. In particular, if A is
regular, then R = k · id.

7. Let λ1, . . . , λk be the eigenvalues of A. Then
p(λi )−p(λj )

λi−λj
are eigenvalues of

R. Moreover, if A has a nontrivial Jordan λi -block, then p′(λi ) is an
eigenvalue of R.
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Riemann curvature tensor (quick reminder and “new” point of view)

Let ∇ be the Levi-Civita connection of a pseudo-Riemannian metric g .

Definition
The Riemann curvature tensor R = (R l

ij k) is defined by (formula from a
text-book):

R(X ,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z .

In other words, R can be understood as a map

R : (X ,Y ) 7→ R(X ,Y ) = ∇X∇Y −∇Y∇X −∇[X ,Y ] ∈ End(TM).

Algebraic symmetries:

I R(X ,Y ) = −R(X ,Y ), i.e., R : Λ2V → gl(V ), V = TxM;

I g(R(X ,Y )Z ,W ) = −g(R(X ,Y )W ,Z), i.e. R(X ,Y ) ∈ so(g);

I R(X ,Y )Z + R(Y ,Z)X + R(Z ,X )Y = 0 (Bianchi identity);

I g(R(X ,Y )Z ,W ) = −g(R(Z ,W )X ,Y ).

Conclusion: R : so(g)→ so(g) which is symmetric and satisfying Bianchi.

Easy observations:

I constant curvature ⇔ R = const · id
I Weyl tensor vanishes ⇔ R(X ) = AX + XA

(cf., in rigid body dynamics: M(Ω) = JΩ + ΩJ)
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Projectively equivalent metrics

Definition
g and ḡ are projectively equivalent if they have the same (unparametrised)
geodesics. Notation: g '

proj
ḡ .

Main equation: Let A =
(

det ḡ
det g

) 1
n+1

ḡ−1g . Then g '
proj

ḡ if and only if

∇uA = 1
2

(
u ⊗ d trA + (u ⊗ d trA)∗

)
.

Theorem (B., Matveev)

Let g '
proj

ḡ . Then the Riemann curvature tensor of g is a Manakov operator:

[R(X ),A] = [B,X ] for all X ∈ so(g),where B = 1
2
∇
(
grad trA

)
.

Proof.
Consider the compatibility condition for the main equation.

Theorem (B., Matveev, Kiosak)

Let g , ḡ and ĝ be projectively equivalent. Assume that these metrics are
linearly independent and g and ĝ are strictly non-proportional, then g , ḡ and ĝ
are metrics of constant sectional curvature.

Proof.
Apply Property 6.
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linearly independent and g and ĝ are strictly non-proportional, then g , ḡ and ĝ
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New class of holonomy groups in pseudo-Riemannian geometry

Definition
Let M be a smooth manifold endowed with an affine symmetric connection ∇.
The holonomy group of ∇ is a subgroup Hol(∇) ⊂ GL(TxM) that consists of
the linear operators A : TxM → TxM being ‘parallel transport transformations’
along closed loops γ(t) with γ(0) = γ(1) = x .

Problem. Given a subgroup H ⊂ GL(n,R), can it be realised as the holonomy
group for an appropriate symmetric connection on Mn?

Riemannian case and irreducible case: the problem is completely solved
(Marcel Berger, D. V. Alekseevskii, R. Bryant, D. Joyce, L. Schwahhöfer,
S. Merkulov).

Pseudo-Riemannian case: many fundamental results but still open (L. Bérard
Bergery, A. Ikemakhen, C. Boubel, D. V. Alekseevskii, T. Leistner, A. Galaev).

Theorem (B., Tsonev)

For every g -symmetric operator A : V → V , its centraliser in SO(g)
(the identity connected component of)

GA = {Y ∈ SO(g) | YA = AY }

is a holonomy group for a certain (pseudo)-Riemannian metric.
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Classical approach

Definition
A map R : Λ2V → gl(V ) is called a formal curvature tensor if it satisfies the
Bianchi identity

R(u ∧ v)w + R(v ∧ w)u + R(w ∧ u)v = 0 for all u, v ,w ∈ V .

Definition
Let h ⊂ gl(V ) be a Lie subalgebra. Consider the set of all formal curvature
tensors R : Λ2V → gl(V ) such that ImR ⊂ h:

R(h) = {R : Λ2V → h | R(u∧v)w +R(v ∧w)u+R(w ∧u)v = 0, u, v ,w ∈ V }.

We say that h is a Berger algebra if it is generated as a vector space by the
images of the formal curvature tensors R ∈ R(h), i.e.,

h = span{R(u ∧ v) | R ∈ R(h), u, v ∈ V }.

Berger test:
Let ∇ be a symmetric affine connection on TM. Then the Lie algebra hol (∇)
of its holonomy group Hol (∇) is Berger.



Classical approach (with small amendments)

Definition
A map R : so(g)→ so(g) is called a formal curvature tensor if it satisfies the
Bianchi identity

R(u ∧ v)w + R(v ∧ w)u + R(w ∧ u)v = 0 for all u, v ,w ∈ V ,

where u ∧ v = u ⊗ g(v)− v ⊗ g(u) ∈ so(g).
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We say that h is a Berger algebra if it is generated as a vector space by the
images of the formal curvature tensors R ∈ R(h), i.e.,

h = span{R(u ∧ v) | R ∈ R(h), u, v ∈ V }.

