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Mean Field Games (MFG) study

Optimal control problems = each agent controls his state in order to minimize a cost which
depends on the other agents’ positions

with infinitely many agents = having individually a negligible influence on the global system
(Ref : Aumann (’64), Schmeidler (’73), Hildenbrand (’74), Mas-Colell (’84), ...)

Early references :

– Early work by Lasry-Lions (2006) and Huang-Caines-Malhamé (2006)

– Similar models in the economic literature : heterogeneous agent models
(Aiyagari (’94), Bewley (’86), Krusell-Smith (’98),...)
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A class of N−player games

Fix N ∈ N, N ≥ 2 the number of players.

Fix i ∈ {1, . . . ,N}. Player i want to minimize over her control (αi
t ) the quantity

JN,i (αi , (αj )j 6=i ) := E

[

∫ T

0

L(X i
t , α

i
t ) + F N(X i

t ,m
N,i
X t

) dt + GN(X i
T ,m

N,i
X t

)

]

where X t = (X1
t , . . . ,XN

t ) and, for any j ,

dX
j
t = α

j
t dt +

√
2dBi

t , X
j
0
= x

j
0
, and m

N,i
X t

=
1

N − 1

∑

j 6=i

δ
X

j
t

,

the (Bi ) being independent B.M and (x
j
0
) are i.i.d. initial conditions.

“Good" notion of solution : Nash equilibria.
We say that ᾱ = (ᾱ1, . . . , ᾱN) is a Nash Equilibrium if

JN,i (ᾱi , (ᾱ)j 6=i ) ≤ JN,i (αi , (ᾱ)j 6=i ) ∀αi , ∀i .
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The Nash system

When players play closed-loop controls : ᾱi = ᾱi (t,X1
t , . . . ,X

N
t ), the value function

vN,i = vN,i (t, x1, . . . , xN) of player i associated with a Nash equilibrium satisfies the Nash
system :

(Nash)







































−∂t v
N,i(t, x)−

N
∑

j=1

∆xj
vN,i(t, x) + H(xi ,Dxi

vN,i (t, x))

+
∑

j 6=i

DpH(xj ,Dxj
vN,j(t, x)) · Dxj

vN,i (t, x) = F N(xi ,m
N,i
x )

in [0,T ]× (Rd )N , i ∈ {1, . . . ,N}
vN,i (T , x) = GN(xi ,m

N,i
x ) in (Rd )N , i ∈ {1, . . . ,N}

where

N is the number of players,

x = (x1, . . . , xN) ∈ (Rd )N is the state variable, T ≥ 0 is the time horizon,

for i ∈ {1, . . . ,N}, vN,i(t, x) is the value function of Player i ,

H : Rd × Rd → R is the Hamiltonian of the system :

H(x, p) = sup
α∈Rd

−p · α− L(x, α),

F N ,GN : Rd × P(Rd ) → R are the coupling functions.
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The system of optimal trajectories.

We denote by X
N
t = (XN

1,t
, . . . ,XN

N,t
) the “optimal trajectories" of the N−player game : they solve

the system of N coupled stochastic differential equations (SDE) :

dXN
i,t = −DpH(Xi,t ,DvN,i(t,X

N
t ))dt +

√
2dBi

t , t ∈ [0,T ], i ∈ {1, . . . ,N},

where

vN,i is the solution to the Nash system,

the (Bi
t )t∈[0,T ] are d−dimensional independent Brownian motions.

We are interested in the behavior, as N → +∞, of the (vN,i ) and of the (XN
i,·
).

Two regimes

F N = F (x,m) and GN = G(x,m) are smoothing (nonlocal coupling)

GN = G(x) and F N = F N(x,m(·)dx) → F (x,m(x)) for smooth measures (local coupling)

Main difficulty : no estimates.
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Expected limit : the Mean Field Game.

