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Mean Field Games (MFG) study

@ Optimal control problems = each agent controls his state in order to minimize a cost which
depends on the other agents’ positions

@ with infinitely many agents = having individually a negligible influence on the global system
(Ref : Aumann ('64), Schmeidler ('73), Hildenbrand ('74), Mas-Colell ('84), ...)

Early references :
— Early work by Lasry-Lions (2006) and Huang-Caines-Malhamé (2006)

— Similar models in the economic literature : heterogeneous agent models
(Aiyagari ('94), Bewley ('86), Krusell-Smith ('98),...)
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A class of N—player games

@ Fix N € N, N > 2 the number of players.

@ Fixie {1,...,N}. Player i want to minimize over her control (o)) the quantity

V(! (o)) = E /0 L(X ) + FNX, my)) dt + GN (X, i)

where X; = (X}, ..., XN) and, for any j,

o . . S
ax| = ojdt+ V2dB,  Xh=xb, ad  mii= 375,

the (B') being independent B.M and (xé) are i.i.d. initial conditions.

@ “Good" notion of solution : Nash equilibria.
We say that a = (&', ..., &") is a Nash Equilibrium if

V@, (@) < IV (@) Vol Vi
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The Nash system

When players play closed-loop controls : & = &/(t, X} ,..., XN), the value function
vNid = yNii(t x1, ... xN) of player i associated with a Nash equilibrium satisfies the Nash
system :

—a,vNi(t, x) — Z A vNI(tx) + H(x;, Dy v (t, x))

(Nash) +>° DpH(X,, Dy vNi(t, x)) - DV (t, x) = FN(x;, my)
J#i
in[0, 7] x (RHN, ie {1,...,N}

VAT x) = GG, my)  in RN, i€ {1,... N}

where
@ N is the number of players,
@ x=(xq,...,xy) € (RY)N is the state variable, T > 0 is the time horizon,
@ foric {1,...,N}, vNi(t, x) is the value function of Player i,

@ H:RY x R — Ris the Hamiltonian of the system :

H(x,p) = sup —p-a—L(x,a),
acRd

@ FN GN:RY x P(RY) — R are the coupling functions.
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The system of optimal trajectories.

We denote by XN = (X{Vt, e ,X,’\‘,’,) the “optimal trajectories" of the N—player game : they solve

the system of N coupled stochastic differential equations (SDE) :
axly = —DpH(X;., DVN/(t, X}))dt + V2dB],  te[0,T], ie{1,...,N},

where
@ vNis the solution to the Nash system,
@ the (Bf)ze[o,ﬂ are d—dimensional independent Brownian motions.

We are interested in the behavior, as N — +oo, of the (vN+') and of the (XV).

Two regimes
@ FN = F(x,m) and GN = G(x, m) are smoothing (nonlocal coupling)
@ GN = G(x) and FN = FN(x, m(-)dx) — F(x, m(x)) for smooth measures (local coupling)

Main difficulty : no estimates.
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Expected limit : the Mean Field Game.

“Probabilistic formulation”
Each “small player" wants to minimize over her control (a;) the cost

T ,
Ja, (M) == E /0 L(X;, o) + F(XI, my) dt + G(X7)

where dX; = o;dt + dB;, Xy = X, and (m;) is the mean field :
L(X¢) =m; vt e [0, T] (Nash equilibrium condition).

“The PDE formulation™
Find (u, m) solving the system

(i)  —0wu— Au+ H(x,Du) = F(x, m;) in [0, T] x RY
(i) 8ym— Am — div(mDpH(x, Du)) =0  in [0, T] x RY
(MFG) (i) u[(T, x) = G(x) if R
(iv) m(0,-)=mg:=L(x) inR?

where H(x, p) := sup, —p - & — L(x, ).
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Some results on MFG

For the MFG equilibrium system :

(i) —0wu— Au—+ H(x, Du) = F(x, m(t)) in (0, T) x RY
(MFG) { (i) 9m — Am — div(mDpH(x,Du)) =0  in (0, T) x RY
(i) m(0,-) = mg, u(T,x) = G(x) in RY

@ Existence of solutions : holds under general conditions (Lasry-Lions)

@ Uniqueness cannot be expected in general,
@ but holds under a monotonicity conditions on F (Lasry-Lions) :

/d(F(x, m) — F(x,m"))d(m—-m')(x) >0 vmm'.
T

@ The mean field limit (for smoothing coupling function F).

