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1. Nonrelativistic 1D potential scattering

» As an introductory reminder, we consider self-adjoint
Schrédinger operators of the form (h = 1)

Hy = —d?/dx?, H = —d?/dx?® + V(x),

with V/(x) real-valued.
» Two ‘position space’ Hilbert spaces occur:

s = [2((0,00),dx), Hq = L3((—o0,0),dx).

» With suitable assumptions on V/(x), we recall the
connection of the wave operators

; itH —itH
WL = lim e 0,

t—+o0

e

from time-dependent scattering theory with
time-independent scattering theory in terms of (improper)
eigenfunctions

HV = p?v, p>0,

with unitary asymptotics.



1A. Scattering on the half-line

» Assume V(x) is smooth on (0, o), vanishes quickly for
X — oo, and satisfies

V(x) -, x—0, V(x)<0, x>0.

» With Dirichlet b. c. at x = 0, the interacting and free
evolutions exp(—itH) and exp(—itHp) on Hs can be
compared via the wave operators W... They are unitary,
with the scattering encoded in the (position space)
S-operator

S=Wwiw_.

» This can be made more explicit by using the so-called
incoming wave functions

HV = p?V, p>0, W(x,p)~ u(p)e’® —e ™, x— oo,

with u(p) =: Ss(p) the unitary S-matrix (|Ss(p)| = 1).



The sine transform
(RN =5 [ op(e™—eP)i(p). e G5((0.),

diagonalizes Hy on Hs = L?((0, c0), dp) (‘momentum
space’):
HoFo = Fop®.

Letting

FN00 =3 [ dovp)(p). 1< G050,

we get more generally a unitary operator from Hs to Hs
such that
HF = Fp?.

We also have
F=W_Fo, F& =W, F, (SH)(p) = Ss(p)f(p),

with S = Fi SFo the momentum space scattering operator.



1B. Scattering on the line

» Assume V(x) is smooth, even, vanishes quickly for
|x| — oo, and satisfies V’(x) > 0 for x > 0. Such V have
finitely many bound states, i. e.,

HV, = E\V,, E; <0, W, e Hy=L3(R,dx), £=0,...,L—1.

» The wave operators W, exist and are isometric, with range
equal to the orthogonal complement of the bound states.
Thus, the position space S-operator S = W7 W_ is unitary.

» A corresponding unitary S-matrix

5. py=( 1P rp)
S0 =( 1) G ) poe

on the momentum space Hy = L?((0, o), dp)? arises as
follows.



Diagonalize Hy and H via eigenfunction transforms

v (Xap) f+(p)
e~ [ (3002 ) (1)
(Fo ) = 5= ~Vy(—x.p) )\ £(p)
with
Hio)¥(0) = PV o).
For Hy choose Wy (X, p) = exp(ixp), so Fo amounts to the

Fourier transform, with f € L2(R, dp) yielding (., f_) € Hq
via

fr(p) =1(p), f-(p)=—1(-p), p>0.
For H choose the incoming wave function W(x, p):

t(p)e*®, X — 00,
Hw:pzwv p>07 W(X7p)N { e(ifp)_r(p)eixp X — —00.

(So W(x,p)/t(p) is a Jost function.)



» Once more, we get Ho)F(0) = F(o)P? and

~ A ~ f
F= W70, 78 = W, (80() = 8ue) 1) ).
so that the scattering is encoded in the momentum space
scattering operator

S = F{ SFo.

> Hence H is diagonalized as multiplication by
(p?,p?) @ (Eo, ..., E._1) on Hy ® Span(bound states).

» N. B. In both cases, the eigenfunction transforms yield a
concrete realization of the spectral theorem. Scattering
theory can be avoided by using the so-called
Weyl/Titchmarsh/Kodaira approaches.



2. The Poschl-Teller potentials

» We consider two explicit examples of the above potentials
on the half-line and the line, namely,

Vs(x) = g(g — 1)/sinh?(x), x € (0,), g>1,
and
Vy(x) = —g(g — 1)/cosh?(x), xeR, g>1.

» Here, the suffix s stands for ‘same’, and d for ‘different’.
These potentials encode the interaction between two
charged particles in their center-of-mass frame, with
repulsion between same charges and attraction between
different charges (as in electrodynamics).

» N. B. Vy(x) arises from Vs(x) by the analytic continuations
X — x+imr/2.



