V-systems

Misha Feigin

joint work with Alexander Veselov

ArXiv:1409.2424

School of Mathematics and Statistics, University of Glasgow

LMS Durham Symposium on Geometric and Algebraic Aspects of Integrability, July–August 2016

Plan of the talk

- V-systems; equivalent formulations
- Operations with V-systems
- Examples
- Harmonic V-systems

Let $V \cong \mathbb{C}^n$. Let $\mathcal{A} \subset V^*$ be a finite set of non-collinear covectors. Define B a bilinear form on V by

$$B(u,v) = \sum_{\alpha \in \mathcal{A}} \alpha(u)\alpha(v)$$

We assume B is non-degenerate.

Then $V \cong V^*$: $\alpha \in V^*$ corresponds to $\alpha^{\vee} \in V$ s.t. $B(\alpha^{\vee}, u) = \alpha(u)$ for any $u \in V$.

Definition (Veselov'99)

 \mathcal{A} is a \vee -system if for any $\alpha \in \mathcal{A}$, $\pi \subset V^*$, dim $\pi = 2$

$$\sum_{\beta \in \mathcal{A} \cap \pi} \beta(\alpha^{\vee})\beta = \nu \alpha$$

for some
$$\nu = \nu(\alpha, \pi) \in \mathbb{C}$$
.

$$\sum_{\beta \in \mathcal{A} \cap \pi} \beta(\alpha^{\vee})\beta = \nu \alpha$$

Equivalently,

- if $\pi \cap \mathcal{A} = \{\alpha, \beta\}$ then $B(\alpha^{\vee}, \beta^{\vee}) = 0$
- if $|\pi \cap \mathcal{A}| > 2$ then $B_{\pi}|_{\pi^{\vee} \times V} = \nu B|_{\pi^{\vee} \times V}$, where $B_{\pi}(u, v) = \sum_{\beta \in \mathcal{A} \cap \pi} \beta(u)\beta(v), \ \nu = \nu(\pi)$.

$$\sum_{\beta \in \mathcal{A} \cap \pi} \beta(\alpha^{\vee}) \beta^{\vee} = \nu \alpha^{\vee}$$

Equivalently,

- if $\pi \cap \mathcal{A} = \{\alpha, \beta\}$ then $B(\alpha^{\vee}, \beta^{\vee}) = 0$
- if $|\pi \cap \mathcal{A}| > 2$ then $B_{\pi}|_{\pi^{\vee} \times V} = \nu B|_{\pi^{\vee} \times V}$, where $B_{\pi}(u, v) = \sum_{\beta \in \mathcal{A} \cap \pi} \beta(u)\beta(v), \ \nu = \nu(\pi)$.

Witten-Dijkgraaf-Verlinde-Verlinde equations

Theorem (Veselov'99,01; FV'08)

 \mathcal{A} is a \lor -system if and only if

$$\mathcal{F}(x) = \sum_{\alpha \in \mathcal{A}} \alpha(x)^2 \log \alpha(x), \quad x \in V$$

satisfies WDVV equations

$$\mathcal{F}_i G^{-1} \mathcal{F}_j = \mathcal{F}_j G^{-1} \mathcal{F}_i$$

for any i, j = 1, ..., n, where \mathcal{F}_i is $n \times n$ matrix, $(\mathcal{F}_i)_{kl} = \frac{\partial^3 \mathcal{F}}{\partial x_i \partial x_k \partial x_l}$, $G = \sum_{i=1}^n x_i \mathcal{F}_i$.

Associative multipliciation

Let
$$\Sigma = \bigcup_{\alpha \in \mathcal{A}} \{x : \alpha(x) = 0\}$$
.
Let $x \in V_{\Sigma} := V \setminus \Sigma$. Let $u, v \in T_x V_{\Sigma} \cong V$. Define

$$u \star v = \sum_{\alpha \in \mathcal{A}} \frac{\alpha(u)\alpha(v)}{\alpha(x)} \alpha^{\vee}.$$

Theorem (FV'08)

 \mathcal{A} is a \vee -system if and only if \star is associative.

Flat connection

Define connection ∇ on TV_{Σ} by

$$\nabla_{\xi} = \partial_{\xi} - \kappa \sum_{\alpha \in \mathcal{A}} \frac{\alpha(\xi)}{\alpha(x)} \alpha \otimes \alpha^{\vee},$$

where $\xi \in V$, $\kappa \in \mathbb{C}^*$.

Theorem (Veselov'01; Arsie, Lorenzoni'14, FV'14)

 ∇ is flat if and only if \mathcal{A} is a \vee -system.

Example (Veselov'99)

Let R be a Coxeter root system in \mathbb{R}^n . That is

- $s_{\alpha}R = R$ for any $\alpha \in R$, where s_{α} is orthogonal reflection about the hyperplane $(\alpha, x) = 0$.
- If $\alpha, \beta \in R$ are proportional then $\alpha = \pm \beta$.