— from the MFG system to the N—player differential games
Many contributions (Huang-Caines-Malahmé, Carmona-Delarue, Kolokoltsov, ...)

— from Nash equilibria of N—player differential games to the MFG system.

@ LQ differential games (Bardi, Bardi-Priuli)
@ Open loop NE (Lasry-Lions, Fischer, Lacker),
@ Closed loop NE (C.-Delarue-Lasry-Lions).
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Some results on MFG (continued)

@ Let vV be the solution to the Nash system

N
=Mt x) = 37 Ay vNi(t, x) + Hxi, Dy v™i(t, x))
j=1

"FZ DPH(X]7 DX/‘ VN’j(tv X)) . DX/'VN’I‘(L X) = FN(Xivm;(V’i) in [07 T] X (Rd)N
J#i ,
WIT x) =GV, m")  in (RE)N

@ Because of the symmetry, the vN+ can be written as vN-/(t, x) = UN(t, x;, mY"').
@ Following Lasry-Lions, the expected limit U of the (UN) should satisfy the master equation.

—0U — AxU + H(x, DyU) — /d divy [DmU] dm(y)
R

+/d DmU - DpH(y, DxU) dm(y) = F(x,m)  in [0, T] x R? x P(RY)
R
U(T,x,m) = G(x,m)  inRY x P(RY)

Some results on the master equation : Lasry-Lions ('13), Buckdahn-Li-Peng-Rainer
('14), Gangbo-Swiech ('14), Chassagneux-Crisan-Delarue ('15), Bessi ('15),
Lacker-Webster ('15), Ahuja ('16),...
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Outline

0 The master equation for nonlocal couplings
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The master equation for nonlocal couplings
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The master equation for nonlocal couplings

Derivatives in the space of measures

We denote by P(T?) the set of Borel probability measures on T¢, endowed for the
Monge-Kantorovich distance

di(m.m') =sup [ oty) om—m)(»),

where the supremum is taken over all Lipschitz continuous maps ¢ : T¢ — R with a Lipschitz
constant bounded by 1.

Derivatives

Q|

Amap U : P(T9) — Ris C! if there exists a continuous map P(’]I‘d) x T9 — R such that,
for any m, m’ € P(T9),

u(m') — U(m) = // —(1—s)m+sm y)d(m' — m)(y)ds.

d om

We set

U
DmU(m. y) = Dy 32 (m.y).
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The master equation for nonlocal couplings

Standing assumptions

@ H:T9 x RY — R is smooth, globally Lipschitz continuous, with :
0 < D2,H(x,p) < Cly  for (x,p) € T? x R%.

@ the maps F, G: T9 x P(T9) — R are monotone : for any m, m’ € P(T9),
[ (FOx.m) = Fomyd(m = m)(x) 2 0. [ (Gox m) = Glx, m/e(m = m')(x) > 0
T T

@ the maps F, Gare C' : there exists n > 2 and a € (0, 1) such that

6F(7 m, )
om

., O0F
prmmmﬁH >+m%)<w
(n+o,n+a) m

meP(Td)

and the same for G.
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The master equation for nonlocal couplings

Example. If F is of the form :
Foom) = [ 1z (o m(@)otx - 2)dz,
R

where
@ « denotes the usual convolution product (in RY),
@ f = f(x,r)is a smooth map, nondecreasing w.r. to r,
@ pis a smooth, even function with compact support.
Then F satisfies our conditions.