2A. Repulsive Poschl-Teller

» The above incoming wave function ¥(x, p) involves the
so-called conical function:

: —1/2
1/2—g hx) = (smh X)g
P12 %) = 561 2r (g 1 /2)

ip—1/2 ¢nr(g; va)ﬂ

Une(95 X, P) = 2F1((9+10)/2, (9— 1) /2, g+1/2; — sinh?(x)).

» These functions admit a variety of integral representations.
Probably the simplest is

2r(2g) °° cos(yp)
g—ip)/o a (

'(bnr(g; X, p) = 2gr(g + Ip)r( COShy + cosh X)g’

which entails in particular

Yne(1; X, ) = sin(xp)/psinh x.



» Setting

_(2sinhx)91(g)l (g — ip) .
F2a)T (D) Yur(G: X, P)

_2(sinhx)9T(g) [ d cos(yp)
" T(—ip)(g + ip) /0 (cosh y + cosh x)9’

yields the announced incoming wave function:

V(x, p)

W(x,p) ~ u(p)e™ — e * x — o,
where . .
r(ip) (g —ip)
M(—ip)F (g + ip)
» N. B. For g = 1 this gives the free solution

u(p) = -

W(x,p) = e*P — g



2B. Attractive Pdschl-Teller

» For g € (L, L+ 1] there are L bound states
Wy(x) = (cosh x)'=9P,(isinh x),
HY, =EV, E =—(g—-¢—1)? (=0,...,L—1,
with Py(t) Gegenbauer polynomials of degree ¢, satisfying
Po(—t) = (=) Pu(D).

» The solution space to HV = p?V, p > 0, is spanned by the
two functions

(cosh x)9¢n,(g; x + im/2, p).

Therefore the desired incoming wave function W(x, p) is
characterized by two p-dependent coefficients.



» Specifically, it reads

_ (2coshx)9T(9)r (g — ip)
~ 2r(29)r(—ip) sinh(irg — 7p)

x > dexp(5(irg — wp)/2)vur(g; X + bim/2, p)

v(x, p)

S=+,—
_ [ tipe™, X — 00,
e*P —r(p)e~™P, x — —oo,
with
sinh sinh(i
t(p) = — STy p(p) = STNUTG)

~ sinh(irg — 7p) ~ sinh(irg — 7p)

» N.B.Forg=1,2,3,..., we get r(p) = 0. Moreover, g = 1
yields the free solution

V(x,p) = e*.



3. Nonrelativistic hyperbolic Calogero-Moser systems

» The nonrelativistic N-particle Calogero-Moser Hamiltonian
of hyperbolic type is given by

2 oh o 12g(g—h 1
a§j+7( ) >

Hy = ———
nr . 2 ?
2 j=1 4 1<j<k<N sinh(n(x — Xx)/2)

with & > 0 (Planck’s constant), m > 0 (particle mass),
g € R (coupling constant), x> 0 (inverse length scale).

» Associated integrable system (N commuting PDOs):
N
Hy = —ih) 0y =: Po, Ho = mHhy,
j=1

(—in)* &
HKZTZagH.o., k=3,....N,
j=1

where |.o. = lower order in partials.



» For g > 0 they can be promoted to commuting self-adjoint
operators on

Hs = [2(Gy,dx), Gn={zeRN|zy< - <z}

Indeed, papers by Heckman and Opdam (specialized to
An_1) yield a unitary joint eigenfunction transform that
gives rise to diagonalization of the PDOs on

Hs = L2(Gy, dp) as multiplication by

x|

N
Fl= 13 pf k=1,...,N.
j=1

» Harish-Chandra type asymptotics of the joint eigenfunction
transform kernel yields the factorized S-matrix

Ssp)= [ ulp—px).

1<j<k<N

with u(p) specified in Subsection 2A.



» This is a system of N particles with the same charge, and
the account in 2A encodes the reduced N = 2
(center-of-mass) state of affairs.

» We can keep Xy, ..., Xy, real and take

XNy41s - s XN — XNyt — I/ py .o, XN — i/ 1,

to get a system with N positive charges and
N_ = N — N, negative charges; the account in 2B
encodes the case Ny = N_ = 1.

» Expectation: The unequal charge case still gives a
factorized S-matrix, with consistent factorization expressed
by the Yang-Baxter equations for the 3-particle case. They
can be thought of as pertaining to the 3-particle subspace
of the fermion Fock space over L?(R, dp) ® C2.



