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Theorem (Dunajski, Ferapontov and Kruglikov (2014))

There exist local coordinates (z ,w , x , y) such that any ASD conformal

structure in signature (2, 2) is locally represented by a metric

1

2
g = dwdx − dzdy − Fydw

2 − (Fx − Gy )dwdz + Gxdz
2, (1)

where the functions F , G : M4 → R satisfy a coupled system of third-order

PDEs,

∂x(Q(F )) + ∂y (Q(G )) = 0,

(∂w + Fy∂x + Gy∂y )Q(G ) + (∂z + Fx∂x + Gx∂y )Q(F ) = 0, (2)

where

Q = ∂w∂x − ∂z∂y + Fy∂x
2 − Gx∂y

2 − (Fx − Gy )∂x∂y .
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System (2) arises as [X1,X2] = 0 from the dispersionless Lax pair

X1 = ∂z − λ∂x + Fx∂x + Gx∂y + f1∂λ,

X2 = ∂w − λ∂y + Fy∂x + Gy∂y + f2∂λ.

Due to compatibility conditions, f1 and f2 can be expressed through F and

G ,

f1 = −Q(G ), f2 = Q(F ),

Q = ∂w∂x − ∂z∂y + Fy∂x
2 − Gx∂y

2 − (Fx − Gy )∂x∂y .

Correspondence between ASD conformal structures and integrable system

de�ned by generic commuting vector �elds.

Real case with the signature (2,2) or, generally, complex analytic case may

be considered.

Reductions:

Dunajski system - null K�ahler case, divergence free vector �elds

f1, f2 = 0 (no ∂λ in the vector �elds), divergence free - Plebanski's second

heavenly equation (ASD, Ricci �at)
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Integrability properties of this Lax pair

The hierarchy, Lax-Sato equations, the dressing scheme - Bogdanov,

Dryuma and Manakov (2007)

The structure of the hierarchy in terms of vector �elds

X n
1 = ∂zn − λn∂x + F n

1 (λ)∂x + Gn
1 (λ)∂y + f n1 (λ)∂λ,

X n
2 = ∂wn − λn∂y + F n

2 (λ)∂x + Gn
2 (λ)∂y + f n2 (λ)∂λ,

where we have two in�nite sets of times zn, wn and two `basic' variables x ,
y , the coe�cients of vector �elds are polynomials in λ of the order n − 1.

Multidimensional version contains N in�nite sets of times and N `basic'

variables.

L.V. Bogdanov (L.D. Landau ITP RAS) Durham 2016 4 / 22



Extension of the Lax pair
Consider a gauge �eld A in some (matrix) Lie algebra and `covariant vector

�elds' X1, X2

∇X1 = ∂z − λ∂x + Fx∂x + Gx∂y + f1∂λ + A1,

∇X2 = ∂w − λ∂y + Fy∂x + Gy∂y + f2∂λ + A2

(here A1, A2 do not depend on λ). Lax pairs of this structure were already

present in Zakharov and Shabat (1979).

The commutator of two covariant vector �elds contains vector �eld part

and Lie algebraic part,

[∇X1 ,∇X2 ] = [X1,X2] + X1A2 − X2A1 + [A1,A2]

Demanding both parts to be equal to zero, from the �rst part we get the

system describing conformally ASD metric, and the second part gives the

system for A1, A2

∂xA2 = ∂yA1,

(∂z + Fx∂x + Gx∂y )A2 − (∂w + Fy∂x + Gy∂y )A1 + [A1,A2] = 0.
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ASDYM case
For F = G = 0 we have

X1 = ∂z − λ∂x ,
X2 = ∂w − λ∂y ,

1

2
g = dwdx − dzdy .

The extended Lax pair takes the form

∇X1 = ∂z − λ∂x + A1,

∇X2 = ∂w − λ∂y + A2,

and the commutativity condition is

∂xA2 = ∂yA1,

∂zA2 − ∂wA1 + [A1,A2] = 0.

