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C-class equations

E. Cartan, Les esapces généralisés et l’intégration de certaines
classes d’équations différentielles (1938):
Definition. A given class of differential equations of order n

dny

dxn
= F

(
x , y ,

dy

dx
, . . . ,

dn−1y

dxn−1

)
will be said to be a class (C) if there exists an infinite group (in the
sense of Lie) G transforming equations of the class into equations
of the class and such that the differential invariants with respect to
G of an equation of the class be the first integrals of the equation.



Example 1: 2nd order ODEs

I Equations y ′′ = F (x , y , y ′) satisfying

d2Fy ′

dx2
− 4

d2Fyy ′

dx
− Fy ′

dFy ′

dx
+ 4Fy ′Fyy ′ − 3FyFy ′ + 6Fy = 0.

Here Fy = ∂yF , Fy ′ = ∂y ′F and d
dx = ∂x + y ′∂y + F∂y ′ .

I The pseudogroup G consists of all point transformations:

(x , y) 7→ (A(x , y),B(x , y)).

It preserves the class of 2nd order ODEs satisfying the above
condition.

I It can be shown that any equation from this class, except for
thouse equivalent to y ′′ = 0, can be integrated by means the
operation of differentiation and at most two quadratures.



Example 1: 2nd order ODEs

I Equations y ′′ = F (x , y , y ′) satisfying

d2Fy ′

dx2
− 4

d2Fyy ′

dx
− Fy ′

dFy ′

dx
+ 4Fy ′Fyy ′ − 3FyFy ′ + 6Fy = 0.

Here Fy = ∂yF , Fy ′ = ∂y ′F and d
dx = ∂x + y ′∂y + F∂y ′ .

I The pseudogroup G consists of all point transformations:

(x , y) 7→ (A(x , y),B(x , y)).

It preserves the class of 2nd order ODEs satisfying the above
condition.

I It can be shown that any equation from this class, except for
thouse equivalent to y ′′ = 0, can be integrated by means the
operation of differentiation and at most two quadratures.



Example 1: 2nd order ODEs

I Equations y ′′ = F (x , y , y ′) satisfying

d2Fy ′

dx2
− 4

d2Fyy ′

dx
− Fy ′

dFy ′

dx
+ 4Fy ′Fyy ′ − 3FyFy ′ + 6Fy = 0.

Here Fy = ∂yF , Fy ′ = ∂y ′F and d
dx = ∂x + y ′∂y + F∂y ′ .

I The pseudogroup G consists of all point transformations:

(x , y) 7→ (A(x , y),B(x , y)).

It preserves the class of 2nd order ODEs satisfying the above
condition.

I It can be shown that any equation from this class, except for
thouse equivalent to y ′′ = 0, can be integrated by means the
operation of differentiation and at most two quadratures.



Projective connections on R2 and cubic 2nd order ODEs
I Any affine connection {Γi

jk} on the plane (x , y) defines an
equation on unparametrized geodesics:

y ′′ = −Γ2
11(y ′)3 + (Γ2

22 − 2Γ1
12)(y ′)2 + (2Γ2

12 − Γ1
11)y ′ + Γ2

11.

I Two affine connections are said to be projectively equivalent if
their unparametrized geodesics coincide. A class of
projectively equivalent affine connections is called a projective
connection.

I There is a 1-1 correspondence between projective connections
and second order ODEs:

y ′′ = A0(x , y) + A1(x , y)y ′ + A2(x , y)(y ′)2 + A3(x , y)(y ′)3.

I In particular, the class of such equations is invariant under any
(local) diffeomorphisms on the plane (= changes of variables,
or point transformations). This means that the condition
∂4F

(∂y ′)4
= 0 is invariant under point transformations, or that

∂4F
(∂y ′)4

is a relative invariant of second order ODEs

y ′′ = F (x , y , y ′).
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Duality and the second relative invariant
I Generic solution of a 2nd order ODE depends on two

constants of integration:

g(x , y , a, b) = 0.

I This relation defines also a two-dimensional family of curves
on the parameter plane (a, b), where (x , y) serve as
parameters.

I Define these curves as, for example, graphs of functions
b = b(a), differentiate the above relation two times by a and
exclude “parameters” x and y . We get so-called dual 2nd
order ODE:

b′′ = G (a, b, b′).

It is defined modulo point transofrmations in the (a, b) space.
I It can be shown that the dual equation is cubic with respect to

b′ if and only if the initial equation y ′′ = F (x , y , y ′) satisfies:

d2Fy ′

dx2
− 4

d2Fyy ′

dx
− Fy ′

dFy ′

dx
+ 4Fy ′Fyy ′ − 3FyFy ′ + 6Fy = 0.
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C-class equations of 2nd order in detail

I Consider any 2nd order ODE satisfying the above relation, so
that its dual equation is qubic with respect to b′.

I Then we get a natural projective connection on the parameter
space (a, b). Any invariants of this connection are functions
on (a, b) space and, thus, are first integrals of the initial
equation.

