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Nonlinear waves

Nonlinear waves are described by partial di↵erential equations that have
terms that contain

nonlinearity

dissipation

dispersion

Solutions

nonlinearity �! solutions develop singularity in finite time (shock
wave)

nonlinearity + small dispersion �! dispersive shock waves

nonlinearity + small dissipation �! dissipative shock waves
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Goals of the talk

To give a quantitative description of the formation of dispersive shock
waves at the onset of the oscillations and at later times in a
2-dimensional model.

Joint work with Boris Dubrovin (SISSA), Jens Eggers (Bristol), Christian
Klein (Dijon) and Giuseppe Pitton (SISSA)

J. Eggers, T. Grava, C. Klein, Shock formation in the dispersion less
Kadomtsev Petviashvili equation, Nonlinearity 2016

B.Dubrovin, T.Grava, C. Klein, On critical behaviour generalised KP
equation to appear in Physica D 2016

T. Grava, C. Klein and G. Pitton, Development of dispersive shock
waves in the solution of the KPI equation, in preparation.
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2D-model: the KP equation (1970)

Let us consider the equation for the scalar function u = u(x , y , t; ✏)

(ut + uux + ✏2uxxx)x = �uyy , � = ±1, ✏ > 0.

Kadomtsev-Petviashvili (KP) equations I or II for � = ±1.

The solutions model long weakly dispersive waves which propagate
essentially in one direction with weak transverse e↵ects.

for � = �1 weak surface tension compare to gravitational force,
� = 1 strong surface tension.

For ✏ = 0 one has the dKP equation or Zabolotskaya-Khokhlov equation
(1969)

(ut + uux)x = �uyy .

Nonlocal hyperbolic PDE: generic solution develops shock in finite time.
Goal: study the formation of dispersive shock waves, namely solutions of
the KP when ✏ ! 0.
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General features of KP and dKP equations

The KP equation (ut + uux + ✏2uxxx)x = ±uyy

is integrable via inverse scattering ( M.Ablowitz, P.Clarkson, J.Villarroel, A.Fokas, L.Sung,

M.Boiti, F.Pempinelli, B.Prinari...)

for ✏ > 0 the Cauchy problem is well posed in Hs for all t > 0. For
s � 4 classical solutions (J. Bourgain, Y.Liu. L. Molinet, J.C. Saut, N. Tzvetkov, ...).

The dKP equation (ut + uux)x = ±uyy ,

integrable via inverse scattering (S.Manakov, P.Santini)

particular solutions have been obtained with various techniques:
Einstein-Weil geometry M. Dunajski, L. Mason, and P. Tod,

@̄-approach B. Konopelchenko, L. Martinez Alonso, and O. Ragnisco,

Hydrodynamic reductions J. Gibbons, S. Tsarev

Conformal maps J. Gibbons and Y. Kodama,
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The dKP equation (ut + uux)x = ±uyy ,

is a hyperbolic PDE;

Cauchy problem is well posed in Hs for 0 < t < tc (A.Rozanova ). Here tc
is the time where the gradients of u(x , y , t) first diverge (Shock
formation).
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Comparison of solutions of the KP and dKP equation

(ut + uux + ✏2uxxx)x = ±uyy , (ut + uux)x = ±uyy

Three regimes are present

t < tc . The gradients are bounded and the solution of the KP
equation is expected to be closed to the dKP solution in the limit
✏ ! 0

t ' tc . Universal behaviour, independent from the initial data.

t > tc . the KP solution develops oscillations (dispersive shocks). The
KPI solutions generically has a second caustic zone where very high
lumps start to appear.
For t > tc the dispersive shocks of the KPII solution have been
recently been described by M. Ablowitz, A. Demirci, Yi-Ping Ma for
one initial data, i.e. a step of parabolic form x = cy2 reducing the
problem to a one-dimensional problem ( cylindrical KdV equation).
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Numerical solutions

Tamara Grava Generalised KP equation June 25, 2016 20 / 41

u0(x, y) = �6@
x

sech2(x2 + y

2)

✏ = 10�2, t = 0.4

KPII solution



Solution to the dKP equation and singularity formation

The solution of the dKP equation can be obtained by a deformation of the
method of characteristics (after Manakov-Santini)

⇢
u(x , y , t) = F (⇠, y , t)
x = tF (⇠, y , t) + ⇠

with F (⇠, y , 0) = u
0

(⇠, y) the initial data, and the function F (⇠, y , t)
satisfies

±Ft = @�1

⇠ Fyy + t(F⇠@
�1

⇠ Fyy � F 2

y )

F (⇠, y , 0) = u
0

(⇠, y).