Indeed, for any m, m’ € P(T9),

[, (Fx.m) = Fex. i = m') ()
= [, 1w my)) = 1y p e m ()] (o mly) = pox () oy = 0.

since p is even and f is nondecreasing with respect to the second variable. So F is monotone.
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The master equation for nonlocal couplings

The master equation

It is the backward equation
—0rU(t, x, m) — AxU(t, x,m) + H(x, DxU(t, x, m)) — F(x, m)

) — Ad divy [DmU] (t,x, m, y)dm(y) =0
for (t,x,m) € [0, T] x T4 x P(T9),
U(T,x,m) = G(x,m),  for (x,m) € T9 x P(T9)

Theorem 1 (Chassagneux-Crisan-Delarue)

Under the previous assumptions, the master equation (M) has a unique classical solution.

Remark : In C.-Delarue-Lasry-Lions, we extend the result to the master equation with common
noise.
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The master equation for nonlocal couplings

Idea of proof

@ The proof of Theorem 1 relies on the method of characteristics in infinite dimension.

@ Given (ty, mp) € [0, T) x P(T9), let (u, m) = (u(t, x), m(t, x)) be the solution of the MFG
system :

8m — Am — div(mDpH(x, Du)) = 0 in [y, T] x T¢

—8iu — Au + H(x, Du) = F(x, m(t)) in [ty, T] x T¢
(MFG) {
u(T,x) = G(x,m(T)), m(ty,-) = mg in T¢

@ Under our monotonicity assumptions on F and G, the (MFG) system is well-posed.
(Lasry-Lions, 2007)

@ We define U by
U(ty, -, mo) := u(lo, )
@ One easily check that U is formally a solution to (M).
@ Difficult part : show that U is smooth enough to justify the computation.
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The convergence results for nonlocal couplings
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The convergence results for nonlocal couplings

Convergence of the Nash system

We consider the solution (vV+/) of the Nash system :

—apvNi — Z Ay vIVT o H(x;, Dy vN'T)
i .
(Nash) +3° DpH(x;, Dy VM) - Dy = F(xi,my™) i [0, T] x T
#i ,
vNA(T, x) = G, my)y  in T

o
where we have set, for x = (xq,...,xy) € (T))V, mi' = N1 D by
A

P. Cardaliaguet (Paris-Dauphine) Mean field games 17/31



The convergence results for nonlocal couplings

Theorem 2 (C.-Delarue-Lasry-Lions)
Let (vV/) be the solution to the Nash system and U be the classical solution to the master
equation (M). Then, for any N € N* and any x € (T9)V,

‘VN,i(t07x) - U(thXiam;(V)‘ < CN—1~

where my := SN | 6.
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The convergence results for nonlocal couplings

Convergence of the optimal trajectories

Letty €[0,T), my € P(T9) and let (Z;) be an i.i.d family of random variables of law my.
Let also (B') and W be independent B.M. and independent of the (Z;).

We consider
@ the optimal trajectories (X = (XN, ..., X ))ie(i,, 7 Of the Nash system :

Dy vNi(t, X))t +V2dB],  te b, T

N it
)(/,fo = Z’

{ axN = —DpH(X,

@ and the solution (Y} = (Y/,,..., Y ))ie(p, ) Of stochastic differential equation of
McKean-Vlasov type :

{ oYy = —DpH (Y, DaU(L, YN, £(Y])) ot + V2aB),

it
YN — Z.

it
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The convergence results for nonlocal couplings

Theorem 3 (C.-Delarue-Lasry-Lions)
Forany N> 1andanyiec {1,...,N}, we have

o[ -
t€lty, T]

] < CN

for some constant C > 0 independent of fp, mg and N.

