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What is an Automorphic Lie Algebra?

Automorphic Lie Algebras (ALiAs)
An ALiA is the space of invariants(

g ⊗M(C)
)G

=
{
a ∈ g ⊗M(C) | ga = a, ∀g ∈ G

}

It is obtained by imposing a discrete group symmetry on a current algebra
of Krichever-Novikov (KN) type

g ⊗M(C)

i.e. current algebra withM(C)-linear Lie bracket.
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Automorphic Lie Algebras in a nutshell

G ⊂ Aut(C) is a finite group of FLTs (Möbius transformations); g ∈ G acts
on a complex parameter λ by g(λ) = aλ+b

cλ+d , a, b , c, d ∈ C.

Γ ⊂ C is an exceptional orbit of the G-action on C (|Γ| < |G|).

M(C) the field of rational functions on C and M(C)Γ is the ring of
functions inM(C) with poles in a G-orbit Γ.

g a (simple) Lie algebra with a G-action preserving the Lie
bracket; we assume the G-action to be fixed-point-free, i.e.
gG = 0.

Automorphic Lie Algebras(
g ⊗M(C)

)G

Γ
=

{
a ∈ g ⊗M(C)Γ | ga = a, ∀g ∈ G

}
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Inner and outer group actions on Lie algebras

Let G be a finite group, let g = sln+1 and ρ : G → Aut(sln+1) a homomorphism of
groups.

If n = 1 the image of ρ is contained in Int(sln+1) (inner automorphisms).

If n > 1 then Out(sln+1) = Aut(sln+1)/Int(sln+1) � Z/2.
Then ρ(G) ∩ Int(sln+1) is a normal subgroup of ρ(G) of index 1 or 2.

If ρ(G) has not an index 2 normal subgroup, the action is inner: finite groups
for which this is the case are

I the tetrahedral
I the icosahedral groups and
I the cyclic groups of odd order.

Finite groups that do have a normal subgroup of index 2 are

I cyclic groups of even order,
I dihedral groups and
I the octahedral group.

We consider here G-actions which are inner.
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Automorphic FunctionsM(C)G
Γ

: G-action on C

M(C)G
Γ =

{
f ∈ M(C)Γ | g · f = f , ∀g ∈ G

}
Example
If a dihedral group DN = 〈r , s | rN = s2 = (rs)2 = 1〉 acts on λ ∈ C by

r · λ = ωλ , ωN = 1 ; s · λ =
1
λ

and if one considers the DN-orbit Γ = {0,∞} ⊂ C, then all automorphic
functions are polynomials in

I = λN + 2 + λ−N

i.e.
M(C)DN

Γ
= C[I].
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G-action on g

Let V be a G-module. A G-action on V induces a G-action on
V ⊗ V∗ � End(V) corresponding to conjugation.
Example
If V is a 2-dimensional DN-representation having a basis such that

τ(r) =

(
ω 0
0 ω−1

)
, τ(s) =

(
0 1
1 0

)
then the action on End(V) reads

r ·
(
a b
c d

)
= τ(r)

(
a b
c d

)
τ(r)−1 =

(
a ω2b

ω−2c d

)
, s ·

(
a b
c d

)
=

(
d c
b a

)
.

Notice that

gl
DN
2 = k

(
1 0
0 1

)
; sl

DN
2 = 0 , ω2 , 1 .
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Classification problem

The goal is the classification of Lie algebras
(
g ⊗M(C)

)G

Γ
where

G < Aut(C), Γ ∈ C /G , g < gl(V) simple.

This relies on the classical classifications of

Finite subgroups of Aut(C)

Z/N, DN , T, O, Y.

Related to each group there is a finite list of orbits Γi and fixed-point free
G-action on g.