“Probabilistic formulation"
Each “small player" wants to minimize over her control (αt ) the cost

J(α, (mt )) := E

[

∫ T

0

L(Xt , αt ) + F (X i
t ,mt ) dt + G(XT )

]

where dXt = αt dt + dBt , X0 = x0, and (mt ) is the mean field :

L(Xt ) = mt ∀t ∈ [0,T ] (Nash equilibrium condition).

“The PDE formulation"
Find (u,m) solving the system

(MFG)















(i) −∂t u −∆u + H(x,Du) = F (x,mt ) in [0,T ]× R
d

(ii) ∂t m −∆m − div(mDpH(x,Du)) = 0 in [0,T ]× R
d

(iii) u(T , x) = G(x) in R
d

(iv) m(0, ·) = m0 := L(x0) in R
d

where H(x, p) := supα −p · α− L(x, α).
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Some results on MFG

For the MFG equilibrium system :

(MFG)







(i) −∂t u −∆u + H(x, Du) = F (x,m(t)) in (0,T )× R
d

(ii) ∂t m −∆m − div(mDpH(x,Du)) = 0 in (0, T )× Rd

(iii) m(0, ·) = m0, u(T , x) = G(x) in R
d

Existence of solutions : holds under general conditions (Lasry-Lions)

Uniqueness cannot be expected in general,

but holds under a monotonicity conditions on F (Lasry-Lions) :
∫

Td
(F (x, m) − F (x, m′))d(m − m′)(x) ≥ 0 ∀m,m′.

The mean field limit (for smoothing coupling function F ).

— from the MFG system to the N−player differential games
Many contributions (Huang-Caines-Malahmé, Carmona-Delarue, Kolokoltsov, ...)

— from Nash equilibria of N−player differential games to the MFG system.

LQ differential games (Bardi, Bardi-Priuli)
Open loop NE (Lasry-Lions, Fischer, Lacker),
Closed loop NE (C.-Delarue-Lasry-Lions).
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Some results on MFG (continued)

Let vN,i be the solution to the Nash system































−∂t v
N,i(t, x)−

N
∑

j=1

∆xj
vN,i(t, x) + H(xi ,Dxi

vN,i (t, x))

+
∑

j 6=i

DpH(xj ,Dxj
vN,j(t, x)) · Dxj

vN,i (t, x) = F N(xi ,m
N,i
x ) in [0,T ]× (Rd )N

vN,i(T , x) = GN(xi ,m
N,i
x ) in (Rd )N

Because of the symmetry, the vN,i can be written as vN,i (t, x) = UN(t, xi ,m
N,i
x ).

Following Lasry-Lions, the expected limit U of the (UN ) should satisfy the master equation.



















−∂t U −∆x U + H(x, Dx U)−
∫

Rd
divy [DmU] dm(y)

+

∫

Rd
DmU · DpH(y ,Dx U) dm(y) = F (x,m) in [0,T ]× R

d × P(Rd )

U(T , x,m) = G(x,m) in Rd × P(Rd )

Some results on the master equation : Lasry-Lions (’13), Buckdahn-Li-Peng-Rainer
(’14), Gangbo-Swiech (’14), Chassagneux-Crisan-Delarue (’15), Bessi (’15),
Lacker-Webster (’15), Ahuja (’16),...
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Outline

1 The master equation for nonlocal couplings

2 The convergence results for nonlocal couplings

3 The convergence result for a local coupling
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The master equation for nonlocal couplings
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The master equation for nonlocal couplings

Derivatives in the space of measures

We denote by P(Td ) the set of Borel probability measures on T
d , endowed for the

Monge-Kantorovich distance

d1(m,m′) = sup
φ

∫

Td
φ(y) d(m − m′)(y),

where the supremum is taken over all Lipschitz continuous maps φ : Td → R with a Lipschitz
constant bounded by 1.

Derivatives

A map U : P(Td ) → R is C1 if there exists a continuous map
δU

δm
: P(Td )× T

d → R such that,

for any m,m′ ∈ P(Td ),

U(m′)− U(m) =

∫ 1

0

∫

Td

δU

δm
((1 − s)m + sm′, y)d(m′ − m)(y)ds.