Remark: if the initial data u
0

(x , y) is y independent, the dKP equation
reduces to the Hopf or inviscid Burgers equation ut + uux = 0,
Ft = Fy = 0 and F (⇠, y , t) = u

0

(⇠):
⇢

u(x , t) = F (⇠)
x = tF (⇠) + ⇠.
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Solution of dKP and of the equation for the function
F (⇠, y , t)

⇢
u(x , y , t) = F (⇠, y , t)
x = tF (⇠, y , t) + ⇠

Shock formation: the solution u(x , y , t) has a singularity (blow up of
gradients) when the map x = tF (⇠, y , t) + ⇠ is not invertible for
⇠ = ⇠(x , y , t) while the function F (⇠, y , t) is still smooth.
Remark:the equation for F (⇠, y , t)

±Ft = @�1

⇠ Fyy + t(F⇠@
�1

⇠ Fyy � F 2

y )

is ”less nonlinear” then the dKP equation (ut + uux)x = ±uyy , so the
solution F (⇠, y , t) exist for longer times then the dKP solution u(x , y , t),
at least numerically.
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Numerical solution

Tamara Grava (SISSA Trieste) Dispersive Shock waves April 22, 2015 4 / 27
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Singularity formation ( Manakov-Santini)

The solution of the dKP equation becomes singular when the
characteristics equations

⇢
u(x , y , t) = F (⇠, y , t)
x = tF (⇠, y , t) + ⇠

is not invertible as a single valued function of x and y . This happens when

tF⇠ + 1 = 0, F⇠⇠ = 0, F⇠y = 0.

The singularity is generic if the third derivatives with respect to ⇠ and y
are not zeros:

F⇠⇠⇠ 6= 0, F⇠yy 6= 0, F⇠yy 6= 0.
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Behaviour of solutions near the singular point (xc , yc , tc)

Let x̄ = x � xc , ȳ = y � yc , t̄ = t � tc , and ⇠̄ = ⇠ � ⇠c be the rescaled
variables near the critical values and uc = u(xc , y ,c , tc). In the coordinate
system

X = x̄ + a
1

t̄ + a
2

t̄ ȳ + P
3

(ȳ),

T = t̄ + P
2

(ȳ), ⇣ = F c
⇠

 
⇠̄ +

F c
⇠⇠y

F c
⇠⇠⇠

ȳ

!
,

with P
2

and P
3

polynomials of degree two and three in ȳ , the
characteristic equation near the singular points takes the normal form

u(x , y , t) = F (⇠, y , t) ' uc + ⇣ + �ȳ

X ' �k⇣3 + T ⇣.

In the X , T and ⇣ variables same singularity as the Hopf solution! Typical
scaling ū ⇠ t̄1/2, x̄ ⇠ t̄3/2, and ȳ ⇠ t̄1/2.
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Double scaling limit

We are looking for a solution of u(x , y , t; ✏) of the KP equation near the
point of gradient blow-up (xc , yc , tc) for the dKP equation in the form

u(x , y , t; ✏) = uc + h(X ,T ; ✏) + �ȳ

with X and T the rescaled variables. Let

h(X ,T ; ✏) = �
1

3H(X , T ; ✏̄) +O(�)

X = �X , T = �
2

3T , ✏ = �
7

6 ✏̄, ȳ = �
1

3Y.

and suppose that the limit

H(X , T ; ✏̄) = lim
�!0

�� 1

3 h(�X , �
2

3T ;�
7

6 ✏̄)

exists. Then the function H(X , T ; ✏̄) satisfies the KdV equation

HT + HHX + ✏̄2HXXX = 0.
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Choosing � = ✏6/7 one has ✏̄ = 1 and

HT + HHX + HXXX = 0.