» Specifically, the equations can be written
S12513523 = 523513512,

where the indices refer to the tensor legs of C2 @ C2 @ C2,
together with

Sik = (b —Pk), PE Gs.

OO oOoCc
O~ ~O0O
O~ = O
cC OO Oo

» This yields only two nontrivial relations, namely,
ratiglzg = tagUiarz + faarstiz,

Uior3Uog = bo3r3tio + raUq3rio.

Division by uyouy3Usg yields equations for t/u and r/u that
are satisfied for the ‘Péschl-Teller’ u, t, r in Section 2.



4. Relativistic hyperbolic Calogero-Moser systems

» The N commuting Hamiltonians (for equal charge) are the
AAOs (analytic difference operators)

Hi(x) = Y T - (xm — xa)e™ ™ 2Zme1 % TT £ (xXim — Xn),

[ll=k mel mel
nél ngl

where k=1,...,N, >0, and

£ (x)? = sinh(u(x = i3g)/2))/ sinh(ux/2).
» Physical picture: 5 =1/mc and c =light speed;

Heet = mc®[Hy(x) 4+ Hi(—x)], Pret = mc[Hy(x) — Hy(—x)],

N
B= —mij,
=

are space-time translation and boost generators.



» They represent the Lie algebra of the Poincaré group in 2D:
[Heel, Pret] = 0, [Heet, B] = ihPret, [Pret, B] = ihc ™2 Hgal.
» The nonrelativistic limit ¢ — oo yields
Heet — Nmc® — Hye,  Pret — Par,
and the Galilei Lie algebra
[Har, Par]l = 0, [Har, Bl = ihPar, [Par, Bl = iNaim1.

» As before, we get a system with N, positive charges and
N_ = N — N, negative charges by taking

Xp— Xp— i/, n=Ny+1,... N,

entailing sinh — cosh for different charges.



» Conjecture. For

139 € (0,7 + uph),

the single-charge AAOs Hi(x) and their two-charge
cousins can be promoted to commuting self-adjoint Hilbert
space operators with a factorized S-matrix; for u8g =«
this yields the same ‘physics’ (scattering including bound
states) as for the sine-Gordon quantum field theory

é— ¢" = sin¢.

» N. B. In joint work with M. Halln&s, joint eigenfunctions for
the Hamiltonians H;(x), ..., Hy(x) have been recursively
constructed with the aid of kernel functions; they do give
rise to a factorized S-matrix [ [;_, u(y; — yk), with u(y)
specified below.



4A. The repulsive reduced N = 2 case

» To date no general Hilbert space theory for AAOs exists.
Worse yet, the solutions to a Schrédinger equation of the
form

f(X)V(x +is, p) + g(x)¥(x — is, p) = 2 cosh(sp)¥(x, p),

with shift parameter s > 0 form an infinite-dimensional
vector space whenever one nonzero solution ¥(x, p)
exists.

» Example: The free case f(x) = g(x) = 1. Just multiply the
obvious solution exp(ixp) by any function m(x, p) that has
is-periodicity in x to get another solution.

» Certain special AAOs, however, have been promoted to
self-adjoint Hilbert space operators. This hinges on the
existence of special solutions to the Schrédinger equation
that give rise to a unitary eigenfunction transform.



» For the reduced N = 2 case at hand, this transform
involves the relativistic conical function. This conical
function generalization has many distinct integral
representations. The integrands are built from the
hyperbolic gamma function G(a;, a-; z), which is a
generalization of the (rational) gamma function I'(z).

» In the present setting, ai can be viewed as length scales:
a. =27 /u, (imaginary period/interaction length),

a_ = h/me, (shift step size/Compton wave length).

» From now on, we use the notation
c5(2) = cosh(rz/as), ss5(z) = sinh(rz/as), es(z) = ™%/,
where § = 4, —; also, we define the average

a=(ayr+a-)/2



» The hyperbolic gamma function G(z) can be defined as
the meromorphic solution to one of the first order AAEs

G(z + ia;/2)

= 2 . = — — 0
G(Z—Iag/Z) C (5(2)7 6 +7 ) a+7a > )

which is uniquely determined by requiring G(0) = 1 and
‘minimality’; the second AAE is then satisfied as well.
» In the strip |Im z| < a it has the integral representation

B . [ dy sin2yz __Z
G(z) = exp ('/0 7(2 sinh(a,y)sinh(a-y) a+a_y)>'

This entails absence of zeros and poles in this strip and
the properties

G(a-,at;z) = G(ay,a_;z), (modular invariance),

G(-z) =1/G(z), (reflection equation),
G(z) = G(-2).