Root Systems - TOY

A1 − A5, B2 − B7, C2 − C7, D3 − D6,D8, E6 − E8, F4, G2
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History and Motivation
Zakharov, Shabat, ‘74 Reductions of Lax pairs
Mikhailov, ‘79-‘81 Reduction Group in the classification of

integrable systems in 1 + 1 dim.
Drinfeld, Sokolov, ‘85 Lie Algebras and equations of KdV type.
S L, Mikhailov, ‘04-‘05 Automorphic Lie Algebras (ALiAs);

first examples and related PDEs.
S L, Sanders, ‘10 Invariant theory λ = X

Y ;
classification of sl2(C)-based ALiAs
using Chevalley normal forms.

Bury, Mikhailov, ‘10 Classification of sl2(C)-based ALiAs
integrable PDEs (coupled systems).

Chopp, Schlichenmaier, ‘11 start to replace C by arbitrary compact
Riemann surface.

Knibbeler, S L, Sanders, ‘14 ALiAs with DN symmetry in normal form.
Method to treat all poles at once.

Knibbeler, ‘14 Invariants of ALiAs.
Knibbeler, S L, Sanders, ‘15 Classification of ALiAs for inner auts (g = sln)
Knibbeler, S L, Sanders, ‘15 ALiAs & Root System Cohomology
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ALiAs classification

V. Knibbeler, S. Lombardo, and J.A. Sanders
Higher dimensional Automorphic Lie Algebras

JoFoCM, 1–49, 2016.
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Presentation of the Reduction Group

G = 〈gv , gf , ge | gv
nv = gf

nf = ge
ne = gvgf ge = 1〉

O = 〈gv , gf , ge | gv
4 = gf

3 = ge
2 = gvgf ge = 1〉

Γv = {vertices} = {red dots},

Γf = {mid’s of faces} = {green dots},

Γe = {mid’s of edges} = {blue dots},

|O| = 24, |Γv | = 6, |Γf | = 8 |Γe | = 12,

The Automorphic functions Ii = F
νΓi
Γi /F

νΓ
Γ

Iv , Ie , If ∈ M(C)G
Γ

are defined by Ii = 1 if Γ = Γi and by

Ii(λ) = 0⇔ λ ∈ Γi , Γ

gv

gf

ge

Figure: Octahedron
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Invariants of Automorphic Lie Algebras
1 Number of matrices is dim g.
2 Power of Ii in each matrix and in each structure constant is 0 or 1.
3 Total number of Ii appearing in the matrices of invariants is in the

Table.

Φ A1 A2 B2 A3 C3 A4 A5

κv 1 3 4 6 8 10 14
κf 1 3 3 5 7 8 12
κe 1 2 3 4 6 6 9
Σ 3 8 10 15 21 24 35

A` − sl`+1(C)

H =

(
1 0
0 −1

)
, E+ =

(
0 IeIf
0 0

)
, E− =

(
0 0
Iv 0

)
.

V. Knibbeler
Invariants of Automorphic Lie Algebras

http://arxiv.org/abs/1504.03616, 2014.
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The integers 1/2 codim g〈gi 〉, i ∈ {v , e, f }, by the root system Φ of g.

Φ A1 A2 A3 A4 A5 B2/C2 B3/C3 B4/C4 B5/C5 B6/C6 B7/C7

κv 1 3 6 10 14 4 8 14 22 31 42
κf 1 3 5 8 12 3 7 12 18 26 35
κe 1 2 4 6 9 3 6 10 15 21 28
Σ 3 8 15 24 35 10 21 36 55 78 105

Φ D3 D4 D5 D6 D8
κv 6 11 18 26 48
κf 5 9 15 22 40
κe 4 8 12 18 32
Σ 15 28 45 66 120

Φ E6 E7 E8 F4 G2
κv 31 53 100 20 5
κf 27 45 84 18 5
κe 20 35 64 14 4

Σ/dim g 78 133 248 52 14

The last table suggests the existence of a fixed-point-free G-action by inner automorphisms of g,
where G is one of the TOY groups.
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Root System Cohomology

r1

r2r3

r4

r5 r6

r1

r2r3

r4

r5 r6

V. Knibbeler, S. Lombardo, and J.A. Sanders
Automorphic Lie Algebras and Cohomology of Root Systems

arXiv:1512.07020, 2015.
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Root System Cohomology
Let q ∈ N; let Φ be a RS of rank ` of a simple Lie algebra g, and Φ0 = Φ ∪ {0}.