We set

DmU(m, y) := Dy
δU

δm
(m, y).
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The master equation for nonlocal couplings

Standing assumptions

H : Td × R
d → R is smooth, globally Lipschitz continuous, with :

0 < D2
ppH(x, p) ≤ CId for (x, p) ∈ T

d × R
d .

the maps F ,G : Td × P(Td ) → R are monotone : for any m,m′ ∈ P(Td ),

∫

Td
(F (x,m) − F (x, m′))d(m − m′)(x) ≥ 0,

∫

Td
(G(x, m)− G(x,m′))d(m − m′)(x) ≥ 0

the maps F ,G are C1 : there exists n ≥ 2 and α ∈ (0, 1) such that

sup
m∈P(Td )

(

‖F (·,m)‖n+α +

∥

∥

∥

∥

δF (·,m, ·)
δm

∥

∥

∥

∥

(n+α,n+α)

)

+ Lipn(
δF

δm
) < ∞.

and the same for G.
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The master equation for nonlocal couplings

Example. If F is of the form :

F (x,m) =

∫

Rd
f (z, (ρ ⋆ m)(z))ρ(x − z)dz,

where

⋆ denotes the usual convolution product (in Rd ),

f = f (x, r) is a smooth map, nondecreasing w.r. to r ,

ρ is a smooth, even function with compact support.

Then F satisfies our conditions.

Indeed, for any m,m′ ∈ P(Td ),

∫

Td
(F (x, m) − F (x, m′))d(m − m′)(x)

=

∫

Td

[

f (y , ρ ⋆ m(y)) − f (y , ρ ⋆ m′(y))
] (

ρ ⋆ m(y) − ρ ⋆ m′(y)
)

dy ≥ 0,

since ρ is even and f is nondecreasing with respect to the second variable. So F is monotone.
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The master equation for nonlocal couplings

The master equation

It is the backward equation

(M)































−∂t U(t, x,m) −∆x U(t, x,m) + H
(

x,Dx U(t, x,m)
)

− F
(

x,m
)

−
∫

Td
divy

[

DmU
](

t, x,m, y
)

dm(y) = 0

for (t, x,m) ∈ [0,T ]× T
d × P(Td ),

U(T , x,m) = G(x,m), for (x, m) ∈ T
d ×P(Td )

Theorem 1 (Chassagneux-Crisan-Delarue)

Under the previous assumptions, the master equation (M) has a unique classical solution.

Remark : In C.-Delarue-Lasry-Lions, we extend the result to the master equation with common
noise.
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The master equation for nonlocal couplings

Idea of proof

The proof of Theorem 1 relies on the method of characteristics in infinite dimension.

Given (t0,m0) ∈ [0,T )×P(Td ), let (u,m) = (u(t, x),m(t, x)) be the solution of the MFG
system :

(MFG)







−∂t u −∆u + H(x, Du) = F (x,m(t)) in [t0, T ]× T
d

∂t m −∆m − div(mDpH(x,Du)) = 0 in [t0,T ]× T
d

u(T , x) = G(x,m(T )), m(t0 , ·) = m0 in T
d

Under our monotonicity assumptions on F and G, the (MFG) system is well-posed.
(Lasry-Lions, 2007)

We define U by
U(t0, ·,m0) := u(t0, ·)

One easily check that U is formally a solution to (M).