» The simplest and most revealing representation of the
relativistic conical function is given by

1 G(2ib— ia)
R(ai,a-,b;x,y) = \/;G(ib— ia)?

G(z+d6(x—y)/2—1ib/2)
/dz H G(z+0(x +y)/2 + bj2)’

Here, band y are the coupling constant and spectral
parameter, related to the previous parameters by

b= pg(=g/mc), y=pp/u.

» From this one reads off evenness in x and y and the
properties

R(a-,as,b;x,y) =R(as,a-,b; x,y), (modular invariance),

R(ay,a—, by, x) =R(ay,a-,b; x,y), (self — duality).



» The R-function is meromorphic for b, x, y € C and
Rea,,Rea_ > 0. It satisfies the four AAEs

As(X)R(X,y) = 2¢;(Y)R(x, ¥), As(Y)R(X,y) = 2¢;(X)R(X, ),
_ S(;(Z + Ib)
A2 ="5@
where § = +, —.
» The AAO A, (x) is related to the above (reduced) N = 2

Hamiltonian H, by a similarity transformation involving the
generalized Harish-Chandra c-function

c(z) = G(z + ia— ib)/G(z + ia).
» Introducing the weight and scattering functions
w(z) =1/c(z2)c(-2), u(z) = —c(2)/c(-2),

(with w(z) having a double zero for z = 0), this relation is
given by

Heel = CTH(x), Hy(z) = w(z2)'2AL(z)w(z)~ /2.

exp(ia_sd/dz) + (z — —2z),



» The function

G(ib — ia) w(x)'/?
G(2ib —ia) c(—y)

V(x,y)=— R(X.¥).

satisfies Hy(x)¥(x,y) = 2c(y)V(x,y) and
V(x,y) ~ u(y)exp(irxy/ara-)—exp(—irxy/ara_), x — oo.
» Setting
Ho +(x) = exp(ia+d/dx) + exp(—ia+d/dx),

Wo(x,y) = exp(inxy/asa_) — exp(—inxy/a.a-),
one clearly gets Hy 1 (x)Wo(X, y) = 2c+(¥)Vo(X,y).

» The sine transform F, with kernel (2a,a_)~"/2Wy(x, y)
can now be used to reinterpret the AAOs Hp 1 (x) as
self-adjoint operators on Hs = L?((0, o), dx), namely as
pullbacks of the self-adjoint operators of multiplication by
2c.(y) on Hs = L3((0, 0), dy) under the unitary Fo.



Provided b € [0, 24|, the transform F with kernel
(2a,a_)" 12V (x, y) yields a unitary operator Hs — Hs. (It
equals F, for b = a;.) The AAOs H.(x) can then be
viewed as commuting self-adjoint operators on Hg, defined
by f2Ci(-)f*.

These transforms are related to the wave operators

Wy = t lim exp(itHs) exp(—itHo 5), &6 =+, —,

in the same way as in the nonrelativistic setting.
In particular, the scattering operator on Hs is given by

with
G(y +ia—ib)G(y — ia+ ib)

G(y +ia)G(y — ia)

u(y) = -



4B. The attractive reduced N = 2 case
» Reminder:
si(x) =sinh(rx/ay), ar =2n/u, a- =h/me, y = p/mcp.

» The repulsive (same charge) and attractive (different
charge) AAOs are given by
As(x) = A (x) = SEEED) o tia djax) + (x — —x),
5+(x)
C+(x + ib)

Ag(x) = Ar(x—iay/2) = cr(0)

exp(fa-d/dx)+(x — —x).
» Setting
c(x)=c(x —iar/2), w(x)=1/¢(x)c(—x) >0, Vx € R,
the corresponding Hamiltonian is
Ha(x) = w(x)"2 Ag(x)w(x) /2.

For b = a_ it equals g?@-9/9x 4 g—ia-d/dx



» N. B. The x-shift R(x — ia;./2, y) entails that modular
invariance and self-duality break down. As a result, Ay(x)
has no natural ‘modular partner’, and we might as well
trade the spectral variable y (a position) for p (a
momentum). For brevity, we stick to y.