1-chains: C1(Φ) = Z〈Φ0〉

2-chains: C2(Φ) = Z〈(α, β) ∈ Φ2
0 | α + β ∈ Φ0〉 , Φm

0 = Φm ∪ {0}

. . .

Cm(Φ) =Z〈(α1, . . . , αm) ∈ Φm
0 | (α1, . . . , αj + αj+1, . . . , αm) ∈ Cm−1(Φ), 1 ≤ j < m〉

Dually, we define m-cochains by

Cm(Φ,Zq) = Hom(Cm(Φ),Zq).

One can then define dm : Cm(Φ,Zq)→ Cm+1(Φ,Zq) in the usual manner

d0ω0(α0) = 0
d1ω1(α0, α1) = ω1(α1) − ω1(α0 + α1) + ω1(α0)
d2ω2(α0, α1, α2) = ω2(α1, α2) − ω2(α0 + α1, α2) + ω2(α0, α1 + α2) − ω2(α0, α1)
. . .
dmωi(α0, . . . , αm) = ωm(α1, . . . , αm) +

∑m
j=1(−1)jωm(α0, . . . , αj−1 + αj , · · · , αm)+

−(−1)mωm(α0, . . . , αm−1).
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Application of Root System Cohomology

Theorem
Let Φ be a root system with basis ∆. If ω2

+ ∈ C2(Φ,Nq
0) satisfies

d2ω2
+ = 0, ω2

+(α, β) = ω2
+(β, α),

then the free C[I1, .., Iq]-module with generators {hr , eα | 1 ≤ r ≤ `, α ∈ Φ, } and
C[I1, .., Iq]-linear Lie bracket

[hr , hs] = 0 if hr , hs ∈ h

[hr , eα] = α(hr )eα if ∈ h

[eα, eβ] =


ε(α, β)Iω

2
+(α,β)eα+β if α + β ∈ Φ,

ε(α,−α)Iω
2
+(α,−α)hα if α + β = 0,

0 if α + β < Φ0

where ε is an antisymmetric 2-form, is a Lie algebra, denoted as Ld1ω1 (Φ).

We use a multi-index notation Iω
2
+(α,β) =

∏
i∈{v ,e,f } I

ω2
+(α,β)i

i .
The Jacobi identity is equivalent to d2ω2

+ = 0.
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Root System Cohomology

The previous theorem essentially states that any symmetric 2-cocycle ω2

determines a Lie algebra with monomial coefficients.

Moreover, a 1-cochain ω1 determines a representation.

Indeed consider generators of the form Iω
1(α)eα. Then

[Iω
1(α)eα, Iω

1(β)eβ] = Iω
1(α)Iω

1(β)[eα, eβ] = Iω
1(α)+ω1(β)−ω1(α+β)(Iω

1(α+β)eα+β) =

= Id
1ω1(α,β)(Iω

1(α+β)eα+β).

Let ω1 ∈ C1(Φ,Zq) and let

ω2
+(α, β) = d1ω1(α, β) = ω1(α) + ω1(β) − ω1(α + β) .

We say that ω1 is a model for ω2
+.
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The root system A1

The root system A1

α−α

∆ A1 A2 B2 A3 C3 A4 A5

κv 1 3 4 6 8 10 14
κf 1 3 3 5 7 8 12
κe 1 2 3 4 6 6 9
Σ 3 8 10 15 21 24 35

Invariant 1 and 2:
ω1 : A1 → {0, 1}

Invariant 3: ∑
α∈A1

ω1(α) = 1
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The root system A1

α−α

There are only two maps ω1 satisfying conditions

ω1(0) = 0 and ω1(−α) + ω1(0) + ω1(α) = 1 .