Difficult part : show that U is smooth enough to justify the computation.
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The convergence results for nonlocal couplings

Outline

1 The master equation for nonlocal couplings

2 The convergence results for nonlocal couplings

3 The convergence result for a local coupling

P. Cardaliaguet (Paris-Dauphine) Mean field games 16 / 31



The convergence results for nonlocal couplings

Convergence of the Nash system

We consider the solution (vN,i) of the Nash system :

(Nash)























−∂t v
N,i −

∑

j

∆xj
vN,i + H(xi ,Dxi

vN,i)

+
∑

j 6=i

DpH(xj ,Dxj
vN,j) · Dxj

vN,i = F (xi ,m
N,i
x ) in [0,T ]× T

Nd

vN,i(T , x) = G(xi ,m
N,i
x ) in T

Nd

where we have set, for x = (x1, . . . , xN ) ∈ (Td )N , m
N,i
x =

1

N − 1

∑

j 6=i

δxj
.
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The convergence results for nonlocal couplings

Theorem 2 (C.-Delarue-Lasry-Lions)

Let (vN,i) be the solution to the Nash system and U be the classical solution to the master
equation (M). Then, for any N ∈ N∗ and any x ∈ (Td )N ,

∣

∣

∣vN,i (t0, x)− U(t0, xi ,mN
x )
∣

∣

∣ ≤ CN−1.

where mN
x := 1

N

∑N
i=1 δxi

.
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The convergence results for nonlocal couplings

Convergence of the optimal trajectories

Let t0 ∈ [0,T ), m0 ∈ P(Td ) and let (Zi) be an i.i.d family of random variables of law m0.
Let also (Bi ) and W be independent B.M. and independent of the (Zi ).

We consider

the optimal trajectories (X N
t = (XN

1,t
, . . . ,XN

N,t
))t∈[t0,T ] of the Nash system :

{

dXN
i,t

= −DpH(XN
i,t
,Dxi

vN,i(t,X
N
t ))dt +

√
2dBi

t , t ∈ [t0,T ]

XN
i,t0

= Zi

and the solution (Y N
t = (Y N

1,t
, . . . ,Y N

N,t
))t∈[t0 ,T ] of stochastic differential equation of

McKean-Vlasov type :

{

dY N
i,t

= −DpH
(

Y N
i,t
,Dx U(t,Y N

i,t
,L(Y N

i,t
)
)

dt +
√

2dBi
t ,

Y N
i,t0

= Zi .
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The convergence results for nonlocal couplings

Theorem 3 (C.-Delarue-Lasry-Lions)

For any N ≥ 1 and any i ∈ {1, . . . ,N}, we have

E

[

sup
t∈[t0,T ]

∣

∣

∣XN
i,t − Y N

i,t

∣

∣

∣

]

≤ CN
− 1

d+8

for some constant C > 0 independent of t0, m0 and N.

As the (Y N
i,t
) are independent, the above result shows the propagation of chaos.
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The convergence results for nonlocal couplings

Key ingredient of proofs

Let U be the solution of the master equation.

For N ≥ 2 and i ∈ {1, . . . ,N} we set

uN,i(t, x) = U(t, xi ,m
N,i
x ) where x = (x1, . . . , xN) ∈ (Td )N , m

N,i
x =

1

N − 1

∑

j 6=i

δxj
.

Then one can compute the derivatives of uN,i in terms of those for U : e.g.,

Dxj
uN,i(t, x) =

1

N − 1
DmU(t, xi ,m

N,i
x , xj ) (j 6= i),

The uN,i are “almost" solution to the Nash system : for any i ∈ {1, . . . ,N},


































−∂t u
N,i −

∑

j

∆xj
uN,i + H(xi ,Dxi

uN,i)

+
∑

j 6=i

Dxj
uN,i(t, x) · DpH(xj ,Dxj

uN,j(t, x)) = F (xi ,m
N,i
x )+rN,i (t, x)

in (0, T )× T
Nd

uN,i(T , x) = G(xi ,m
N,i
x ) in T

Nd

where ‖rN,i‖∞ ≤ C

N
.
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The convergence results for nonlocal couplings

Let (XN
t = (XN

1,t
, . . . ,XN

N,t
))t∈[t0,T ] be the optimal trajectories of the Nash system :