This a well known form of ASDYM equations for constant metric g in a

special gauge.
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General case

1. Geometry

Extended Lax pair gives a general form of ASDYM equations for arbitrary

conformally ASD metric g in signature (2,2) (locally, up to transformations

of coordinates and a gauge).

2. Integrability

Extended Lax pair belongs to the hierarchy which unites ASDYM hierarchy

and generic 4-dimensional dispersionless hierarchy. Lax-Sato equations and

dressing scheme can be constructed for this hierarchy.
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Geometry

Given: conformally ASD metric g with signature (2,2) (ASD conformal

structure) and ASD gauge �eld with a connection form A. The

corresponding gauge curvature form is F = dA + A ∧ A, it satis�es the
ASDYM equation

F = − ∗ F
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First step:

following Dunajski, Ferapontov and Kruglikov, we �nd local coordinates

(z ,w , x , y) such that ASD conformal structure is locally represented by a

metric

1

2
g = dwdx − dzdy − Fydw

2 − (Fx − Gy )dwdz + Gxdz
2,
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Second step:

notice that for this metric due to ASDYM equation we have

F34 = 0,

where we have used inverse matrix to metric g de�ned by symmetric

bivector

1

2
Q = ∂w∂x − ∂z∂y + Fy ∂

2
x + (Gy − Fx) ∂x∂y − Gx ∂

2
y

det g = detQ = 1 (for this metric F 12 = F34). Then it is possible to

choose a gauge such that

A3 = A4 = 0,

and we have only two nontrivial gauge �eld components A1, A2.
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Third step:

we will prove that ASDYM equations for A1, A2 for the metric g coincide

with Lie algebraic part of compatibility equations for extended Lax pair.
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Tetrad of one-forms

The conformal structure is represented by (DFK)

g = 2(e00
′
e11

′ − e01
′
e10

′
),

where the tetrad of one-forms is

e00
′

= dw ,

e10
′

= dz ,

e01
′

= dy − Gydw − Gxdz ,

e11
′

= dx − Fydw − Fxdz .
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Tetrad of vector �elds

The dual tetrad of vector �elds is

e00′ = ∂w + Fy∂x + Gy∂y , (+A2)

e10′ = ∂z + Fx∂x + Gx∂y , (+A1)

e01′ = ∂y ,

e11′ = ∂x ,

symmetric bivector reads

Q = 2(e00′e11′ − e01′e10′).

ASDYM equations for this tetrad take the form

F00′10′ = 0, F00′11′ = F10′01′
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For gauge �eld curvature F in the tetrad basis we use a standard formula

F(u, v) = ∇u∇v −∇v∇u −∇[u,v]

for arbitrary vector �elds u, v. Taking into account the structure of tetrade

and the fact that for our gauge A3 = A4 = 0, we see that the third term

doesn't contain a gauge �eld, and for the curvature components we get

F00′10′ = (∂w + Fy∂x + Gy∂y )A1 − (∂z + Fx∂x + Gx∂y )A2 − [A1,A2],

F00′11′ = −∂xA2, F10′01′ = −∂yA1

Thus ASDYM equations read

(∂w + Fy∂x + Gy∂y )A1 − (∂z + Fx∂x + Gx∂y )A2 − [A1,A2] = 0,

∂xA2 = ∂yA1,

which coincides with the Lie algebraic part of commutativity condition for

extended vector �elds Lax pair.
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Integration. The dressing scheme. Vector �elds
1. First step. The vector �elds part. Nonlinear vector Riemann-Hilbert

problem (e.g. on the unit circle, here we don't discuss the question of

reductions)