Either ω1(−α) = 1 or ω1(α) = 1 and the other values are zero.
Both of them map to the same 2-coboundary

d1ω1(−α, α) = 1

Hence, if dim V = 2, then

sl2
G
Γ � C[I] (h, e+, e−)

[h, e±] = ±2e±
[e+, e−] = Iv If Ieh
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The root system A2
Basis of 2-chains

{
(α, β) ∈ A2 | α + β ∈ A2 ∪ {0}

}
⊂ C2(A2).

r1=α1

r2=α1 + α2r3=α2

r4= − α1

r5= − α1 − α2 r6= − α2

∆ A1 A2 B2 A3 C3 A4 A5

κv 1 3 4 6 8 10 14
κf 1 3 3 5 7 8 12
κe 1 2 3 4 6 6 9
Σ 3 8 10 15 21 24 35

S Lombardo (Northumbria) ALiAs & Root System Cohomology Durham, July 2016 20 / 30



The 2-coboundaries d1ω1 on A2 satisfying the invariants
Invariant 1 and 2:

ω1 : A2 → {0, 1}

Invariant 3: ∑
α∈A2

ω1(α) = 2 or 3

Lie algebra:

d1ω1(α, β) = ω1(α) − ω1(α + β) + ω1(β) ≥ 0.

r1

r2r3

r4

r5 r6

r1

r2r3

r4

r5 r6
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The two smallest pole-orbits

The 2-coboundary d1ω1 ∈ B2(A2,N
2
0) where

∑
A2
ω1(α) = (3, 2).

r1

r2r3

r4

r5 r6

Any sl3(C)-based Automorphic Lie Algebra with poles at one of the two
smallest orbits, Γv or Γf , is isomorphic to Ld1ω1(A2), where d1ω1 is as
depicted.
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The largest exceptional orbit
∆ A1 A2 B2 A3 C3 A4 A5

κv 1 3 4 6 8 10 14
κf 1 3 3 5 7 8 12
κe 1 2 3 4 6 6 9
Σ 3 8 10 15 21 24 35

The two 2-coboundaries d1ω1 ∈ B2(A2,N
2
0) where

∑
A2
ω1(α) = (3, 3).

r1

r2r3

r4

r5 r6

r1

r2r3

r4

r5 r6
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Second cohomology group H2
+(Φ,Zq)

One of the fundamental questions is thus whether there is always a model.

This is equivalent to the question whether the second cohomology group
H2

+(Φ,Zq) is trivial.

V. Knibbeler, S. Lombardo, and J.A. Sanders
Automorphic Lie Algebras and Cohomology of Root Systems

arXiv:1512.07020, 2015.

The second cohomology group has an obvious interpretation in terms of
Lie algebras over graded rings and their representations: it measures the
amount of such Lie algebras that do not allow a representation given by a
1-cochain in the canonical way described.

The proof that H2
+(Φ,Zq) is trivial is entirely constructive, so it also

provides an integration procedure, allowing one to find a model from the
given ALiA.
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Root System Cohomology & Real Lie Algebras
Theorem (Kac (1969), as in Fuchs and Schweigert,1997)
"The finite-dimensional semisimple real Lie algebras are in one-to-one
correspondence with the pairs (g, ω1), where g, is a finite-dimensional semisimple
complex Lie algebra and ω1 an involutive automorphism of g".

We observed that maxω1∈Z1(Φ,Z/ν) codim ker(ω1) = 2κν(Φ); this implies that there
is a functional ω1 related to real Lie algebras with a parabolic part of dimension
2κν(Φ).

The integers 1/2 codim g〈gi 〉, i ∈ {v , e, f }, by the root system Φ of g.