{

dXN
i,t

= −DpH(XN
i,t
,Dxi

vN,i(t,X
N
t ))dt +

√
2dBi

t , t ∈ [t0,T ]

XN
i,t0

= Zi

and (Ỹ
N
t = (Ỹ N

1,t
, . . . , Ỹ N

N,t
))t∈[t0,T ] be the solution to

{

dỸ N
i,t

= −DpH(Ỹ N
i,t
,Dxi

uN,i(t, Ỹ
N
t ))dt +

√
2dBi

t t ∈ [t0,T ]

Ỹ N
i,t0

= Zi

Note that Ỹ N
i,t

and Y N
i,t

are close (classical mean field limit).

Using the equation satisfied by the (vN,i (t,X
N
t )) and the (uN,i(t, X

N
t )), one can show that

E

[

sup
t∈[t0,T ]

|Ỹi,t − Xi,t |+ sup
t∈[t0,T ]

∣

∣

∣uN,i(t,X t )− vN,i(t, Ỹ t)
∣

∣

∣

]

≤ CN−1,
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The convergence result for a local coupling

Outline

1 The master equation for nonlocal couplings

2 The convergence results for nonlocal couplings

3 The convergence result for a local coupling
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The convergence result for a local coupling

The Nash system for a singular coupling

We now study the limit of the Nash system (with no common noise) :

(Nash)























−∂t v
N,i −

∑

j

∆xj
vN,i + H(xi ,Dxi

vN,i)

+
∑

j 6=i

DpH(xj ,Dxj
vN,j) · Dxj

vN,i = F N(xi ,m
N,i
x ) in [0,T ]× T

Nd

vN,i(T , x) = G(xi ) in T
Nd

when the coupling becomes singular (local) :

F N(x,m(·)dx) → f (x, m(x)) as N → +∞

for any smooth density m(·)dx . Namely :

F N(x, m) = [f (·,m ⋆ ξεN )] ⋆ ξεN

where ξε(x) = ε−dξ(x/ε), ξ is a “nice kernel" and f : Td × [0,+∞) → R is smooth, Lipschitz
continuous and increasing in the second variable.
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The convergence result for a local coupling

Fix t0 ∈ [0,T ] and m0 a smooth positive density and set

wN,i(t0, xi ,m0) :=

∫

(Td )N−1
vN,i(t0, x)

∏

j 6=i

m0(dxj ) where x = (x1, . . . , xN).

Theorem 4 (C., 2017)

Assume that εN = ln(N)−β for some β ∈ (0, (6d(2d + 15))−1). Then

∥

∥

∥wN,i(t0, ·,m0)− u(t0, ·)
∥

∥

∥

L1(m0)
≤ A ln(N)−B

where (u,m) solves the MFG system with local interactions :







−∂t u −∆u + H(x,Du) = f (x, m(t, x)) in [t0,T ]× T
d ,

∂t m −∆m − div(mDpH(x,Du)) = 0 in [t0,T ]× T
d ,

u(T , x) = G(x), m(t0 , ·) = m0 in T
d

Moreover, the optimal trajectories converge :

E

[

sup
t∈[t0,T ]

∣

∣

∣Y N
i,t − XN

i,t

∣

∣

∣

]

≤ A ln(N)−B .
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The convergence result for a local coupling

Main issue : No master equation associated with the local coupling.

Arguments of proof : estimate of (lack) of regularity of the solution UN associated with the
master equation



















−∂t U
N −∆x UN + H(x, Dx UN) −

∫

Rd
divy

[

DmUN
]

dm(y)

+

∫

Rd
DmUN · DpH(y ,Dx UN) dm(y) = F N(x,m) in [0,T ]× R

d × P(Rd )

UN(T , x,m) = G(x) in Rd × P(Rd )
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The convergence result for a local coupling

The open-loop Nash system with singular coupling

When players play with “open-loop" controls, the Nash system reads :