I (Weyl) These invariants can be found as functions of the
curvature of the projective connection and its covariant
derivatives. This is tedious, but very explicit and constructive
process.

I However, one needs to integrate the equation first to find its
dual equations and the corresponding projective connection.
Can we do better and construct this projective connection
without integrating the equation?
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Cartan connections for general 2nd order ODEs

I Given an arbitrary 2nd order ODE y ′′ = F (x , y , y ′), Élie
Cartan constructs a so-called Cartan connection on the space
(x , y , z = y ′) of contact elements on on the plane (= jet
space J1(R,R)).

I Cartan connection is modelled by a homogeneous space
PSL(3,R)/B and consists of the following data:

1. principal B-bundle π : G → J1(R,R);
2. 1-form ω : TG → sl(3,R) that satisfies properties similar to

the Maurer-Cartan form on the Lie group PSL(3,R).
3. the form dω + [ω, ω] is zero only on vertical vector fields and

forms the curvature tensor Ω of the Cartan connection.

I The construction of this Cartan connection for a given 2nd
order ODE is very explicit. All components ωij , i , j = 1, . . . , 3
of the connection form ω are expressed explicitly in terms of
the function F (x , y , z) and its partial derivatives.
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Integration of C-class 2nd order ODEs
I The connection descends to the parameter space (=space of

solutions) if and only if the curvature of this connection
vanishes identically on the direction ∂x + z∂y + F∂z along the
solutions of the equation. This turns to be equivalent to the
above “complicated” condition on F (x , y , z).

I Thus, we are able to construct the projective connection on
the solution space without integrating the equation.

I What if this projective connection on the solution space
possesses no non-trivial invariants (is flat)?

I In this case we end up with a Cartan connection with
vanishing curvature. This happens if and only if the initial 2nd
order ODE is trivializable (=equivalent to the trivial equation
y ′′ = 0).

I Integrating the equation is then equivalent to finding this
trivialization transformation. And this is equivalent to
integrating the form ω itself, i.e. constructing the map
f : G → PSL(3,R) such that f −1df = ω. Such problems are
known are Lie type equations.
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Example 2: 3rd order ODEs

I Equations y ′(3) = F (x , y , y ′, y ′′) satisfying

d2Fy ′′

dx2
− 2Fy ′′

dFy ′′

dx
− 3

dFy ′

dx
+

4

9

(
Fy ′′
)3

+ 3Fy ′Fy ′′ + 6Fy = 0.

I The pseudogroup G consists of all contact transformations:

(x , y , y ′) 7→ (A,B,C ), dB − C dA = λ(dy − y ′ dx).

It preserves the class of 3rd order ODEs under the above
restriction.

I There is a natural conformal structure on the (3-dimensional)
solution space of ODEs of a given class.
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More recent examples

I Scalar ODEs of 4th order (R. Bryant, 1991): under certain
(explicit) conditions on the right hand side of the equation
y IV = F (x , y , y ′, y ′′, y ′′′) the solution space carries a natural
torsion-free affine connection with GL(2,R) holonomy.

I Systems of m ODEs of 2nd order (D. Grossman, 2000): if the
associated Cartan connection has vanishing torsion, the
solution space carries a natural Segre (or Grassmanian)
structure defined as a decomposition of the tangent space as
a tensor product of R2 ⊗ Rm. If m = 2, this is equivalent to
the conformal structure of split signature (2, 2).

I In both cases it is shown that the natural Cartan connections
for these classes of equations descend to the solution spaces
and can be used to construct first integrals and integrate the
equation.
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Questions

I Is there an analog of projective structure on the solution space
for higher order ODEs or systems of ODEs?

I What are the conditions on the equation which guarantee that
such structures exist?

I Is there a way to construct connections for these structures
without integrating an equation?
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Generalized Wilczynski invariants

I Consider a linear system on y(x) ∈ Rm:

y (k) + Pk−1(x)y (k−1) + · · ·+ P0(x)y(x) = 0

up to transformations (x , y) 7→ (λ(x), µ(x)y), µ(x) ∈ GL(m).

I The canonical Laguerre-Forsyth form is defined by conditions:
Pk−1 = 0 and trPk−2 = 0.

I Then the following expressions become fundamental invariants
for the class of linear equations:

Θr =
r−1∑
j=1

(−1)j+1 (2r − j − 1)!(k − r + j − 1)!

(r − j)!(j − 1)!
P
(j−1)
k−r+j−1,
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Structures on the solution spaces for scalar ODEs
I It is known (Wilczynski, Se-ashi) that a linear system of ODEs

is equivalent to the trivial one if and only if all its Wilczynski
invariants vanish identically.

I It is no longer true for non-linear ODEs, as they possess other
invariants independent of the generalized Wilczynski ones.
However, ODEs with vanishing generalized Wilczynski
invariants carry a very special geometric structure on the
solution space S.