» In fact, we get two distinct eigenfunctions
Ad(X)R(X £ 2. /2,y) = 2¢,. (Y)R(X £ ia; /2, Y),
entailing
Ha(x)W(x)2R(x+ia, /2, y) = 20 (y)W(x) /2R (x+ia; /2. ).

» Snag. These Hy(x)-eigenfunctions remain eigenfunctions
when multiplied by any function m(x, y) that is ia_-periodic
in x. There are no general results ensuring that a particular
choice yields a function W(x, y) that can serve as the
kernel of a unitary eigenfunction transform.



» The linear combination
G(ib — ia) v"v(x)”2
G(2ib — ia) 2s_(ib — y)c(—y)

X H de_(6(ib—y)/2)R(x + diay/2,y),
5=+~

V(x,y) =

has coefficients ensuring unitary asymptotics:

f(y)e/'wxy/a+3_7 Re x — o0,
\U(va) ~ { eiwxy/a+a, _ r(y)e—iwxy/aJra,’ Re x — —o0,

with

()= 5y ) )= 5y )

» N. B. The triple u, t, r satisfies the Yang-Baxter equations;
notealsor=0forb=(L+1)a_,L=0,1,2,....



» In joint work with S. Haworth we have shown that the
transform

_ 1 * vix.y) \ . ( W)
(FN00 = \/2a+a_/o 4 ( —V(—x,y) > < f-(y) >’
yields a unitary operator
F 1 Hy = L2((0,00), dy)? — Hg = L3(R, dx),

provided b € [0, a_]. Also, W(x, y) equals €™/2+a- for
b = a_, so then F amounts to the Fourier transform F.

» For b e (a_,a- + a;/2) the transform is isometric. Its
range is the orthogonal complement of L > 1 bound states

Wy(x) = Vmag(is+(x)), 0=0,...,L-1,

with Q,(t) g-Gegenbauer polynomials of degree ¢ and
parity (—)".



» The transforms F ) are related to the wave operators W,
as before, and serve to associate a self-adjoint operator on
Hq to the AAO Hy(x), namely the pullback of multiplication
by (2¢1.(y),2¢4(y)) on Hg.

» Forafixed b € [0,a_ + a;/2), the bound state number L is
the smallest integer such that b < (L+ 1)a_. For b > a_
we have HyV, = E,V,, with

E,=2c.(i(b—(f+1)a_))€(0,2), £=0,...,L—1.

» Setting
{=b/a,, (=a/ay,

the following plot can be viewed as a phase diagram. The
red line denotes the transition to the ‘unphysical’ regime
(breakdown of isometry and self-adjointness). On the lines
¢=(L+1)¢, L=0,1,..., the reflection vanishes. Also, sG
stands for the sine-Gordon line £ = 1/2. The nonrelativistic
limit arises by setting ¢ = A(, A = g/h fixed, and letting
¢—0.



~—L=0

N

=

N I




5. Some references

» S. R. (1994): Systems of Calogero-Moser type, in:
Proceedings of the 1994 Banff summer school “Particles
and fields" (G. Semenoff and L. Vinet, Eds.), CRM series
in mathematical physics, Springer, New York, 1999, pp.
251-352.

» S. R. (2011): A relativistic conical function and its
Whittaker limits, SIGMA 7, 101.

» M. Hallnds, S. R. (2014): Joint eigenfunctions for the
relativistic Calogero-Moser Hamiltonians of hyperbolic
type. I. First steps, Int. Math. Res. Not., no. 16, 4400—-4456.

» M. Hallnés, S. R. (2016): Joint eigenfunctions for the
relativistic Calogero-Moser Hamiltonians of hyperbolic
type. Il. The two- and three-variable cases, preprint.

» S. Haworth, S. R. (2016): Hilbert space theory for
relativistic dynamics with reflection. Special cases, to
appear in Journal of Integrable Systems.



	1. Nonrelativistic 1D potential scattering
	1A. Scattering on the half-line
	1B. Scattering on the line

	2. The Pöschl-Teller potentials 
	2A. Repulsive Pöschl-Teller 
	2B. Attractive Pöschl-Teller 

	3. Nonrelativistic hyperbolic Calogero-Moser systems 
	4. Relativistic hyperbolic Calogero-Moser systems 
	4A. The repulsive reduced N=2 case
	4B. The attractive reduced N=2 case

	5. Some references