Berger test:
Let ∇ be a Levi-Civita connection on (M, g). Then the Lie algebra
hol (∇) ⊂ so(g) of its holonomy group Hol (∇) is Berger.



Step one: Berger test for gA and Magic Formula 1

We have
gA = {X ∈ so(g) | XA = AX}

and we need to construct formal curvature tensors R : so(g)→ so(g) whose
images generate gA.
Ideally, we want one single formal curvature tensor R such that ImR = gA.

Question: How to find R?

Answer: Apply Properties 3 and 4, i.e. define a linear mapping
R : so(g)→ so(g) by:

R(X ) =
d

dt

∣∣
t=0

pmin(A + tX ), (3)

where pmin(λ) is the minimal polynomial of A.

Conclusion: gA is a Berger algebra.
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Step two: Realisation and Magic Formula 2

We need to find an example of g such that hol (∇) = gA. The idea is natural:

I set A(x) = const

I try to find the desired metric g(x) in the form constant + quadratic:

gij(x) = g 0
ij +

∑
Bij,pqx

pxq. (4)

Question: How to find B?
It is more convenient to work with “operators” rather than “forms”:

B =
∑
Cα ⊗Dα −→ B =

∑
Cα ⊗ Dα,

where Cα and Dα are the g0-symmetric operators corresponding to Cα and Dα.
In terms of B, the answer is amasingly simple B = 1

2
R(⊗), i.e.

R(X ) =
d

dt

∣∣
t=0

pmin(A + tX ) 7→ B =
1

2
· d
dt

∣∣
t=0

pmin(L + t · ⊗),

Conclusion: The metric g defined by (4) satisfies two properties:
1) A is covariantly constant, i.e. hol (∇) ⊂ gA and
2) the curvature tensor at the origin is R(X ) = d

dt

∣∣
t=0

pmin(A + tX ), and
therefore ImR = gA ⊂ hol (∇) (hence solving the realisation problem)



A new (?) class of pseudo-Riemannian symmetric spaces

Construction via Z2-graded Lie algebras
A homogeneous space G/H is (pseudo-)Riemannian symmetric if the
corresponding Lie algebras h ⊂ g satisfy the following conditions:

I g = h + V is a Z2-grading, i.e. [h, h] ⊂ h, [h,V ] ⊂ V and [V ,V ] ⊂ h,

I V admits an h-invariant inner product.

In our situation, we take R0 : so(g ,V )→ so(g ,V ) defined by

R0(X ) =
d

dt
|t=0p(A + tX ) with p(A) = 0 and X ∈ so(g).

Then we simply set h = ImR0 and consider g = h + V . To complete the
construction and get a Z2-grading on g, we need to define [u, v ] ∈ h for
u, v ∈ V . The answer is given by the formal curvature tensor R0:

[u, v ] = R0(u ∧ v).

The Jacobi identity for g follows from the first and second Bianchi identities
(Properties 4 and 5).

Conclusion: The decomposition g = h + V defines a Z2-grading and therefore
G/H is a symmetric (pseudo)-Riemannian space.
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Kähler manifolds and c-projective equivalence

Observation 1. For Kähler manifolds, the curvature tensor can be understood
as a linear map on the unitary Lie algebra

R : u(g)→ u(g)

Observation 2. The definition of Manakov operators still makes sense:

[R(X ),A] = [X ,B], for X ∈ u(g) and A,B being g -Hermitian (5)

and Properties 1–7 have natural generalisations.

Definition
A curve γ(t) on a Kähler manifold (M, g , J) is called J-planar, if

∇γ γ̇ =

αγ̇ + βJ γ̇

where α, β ∈ R , and J is the complex structure on M. Two Kähler metrics g
and ḡ on a complex manifold (M, J) are called c-projectively equivalent, if they
have the same J-planar curves.

Observation 3. Let g and ḡ be c-projectively equivalent Kähler metrics. Then
the Riemann curvature tensor of g is a Manakov operator in the sense of (5),

where A =
(

det ḡ
det g

) 1
2(n+1)

ḡ−1g and B = 1
2
∇(grad trA).
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Yano-Obata conjecture and Bochner-flat Kähler metrics of arbitrary
signature

Definition
A vector field ξ on a Kähler manifold is called c-projective, if the flow of ξ
preserves J-planar curves. A c-projective vector field is called essential if its
flow changes the Levi-Civita connection.

Theorem (B., Matveev, Rosemann)

Let (M, g , J) be a closed connected Kähler manifold of arbitrary signature
which admits an essential c-projective vector field. Then the manifold is
isometric to CPn with the Fubini-Study metric.

One of the ingredients of the proof is Property 7 for Jordan blocks.

Theorem (B., Matveev, Rosemann (in progress))

A local description of Bochner-flat Kähler metrics of arbitrary signature.

The proof uses a Kähler modification of the Magic formula and Kähler analogs
of the pseudo-Riemannian symmetric spaces discussed above.
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Thanks for your attention