I In case of a scalar ODE we get a GL2 structure on the
solution space iff W3 = · · · = Wk = 0. The structure can be
defined as a rational curve P1 embedded into each
(projectivized) tangent space:

[1 : t : · · · : tk−1].

In other words, the tangent space TγS of the solution space
at a “point” γ is identified with an irreducible representation
Vk−1 of the sl2.
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Structures on the solution spaces for systems of ODEs

I In case of systems of n ODEs we get a GLm ⊗ SL2 structure
iff W2 = W3 = · · · = Wk = 0. The structure can be defined
as a projective variety P1 × Pm−1 embedded into each
(projectivized) tangent space:

[z1 : t z1 : · · · : tk−1z1 : z2 : t z2 : · · · : tk−1z2 : · · ·
zm : t zn : · · · : tk−1zm].

The tangent space TγS is identified with Vk−1 ⊗ Rm.

I All these structures admit natural connections and have a
families of invariants. In fact, these structures always come
with additional properties.

I For scalar 3rd order ODEs we get conformal structures on
3-dimensional manifolds equipped with an Einstein-Weyl
structure.

I For systems of two equations of 2nd order we get an ASD
conformal structure on a 4-dimensional manifold.
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Equations as double fibration

I Generic system of m equations of order k :

yi (x)(k) = Fi (x , y
(l)
j ), 1 ≤ i , j ≤ m; 0 ≤ l ≤ k − 1.

I Geometrically it is a section σ : Jk−1(R,Rm)→ Jk(R,Rm) or
just a submanifold E ⊂ Jk with locally diffeomorphic
projection to Jk−1.

I As a pseudogroup G we take
I contact transformations for scalar ODEs (m = 1, k ≥ 3)
I point transformations for systems of ODEs (m ≥ 2, k ≥ 2).

I There are two natural foliations on E :
I the foliation on solutions lifted to Jk . Its tangent direction is

given by total derivative.
I “vertical” foliation of fibers of projection π : E → Jk−2.

I This double fibration completely determines the extrinsic
geometry of ODEs. Hence, all invariants of ODEs are exactly
the invariants of this double fibration.
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Cartan-Tanaka approach

I Double fibrations defined by systems of ODEs perfectly fit
into notions of nilpotent differential geometry (Tanaka,
pseudo-product structures).

I In particular, we get the characteristic Cartan connection
associated with any system of ODEs E :

π : G → E , ω : TG → g.

I For m = 1, k ≥ 4, or m ≥ 2, k ≥ 3 this Cartan connection is
no longer modelled by parabolic homogeneous spaces.

I In these cases the symbol algebra g (=symmetry algebra of
the trivial system) is a semi-direct product of sl(2)× gl(m)
and an irreducible representation V = Vk−1 ⊗ Rm.
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Understanding the curvature

I All invariants of the ODEs under the action of the
pseudogroup G ⇔ invariants of the corresponding double
fibration ⇔ invariants of the associated Cartan connection

I All invariants of the Cartan connection consist of the
coefficients of

I its curvature tensor Ω = dω + 1/2[ω, ω];
I its total derivatives.

I Similar to the Weyl tensor for projective connections, only a
part of the curvature tensor generates the differential algebra
of all invariants.

I This part of the curvature can be identified via a pure
algebraic object: H2

+(g−, g). We call it the fundamental
invariants.

I Generalized Wilczynski invariants form a part of the
fundamental invariants. But there are others!
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C-class equations of any order

Theorem
The following classes of equations:

I scalar ODEs of order ≥ 3 viewed up to contact
transformations;

I systems of ODEs of order ≥ 2 viewed up to point
transformations

with vanishing generalized Wilczynski invariants form (C) classes.

I Idea of the proof. Generalized Wilczynski invariants form part
of the curvature of the Cartan connection associated with a
given ODE. If they vanish, we can use Bianchi identity to
prove that the curvature tensor vanishes on the direction
tangent to the solutions and that the connection descends to
a natural connection on a solution space.

I However, direct use of Bianchi identities is very messy. Smart
algebraic techniques coming splitting operators in parabolic
geometries are required to sort this out.
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Examples

I Any Einstein-Weyl structure in 3D comes from a certain 3rd
order ODE with vanishing Wilczynski (Wünschmann)
invariant. Similarly, any pair of 2nd order ODEs with vanishing
Wilczynski invariant comes from a ASD conformal structure.

I Universal example (Hitchin, LeBrun, Bryant). Take any
rational curve P1 in an (m + 1)-dimensional complex manifold
M with a normal bundle mO(k − 1). Then the complete
deformation family of this rational curve will form a solution
space of a system of m ODEs of order k with vanishing
Wilczynski invariants.

I Complete deformation family of a non-degenerate conic in P2

is the space of all conics and is given by the following 5th
order ODE:

9(y ′′)2y (5) − 45y ′′y ′′′y (4) + 40(y ′′′)3 = 0.
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