Φ A1 A2 A3 A4 A5 B2/C2 B3/C3 B4/C4 B5/C5 B6/C6 B7/C7 · · · G2
κv 1 3 6 10 14 4 8 14 22 31 42 · · · 5
κf 1 3 5 8 12 3 7 12 18 26 35 · · · 5
κe 1 2 4 6 9 3 6 10 15 21 28 · · · 4
Σ 3 8 15 24 35 10 21 36 55 78 105 · · · 14

Real Lie Algebras g?2 = G2(2)

From the Table one observes that κe = 4, so the dimension of the parabolic part
of this Lie algebra is 8. The compact complement has dimension 6 = 14 − 8 and
it is equal to su2 ⊕ su2.

S Lombardo (Northumbria) ALiAs & Root System Cohomology Durham, July 2016 25 / 30



ALiAs & real Lie algebras
Let the model for (sl6 ⊗M(C))G

a be

‖A (12,9)
5 ‖ =



0 1 I I I I

1 0 I I I I

1 1 0 1 I I

J J J 0 I I

J J J 1 0 1
J J J 1 1 0


, K(sl6)a = 2 + 4I + J + 8IJ .

real Lie algebras A5(1)

From the Table one has that κe = 9, so the dimension of the parabolic part of this
Lie algebra is 18. The compact complement has dimension 17 = 35 − 18 and it is
equal to su3 ⊕ C ⊕ su3: 

0 1 1 J J J

1 0 1 J J J

1 1 J J J

J J J 0 1 1
J J J 1 0 1
J J J 1 1 0


su(3, 3) = t ⊕ p = su3 ⊕ C ⊕ su3 ⊕ p .
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Platonic Lie Algebras (work in progress)

In the ALiAs case dim g = κv + κf + κe ; inspired by this, we say that g is a
Platonic Lie algebra iff∑

ν=2,3,5

max
ω1∈Z1(Φ,Z/ν)

codim ker(ω1) = dim g .

Conjecture
If g is a Platonic Lie algebra there is at least one fixed-point-free action of
one or more of the TOY groups.

The conjecture holds true if g is a classical Lie algebra.

Platonic Root Systems

A1 − A5, B2 − B7, C2 − C7, D3 − D6,D8, E6 − E8, F4, G2
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Summary

ALiAs with g = sln+1, n = 1, 2, 3, 4, 5 and where the G-action is realised by
inner automorphisms using irreducible G-representations are completely
classified and written in Chevalley normal forms.
In all cases, there exists a CSA where all elements have constant
eigenvalues. We conjecture the existence of such a CSA in the inner case.
This is not the case in the outer case.

We are extending the sln+1 classification replacing the irreducibility with the
fixed-point-free action requirement; we aim to classify all ALiAs based on

A1 − A5︸   ︷︷   ︸
classified

, B2 − B7, C2,C3 − C7, D3 − D6,D8, E6 − E8, F4, G2

where the G-action is realised by inner automorphisms (in progress).

ALiAs invariants (see V Knibbeler, 2014) leads to a formulation of ALiAs in
terms of Root System Cohomology. More generally, this theory might
provide an interesting way to study Lie algebras over graded rings.
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Summary
The result by Kac (1969) on the classification of real Lie algebras can be
reformulated in terms of Root System Cohomology over Z/2 as follows:

for every ω1 ∈ Z1(Φ,Z/2) one can find a real Lie algebra and for every
non-split real Lie algebra one can find at least one ω1.

Given an ALiAs “model” (that is, given a Chevalley normal form after
generalised Weyl transformations) where the poles are at either one of the
two smallest exceptional G-orbits, one can construct a non-split real Lie
algebra with maximal parabolic part (see the A5 example).
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Thank you!

V. Knibbeler, S. Lombardo, and J.A. Sanders
Higher dimensional Automorphic Lie Algebras
Journal of Foundations of Computational Mathematics, 1–49, 2016.
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