Ψ0

in = F0(Ψ0
out,Ψ

1
out,Ψ

2
out),

Ψ1

in = F1(Ψ0
out,Ψ

1
out,Ψ

2
out),

Ψ2

in = F2(Ψ0
out,Ψ

1
out,Ψ

2
out),

the expansions at in�nity are

Ψ0

out = λ+
∞∑
n=1

Ψ0

n(t1, t2)λ−n,

Ψ1
out =

∞∑
n=0

t1n(Ψ0)n +
∞∑
n=1

Ψ1
n(t1, t2)λ−n

Ψ2
out =

∞∑
n=0

t2n(Ψ0)n +
∞∑
n=1

Ψ2
n(t1, t2)λ−n,

inside the unit circle the functions are analytic.
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Ψ0, Ψ1, Ψ2 will give the wave fuctions for the hierarchy of commuting

vector �elds, de�ned through coe�cients of expansion of these functions.
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Integration. The dressing scheme. Matrix part
2. Second step. Consider a matrix Riemann-Hilbert problem

Φin = ΦoutR(Ψ0
out,Ψ

1
out,Ψ

2
out),

Φ is normalized by 1 at in�nity and analytic inside the unit circle,

Φout = 1 +
∞∑
n=1

Φn(t1, t2)λ−n

Expansions of Ψ, Φ give coe�cients for extended Lax pair, Φ is a wave

function. A general wave function is given by the expression

ΦF (Ψ0,Ψ1,Ψ2), F is arbitrary matrix function.

For constant metric g corresponding to trivial vector �elds we have

Ψ0 = λ, Ψ1 = x + λz , Ψ2 = y + λw ,

and we get standard Riemann-Hilbert problem for ASDYM.

Remark. A dressing scheme based on ∂̄ problem can be also developed.
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From the dressing scheme to the hierarchy

The vector �elds part of the dressing scheme implies analyticity in the

complex plane of the form (no dicontinuity on the unit circle)

ω =

∣∣∣∣D(Ψ0,Ψ1,Ψ2)

D(λ, x1, x2)

∣∣∣∣−1 dΨ0 ∧ dΨ1 ∧ dΨ2,

where x1 = t1
0
, x2 = t2

0
are lowest times of the hierarchy, and from matrix

Riemann problem we get analyticity of the matrix-valued form

Ω = ω ∧ dΦ · Φ−1.
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Analyticity of these forms imply the relations

(ωout)− =

(∣∣∣∣D(Ψ0
out,Ψ

1
out,Ψ

2
out)

D(λ, x1, x2)

∣∣∣∣−1 dΨ0
out ∧ dΨ1

out ∧ dΨ2
out

)
−

= 0,

(Ωout)− = (ωout ∧ dΦout · Φ−1out)− = 0

for the series Ψ0
out, Ψ1

out, Ψ2
out, Φout. These relations are generating

relations for the hierarchy in terms of formal series, they are equivalent to

the complete set of Lax-Sato equations of the hierarchy.

First relation gives Lax-Sato equations for the hierarchy of commuting

polynomial in λ vector �elds (here we drop subscript `out' for the series):

∂knΨ =
2∑

i=0

((
D(Ψ0,Ψ1,Ψ2)

D(λ, x1, x2)

)−1
ik

(Ψ0)n

)
+

∂iΨ,

where 1 6 n <∞, k = 1, 2, ∂0 = ∂λ, ∂1 = ∂x1 , ∂2 = ∂x2 ,
Ψ = (Ψ0,Ψ1,Ψ2).
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The second generating relation gives Lax-Sato equations for Φ on the

vector �eld background in terms of extended polynomial vector �elds,

∂knΨ = V k
n (λ)Ψ,

∂knΦ =
(
V k
n (λ)− ((V k

n (λ)Φ) · Φ−1)+
)

Φ

First �ows give exactly the extended Lax pair for ASDYM equations on

ASD background, if we identify z = t1
1
, w = t2

1
, x = x1, y = x2.
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Questions

Solutions!

Higher-dimensional case � what is the geometry?

Lower-dimensional cases and reductions � known integrable systems

on the background?
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THANK YOU!
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