The matching with the outer solution implies that H(X , T ) behaves like
the root of the cubic equation for

X = HT � H3

for large negative T or for large |X |. The particular smooth solution of the
KdV equation that satisfies this requirement is the solution of Painlevé I-2
equation.
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Double scaling limit of the KP solution

Conjecture: the solution of the KP equation in the limit ✏ ! 0 behaves
near the critical point (xc , yc) as

u(x , y , t; ✏) ' uc + (✏�̃)
2

7U

✓
X

k(✏�̃)6/7
,

T

k(✏�̃)4/7

◆
+ O(✏

4

7 )

where X = x̄ � uc(t̄ + c
1

ȳ) + P
3

(ȳ), T = t̄ + P
2

(ȳ2) and U(X , T ) solves
the PainlevéI-2 equation

X = T U �

U3 +

1

2
(U2

X + 2U UXX ) +
1

10
UXXXX

�
,

with asymptotic behavior given by

U(X , T ) = ⌥(|X |)1/3 ⌥ 1

3
T |X |�1/3 + O(|X |�1), as X ! ±1.

The function U(X , T ) solves also the KdV equation. For the KdV
equation a similar conjecture was formulated by Dubrovin (2006) and
proved by TG and T. Claeys 2008.
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Numerical solutions

Tamara Grava Generalised KP equation June 25, 2016 20 / 41
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ȳ

0.4

0.2

-0.2

-0.4

0

-0.2

x̄

-0.3-0.4-0.5

5

0

-5

u

ȳ
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Numerical solution
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u0(x, y) = �6@
x

sech2(x2 + y

2) ✏ = 10�2, t = 0.4

Oscillations  start at t=0.22

of KPI



Numerical solution
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Numerical solutions

The numerical method used is the Fourier pseudospectral method.

For the time evolution we have used the composite Runge Kutta
method introduced by Driscoll (fourth order method).

Fourier modes: 215 in x and y for ✏ 2 [0.02, 0.05] and 214 in x and y
for ✏ 2 [0.06, 0.1].

Time step: 4 ⇤ 10�5 for ✏ = 0.02, 0.03, 10�4 for ✏ = 0.05, 0.06, 0.08 ,
and 2 ⇤ 10�4 for ✏ = 0.07, 0.09, 0.10 and t ' 1.1

Domain in x and y is [�5⇡, 5⇡].

Note that 215x215x4x105 ' 4 ⇤ 1014 namely each simulation gives a
massive file.
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Lumps

The KPI equations has localised solutions called lumps that take the form
in a suitable systems of coordinates

u(x , y , t; ✏) = 24

�(x � 3b2t)2 + 3b2y2

✏2
+ 1/b2


(x � 3b2t)2 + 3b2y2

✏2
+ 1/b2

�
2

.

Observe that the maximum of the peak is 24b2 and moves in the positive
x direction with speed 3b2 along the line y = 0.
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Qualitative features of lump formation in the KPI solution

We consider the initial data

u
0

(x , y) = �A@x sech2(x2 + y2).

The solution of the KPI equation after the formation of dispersive
shock waves, develops a region of lumps.
Lumps correspond to discrete spectrum of the Schrödinger equation

i y +  xx + u = 0.