As the (Y,’\D are independent, the above result shows the propagation of chaos.
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The convergence results for nonlocal couplings

Key ingredient of proofs

Let U be the solution of the master equation.
@ ForN>2andie{1,...,N} we set
uNit x) = Ut x;, mi>")  where x = (xy,..., xn) € (TN, mi' = L > oy
@ Then one can compute the derivatives of uN:' in terms of those for U : e.g.,
Dy uMi(t, x) = ﬁDmU(t, X mytx) (i # 0),

@ The uN are “almost" solution to the Nash system : forany i € {1,..., N},

=0T =" AT+ H(x;, Dy uM)

+>° D]X,.uN"'(t, x) - DpH(x;, D u™i(t, X)) = F(x;, my " )+ri(t, x)
” in (0, T) x TN
uNi(T,x) = G(x;, my”)  inTN

i C
where ||rV]|o < N
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The convergence results for nonlocal couplings

@ Let(X)N = (X XN Diepro, 7y e the optimal trajectories of the Nash system :

Dy vNi(t, X))t +V2dB],  t€ b, T

oXM = —DpH(X,
X'~z
and (V' = (YN N Y Dierp, ) be the solution to
dYN = —DpH(Y, DouMi(t, Vi'))dt + vV2dB]  te (b, T]
Wz

@ Note that ¥\ and V¥ are close (classical mean field limit).

@ Using the equation satisfied by the (v-/(t, XN)) and the (uN-i(t, X)), one can show that

sup_ ¥ = Xiql + sup [u(t,X) = v(e, V)] | < OV,
telty, 7] teltp, 7]
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The convergence result for a local coupling
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The convergence result for a local coupling

The Nash system for a singular coupling

We now study the limit of the Nash system (with no common noise) :
oM =" AN 4 H(x;, Dy vV
(Nash) +IZ DpH(xj, Dy vy - DyvNi = FN(x, miy - in [0, T] x TV
vIi(T, x) :#IG(X,) in TN
when the coupling becomes singular (local) :
FN(x, m(-)dx) = f(x,m(x))  as N — +o0
for any smooth density m(-)dx. Namely :
FN(x, m) = [£(-, m+ £5N)] x £°

where £¢(x) = e~9¢(x/e), ¢ is a “nice kernel" and f : T? x [0, 4-c0) — R is smooth, Lipschitz
continuous and increasing in the second variable.
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The convergence result for a local coupling

Fix fy € [0, T] and my a smooth positive density and set

W (to, x;, mo) 1=/ vty x) [ [ mo(ax))  where x = (xq, ..., xn).

(Td)N—1 i

Theorem 4 (C., 2017)
Assume that ey = In(N)—7 for some j € (0, (6d(2d + 15))~1). Then

W, o) — utto, )|, < An(N) =

where (u, m) solves the MFG system with local interactions :

oym — Am — div(mDpH(x, Du)) =0 in [ty, T] x TY,

{ —8iu — Au+ H(x, Du) = f(x, m(t,x))  in [y, T] x T
U(T7 X) = G(X)7 m(t07 ) = My in Td

Moreover, the optimal trajectories converge :

vh _ X’!’Vfu < Aln(N)~B.

I7

]E{ sup
te(ty, T]
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The convergence result for a local coupling

@ Main issue : No master equation associated with the local coupling.

@ Arguments of proof : estimate of (lack) of regularity of the solution UM associated with the
master equation

—8;UN — AxUN + H(x, DyUN) — [ divy |DmUN| dm(y
RA 4

+/ DmUN - DpH(y, DxUNY dm(y) = FN(x,m)  in [0, T] x RY x P(RY)
R
UN(T,x,m) = G(x)  inR? x P(RY)
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The convergence result for a local coupling

The open-loop Nash system with singular coupling

When players play with “open-loop" controls, the Nash system reads :

=N — AN 4 H(x;, DV = / FN(xi, my YmMA(, x;)dl in [to, T] x T
. . , (TN

BN — AmN — div(mN DpH(x;, DV')) =0 i [to, T] x T¢

mi(t, ) = £(Z), V(T x)=G(x) inT?