Then $A = R_+$ is a \vee -system.

Origin and relations

- Generalized Calogero–Moser systems, generalised root systems and their deformations [Chalykh, F, Sergeev, Veselov'98-07]
- Seiberg-Witten theory [Marshakov, Mironov, Morozov '97], [Martini, Gragert'99]
- Dubrovin's almost duality [Dubrovin'03]. For $\mathcal{A}=R$ a Coxeter root system \mathcal{F} is almost dual prepotential, \star is almost dual product.

Subsystems

Let ${\mathcal A}$ be a \lor -system, let $W \subset V^*$ be a linear subspace. Define

$$A_W = A \cap W$$
.

Assume that $\langle A_W \rangle = W$. Define bilinear form

$$B_W(u, v) = \sum_{\beta \in \mathcal{A}_w} \beta(u)\beta(v).$$

Theorem (F, Veselov'08)

 \mathcal{A}_W is a \vee -system if B_W is non-degenerate on $W^\vee \times W^\vee$.

Restrictions

Let $\mathcal A$ be a \lor -system, $\mathcal A_W=\mathcal A\cap W$, $W\subset V^*$, $\langle \mathcal A_W\rangle=W$. Define

$$\widehat{W} = \{ x \in V : \alpha(x) = 0 \, \forall \alpha \in \mathcal{A}_W \}.$$

Theorem (F, Veselov'07,08)

 $\mathcal{A} \setminus \mathcal{A}_W \subset \widehat{W}^*$ is a \vee -system if B is non-degenerate on $\widehat{W} \times \widehat{W}$.

Classical families [Chalykh, Veselov'01]:

$$A_n(c) = \{c_i c_j (e_i - e_j) : 1 \le i < j \le n+1\},$$

where $c_1, \ldots, c_{n+1} \in \mathbb{C}$;

$$\mathcal{B}_n(c) = \{(c_i c_j)^{1/2} (e_i \pm e_j) : 1 \le i < j \le n\} \cup \{(2c_i (c_i + c_0))^{1/2} e_i : 1 \le i \le n\}$$

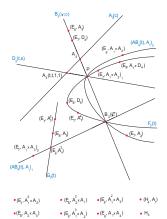
where $c_0, c_1, \ldots, c_n \in \mathbb{C}$.

Exceptional families and single systems, e.g.

$$F_3(t) = \{e_i \pm e_j : 1 \le i < j \le 3\} \cup \{(4t^2 + 2)^{1/2}e_i : i = 1, 2, 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le i \le 3\} \cup \{e_i \pm e_j : 1 \le 3\} \cup \{$$

$$\{t\sqrt{2}(e_1\pm e_2\pm e_3)\}$$

Known ∨-systems in dimension 3



Theorem (Lechtenfeld, Schwerdtfeger, Thueringen'11)

There are no other 3-dimensional \lor -systems with not more than 10 vectors.

Theorem (Schreiber, Veselov'14)

There are no deformations of known isolated 3-dimensional ∨-systems preserving the underlying matroid.

Let $\psi(x)$ be a flat section of ∇ : for some $\kappa \in \mathbb{C}$ $\nabla_{\xi} \psi = 0$ for any $\xi \in V$.

Theorem (F, Veselov'14)

Suppose that $\psi(x)$ is polynomial. Then

- **1** ψ is gradient, that is $\psi = (dF)^{\vee}$ for some polynomial F(x).
- **2** ψ is homogeneous of degree κ .
- **3** ψ is a logarithmic vector field that is $\alpha(\psi) = 0$ if $\alpha(x) = 0$ for any $\alpha \in \mathcal{A}$.

Definition (F, Veselov'14)

A \vee -system \mathcal{A} is called *harmonic* if there exist $n=\dim V$ independent (over polynomials) polynomial flat vector fields of degrees κ_1,\ldots,κ_n such that $\sum_{i=1}^n \kappa_i = |\mathcal{A}|$.

Remark

For any n independent polynomial flat fields $\sum \kappa_i \geq |\mathcal{A}|$.

Remark

Potentials F_i satisfy a system of 2nd order PDEs of Euler–Poisson–Darboux type $\partial_{\xi}\partial_{\eta}F_i=\kappa_i\sum_{\alpha\in\mathcal{A}}\frac{\alpha(\xi)\alpha(\eta)}{\alpha(x)}\partial_{\alpha^{\vee}}F_i,\ \forall \xi,\eta\in V.$

Theorem (F, Veselov'14)

 $A = R_+$ is harmonic for any Coxeter root system R. If all the roots have the same length then potentials F_1, \ldots, F_n are Saito flat coordinates.

 B^{-1} is invariant with respect to Coxeter group $G = \langle s_{\alpha} : \alpha \in \mathcal{A} \rangle$, $(SV^*)^G \cong \mathbb{C}[y_1, \ldots, y_n]$, $\deg y_1 \leq \ldots \leq \deg y_n$. Then $\partial_{y_n} B^{-1}$ is flat Saito metric, constant if $y_i = F_i$.