−∂t v
N,i −∆vN,i + H(xi ,DvN,i) =

∫

(Td )N−1
F N(xi ,m

N,i
x )Πj 6=i m

N,j (t, xj )dxj in [t0,T ]× T
d

∂t m
N,i −∆mN,i − div(mN,i DpH(xi ,DvN,i)) = 0 in [t0,T ]× T

d

mN,i (t0, ·) = L(Zi), vN,i(T , xi) = G(xi ) in T
d

Theorem 5 (C., 2017)

Assume εN = N−β where β ∈ (0, (6d(2d + 15))−1) and (vN,i) is a symmetric solution. Then

‖wN,i(t0, ·,m0)− u(t0, ·)‖L1(m0)
≤ AN−B

where (u,m) solves the MFG system with local interactions.
Moreover, the optimal trajectories converge :

E

[

sup
t∈[t0,T ]

∣

∣

∣
Y N

i,t − XN
i,t

∣

∣

∣

]

≤ AN−B .
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The convergence result for a local coupling

Convergence in the case of nonlocal smooth coupling : Lasry-Lions, Fischer, Lacker
(compactness arguments).

The singular behavior of F N makes the compactness argument difficult (no rate).

Proof without master equation ( !)

Key idea : reproduce the Lasry-Lions monotony argument at the level of vN,i − u.
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The convergence result for a local coupling

Conclusion

We have established

The well-posedness of the master equation (with common noise),

Limit results for the Nash system and the associated optimal trajectories,

Case of local coupling (for Nash in closed-loop and open-loop form).

Open problems :

Analysis in more realistic setting (with boundary conditions, non constant diffusion
matrices,...)

Stronger convergence for the solutions (vN,i ) of the Nash system.

Convergence in the non-monotone setting.
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Common noise

The Nash system with common noise :







































−∂t v
N,i (t, x)−

N
∑

j=1

∆xj
vN,i(t, x)− β

N
∑

j,k=1

TrD2
xj ,xk

vN,i(t, x) + H(xi ,Dxi
vN,i(t, x))

+
∑

j 6=i

DpH(xj ,Dxj
vN,j(t, x)) · Dxj

vN,i(t, x) = F N,i(x)

in [0,T ]× (Rd )N , i ∈ {1, . . . ,N}
vN,i(T , x) = GN,i (x) in (Rd )N , i ∈ {1, . . . ,N}

where β ≥ 0 is the intensity of the noise.

The associated optimal trajectories

dXN
i,t = −DpH(Xi,t ,DvN,i(t,X

N
t ))dt +

√
2dBi

t +
√

2βdWt , t ∈ [0,T ], i ∈ {1, . . . ,N},
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The convergence result for a local coupling

The master equation with common noise :



































−∂t U − (1 + β)∆x U + H(x,Dx U)

−(1 + β)

∫

Rd
divy [DmU] dm(y) +

∫

Rd
DmU · DpH(y ,Dx U) dm(y)

−2β

∫

Rd
divx [DmU] dm(y) − β

∫

R2d
Tr
[

D2
mmU

]

dm ⊗ dm = F (x,m)

in [0,T ]× R
d ×P(Rd )

U(T , x,m) = G(x,m) in R
d × P(Rd )

with associated stochastic MFG system :

(MFGs)







































dt ut =
{

−(1 + β)∆ut + H(x, Dut)− F (x,mt )−
√

2βdiv(vt )
}

dt

+ vt ·
√

2βdWt in [t0, T ]× T
d ,

dt mt =
[

(1 + β)∆mt + div
(

mt DpH(mt ,Dut)
)]

dt −
√

2βdiv(mt dWt

)

in [t0,T ]× T
d

mt0 = m0, uT (x) = G(x, mT ) in T
d .

where (vt ) is a vector field which ensures (ut ) to be adapted to the filtration (Ft )t∈[t0,T ]

generated by the M.B. (Wt)t∈[0,T ].

(actually, vt (x) =

∫

Td
DmU(x,mt , y)dmt (y))
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