Theorem 5 (C., 2017)

Assume ey = N— where 3 € (0, (6d(2d + 15))~") and (vV"/) is a symmetric solution. Then
Wi (to, -, mo) — (o, )l 1 (myy < AN™B

where (u, m) solves the MFG system with local interactions.
Moreover, the optimal trajectories converge :

E[ sup ‘n’}—x[f’tu < AN-B.
te(ty, 7]
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The convergence result for a local coupling

@ Convergence in the case of nonlocal smooth coupling : Lasry-Lions, Fischer, Lacker
(compactness arguments).

@ The singular behavior of FN makes the compactness argument difficult (no rate).
@ Proof without master equation (!)

@ Key idea : reproduce the Lasry-Lions monotony argument at the level of vV:/ — u.

P. Cardaliaguet (Paris-Dauphine) Mean field games 28/31



The convergence result for a local coupling

Conclusion

We have established

@ The well-posedness of the master equation (with common noise),
@ Limit results for the Nash system and the associated optimal trajectories,

@ Case of local coupling (for Nash in closed-loop and open-loop form).
Open problems :

@ Analysis in more realistic setting (with boundary conditions, non constant diffusion
matrices,...)

@ Stronger convergence for the solutions (vN'/) of the Nash system.
@ Convergence in the non-monotone setting.
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The convergence result for a local coupling

Common noise

The Nash system with common noise :

Wit x) — ZAX, VNt x) - 8 ZTr % vV (1, X) + H(xi, D v (8, x))

ZDp (x;, DV */(t,x))jkDX;vN’(t, x) = FNi(x)

7 in [0, T] x (RN, ie {1,...,N}
vOIT x) = GN(x)  in RN, ie {1,...,N}
where 8 > 0 is the intensity of the noise.

The associated optimal trajectories

aX/y = —DpH(X; ., DVN/(t, X}))dt + V2aB} + \/2BdW;,  t€[0,T], i€ {1,...,N},
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The convergence result for a local coupling

The master equation with common noise :

—8U — (1 + B)AxU + H(x, DxU)
—-(1 +B)/ divy [DmU] dm(y) +/ DmU - DpH(y, DxU) dm(y)
RA Rd
—28 / divy [DmU] dm(y) — B / Tr [D,znmu] dm® dm = F(x, m)
Rd R2d
in [0, T] x R x P(RY)
U(T,x,m) = G(x,m)  inRYx P(RY)

with associated stochastic MFG system :

drup = {—(1 + B)Aus + H(x, Dur) — F(x, my) — \/2Bdiv(vy) } dit
+ v /28dW;  in[ty, T] x TY,
(MFGs) { dimy = [(1 + B)Am; + div(m:DoH(my, Dur))] dt — +/2Bdiv(mdW;)
in [y, T] x T9
my, = mg, ur(x) = G(x, mr) in TY.

where (v;) is a vector field which ensures (u;) to be adapted to the filtration (Ft):c(s,, 1)
generated by the M.B. (Wt)ico, 7-
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The convergence result for a local coupling

The master equation with common noise :

—8U — (1 + B)AxU + H(x, DxU)
—-(1 +B)/ divy [DmU] dm(y) +/ DmU - DpH(y, DxU) dm(y)
RA Rd
—28 / divy [DmU] dm(y) — B / Tr [D,znmu] dm® dm = F(x, m)
Rd R2d
in [0, T] x R x P(RY)
U(T,x,m) = G(x,m)  inRYx P(RY)

with associated stochastic MFG system :

drup = {—(1 + B)Aus + H(x, Dur) — F(x, my) — \/2Bdiv(vy) } dit
+ v /28dW;  in[ty, T] x TY,
(MFGs) { dimy = [(1 + B)Am; + div(m:DoH(my, Dur))] dt — +/2Bdiv(mdW;)
in [y, T] x T9

my, = mg, ur(x) = G(x, mr) in TY.
where (v;) is a vector field which ensures (u;) to be adapted to the filtration (Ft):c(s,, 1)
generated by the M.B. (W;):co,17-
(actually, v¢(x) = /1rd DmU(x, my, y)dmy(y))
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