If Coxeter roots have two different lengths then we get explicit one-parameter deformations of Saito polynomials.

Free arrangements of hyperplanes

Let $\Sigma = \bigcup_{\alpha \in \mathcal{A}} \{\alpha(x) = 0\} \subset V$. Let $Der(\log \Sigma)$ be the space of polynomial logarithmic vector fields v that is $\alpha(v) = 0$ if $\alpha(x) = 0$ for any $\alpha \in \mathcal{A}$. Then $Der(\log \Sigma)$ is a module over SV^* .

Definition (K. Saito'80)

Arrangement Σ is free if $Der(\log \Sigma)$ is a free module over SV^* .

Example (Orlik, Terao'93)

Coxeter arrangements and their restrictions are free.

Theorem (Saito criterion)

Arrangement Σ is free if and only if there exist independent over SV^* fields $X_1, \ldots, X_n \in Der(\log \Sigma)$ homogeneous of degrees b_1, \ldots, b_n such that $\sum b_i = |\Sigma|$.

Conjecture (Terao)

Freeness is a combinatorial property that is it is a property of the lattice of Σ .

Theorem (Terao'81)

Suppose Σ is free. Then Poincare polynomial

 $P_{V\setminus\Sigma}(t)=\sum_{i=0}^n \dim H^i(V\setminus\Sigma,\mathbb{C})t^i$ has the form

 $P_{V\setminus\Sigma}(t)=\prod_{i=1}^n(1+b_it)$ for some $b_i\in\mathbb{N}$.

Theorem (F, Veselov'14)

If \vee -system $\mathcal A$ is harmonic then arrangement Σ is free. The corresponding flat vector fields ψ_i give a free basis in $Der(\log \Sigma)$.

Remark

All the known \lor -systems have corresponding arrangements linearly equivalent to Coxeter restrictions.

Potentials for classical families

Theorem (F, Veselov'14)

$$A_n(c)$$
 is harmonic with $F_{\kappa}(x_1,\ldots,x_{n+1}) = \oint \prod_{i=1}^{n+1} (x-x_i)^{\frac{\kappa c_i}{\sigma}} dx$, $\sigma = \sum c_i, \kappa = 1,2,\ldots,n$.

$$F_{\kappa} \sim \det egin{pmatrix} eta_1^{\lambda} & 1 & 0 & 0 \dots & 0 \ eta_2^{\lambda} & eta_1^{\lambda} & 2 & 0 \dots & 0 \ dots & dots & dots & \ddots & dots \ eta_{\kappa}^{\lambda} & eta_{\kappa-1}^{\lambda} & eta_{\kappa-2}^{\lambda} & \dots & \kappa \ eta_{\kappa+1}^{\lambda} & eta_{\kappa}^{\lambda} & eta_{\kappa-1}^{\lambda} & \dots & eta_1^{\lambda} \end{pmatrix},$$

$$p_s^{\lambda} = \sum \lambda_i x_i^s$$
, $\lambda_i = \frac{\kappa c_i}{\sigma}$.

Theorem (F, Veselov'14)

 $B_n(c)$ is harmonic if $c_i + c_0 \neq 0$ for all i with

$$F_k(x_1,\ldots,x_n)=\oint \prod_{i=1}^{n+1} (x^2-x_i^2)^{\frac{(2k-1)c_i}{2\sigma}} x^{\frac{2k-1}{\sigma}c_0} dx,$$

$$\sigma = \sum c_i, \kappa = 2k - 1, k = 1, 2, \dots, n.$$

$$F_k \sim \det \begin{pmatrix} q_1^\lambda & 1 & 0 & 0 \dots & 0 \\ q_2^\lambda & q_1^\lambda & 2 & 0 \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_\kappa^\lambda & q_{\kappa-1}^\lambda & q_{\kappa-2}^\lambda & \dots & k-1 \\ q_{\kappa+1}^\lambda & q_\kappa^\lambda & q_{\kappa-1}^\lambda & \dots & q_1^\lambda \end{pmatrix},$$

$$q_s^{\lambda} = \sum \lambda_i x_i^{2s}, \ \lambda_i = \frac{(2k-1)c_i}{2\sigma}.$$

Remark

Assumption $c_i + c_0 \neq 0$ is essential as e.g. $B_3(-1, 1, 1, 3)$ is not harmonic.

Furher questions

- Classification of ∨-systems.
- 'More Frobenius manifolds structures' associated with harmonic V-systems?
- Relation of generalised Saito polynomials (potentials of harmonic V-systems) to special representations of rational Cherednik algebras (cf. [F, Silantyev'12]) ?
- Trigonometric [F'08] and Elliptic [Strachan'08] ∨-systems.