A.Fokas and L.Sung showed that if the initial data u
0

(x , y) is small (
in a suitable norm) then there is no discrete spectrum. For the
✏-dependent KP equation the data is always small, and the solution
always develops into lumps.
For fixed ✏ the maximum height umax of the lump that is formed
grows linearly with the maximum amplitude of the initial data u

0max

as
umax = c

0

+ 7.6u
0max
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Lump fitting

We consider the parametric fitting of the peak with a lump according to
the formula

u(x , y , t; ✏) = 24
(�( x�x

0

✏ � 3b2 t�t
0

✏ )2 + 3b2 (y�y
0

)

2

✏2 + 1/b2)

(( x�x
0

✏ � 3b2 t�t
0

✏ )2 + 3b2 (y�y
0

)

2

✏2 + 1/b2)2
.
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Velocity of the maximum of the peaks

Given the lump solution

u(x , y , t; ✏) = 24
(�( x�x

0

✏ � 3b2 t�t
0

✏ )2 + 3b2 (y�y
0

)

2

✏2 + 1/b2)

(( x�x
0

✏ � 3b2 t�t
0

✏ )2 + 3b2 (y�y
0

)

2

✏2 + 1/b2)2
.

then the velocity of the maximum of the peak is

xm(t) = x
0

+ 24b(t)2(t � t
0

)/8
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Analysis of the maximum peak position

We study the time tmax and the position xmax of the appearance of the
maximum peak as a function of ✏.
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t
max

= c2 + c3✏
�

x

max

= c0 + c1✏
4
5

Same scaling as the semiclassical limit of 
the focusing NLS equation

|u(✏ = 0)|1 � |u(✏)|1 = c ✏0.7



Comparison with focusing NLS

i✏ t +
✏2

2
 xx + | |2 = 0

 (x , t = 0, ✏) = A(x)exp
i
✏S(x)
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Onset of oscillations Dubrovin-G.-Klein 2009, Bertola-Tovbis 2013, Dubrovin-G.Klein-Moro 2015

In a region of size ✏
4

5 around the critical point (xc , tc) and the critical
value  c =  (xc , tc ; ✏), the solution  (x , t, ✏) is given by

| (x , t, ✏)|2 = | c |2 + ✏
2

5Re

 
↵⌦

 
x � xc + �(t � tc)

�✏
4

5

!!
+ O(✏

4

5 )

where ⌦ solves the Painlevé equation ⌦zz = 6⌦2 � z with asymptotic
behaviour ⌦(z) = �p z

6

as |z | ! 1. The solution ⌦ has poles!. On the
poles position (xp, tp) the solution is given by the Peregrine breather

| (x , t, ✏)| =
����QBr

✓
x � xp
✏

,
t � tp
✏

◆����+O(✏
1

5 )

where

|QBr (X ,T )| = p
uc

����

✓
1� 4

1 + 2iucT

1 + 4uc(X + 2Tvc)2 + 4u2cT
2

◆����
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Peregrine breather

The maximum peak is approximated by the Peregrine breather ( M. Bertola, A.

Tovbis, CPAM 2013)

| (x , t, ✏)| =
����QP

✓
x � xp
✏

,
t � tp
✏

◆����+O(✏
1

5 )

where |QP(X ,T )| = b
���
⇣
1� 4 1+2b2T

1+4b2(X+2Ta2)2+4b4T 2

⌘���.

Note that | max | = 3b + O(✏
1

5 ) where b is the maximum value at the
critical point of the semiclassical limit. The position and the time of the
maximum peak scale as

xmax = c
1

+ c
2

✏
4

5 , tmax = c
3

+ c
4

✏
4

5

Note that |QP(X � 3b2T ,Y )|2 � b2 is the lump solution of the KPI
equation up to scalings.
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Conclusions

We have described the solution of the KP (I,II) equation in the small
dispersion limit, in the region of development of dispersive shock waves.
We showed that the solution u(x , y , t; ✏) of the KP I equation in the limit
✏ ! 0 has a second caustic region where lumps are formed.

The maximum lump amplitude is proportional to the maximum initial
data amplitude.

The lump amplitude is slowly decreasing as a function of time.

The position xmax of the first lump scales with ✏ like

xmax = c
1

+ c
2

✏
4

5 .

The time of the appearance of the first lump tmax scales with ✏ like

tmax = c
3

+ c
4

✏1.1.

the L1 norm scales like |u(✏ = 0)|1 � |u(✏)|1 = c
0

✏0.7.

Tamara Grava KP equation July 31, 2016 28 / 28


