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General idea:

To derive variational methods for certain deterministic equations of motion
corresponding to dissipative systems (that cannot be treated by such methods
in a classical setting), ode’s or pde’s (in the infinite dimensional case) by
deforming stochastically the underlying Lagrangian paths and interpreting
velocities in a generalized sense. Example: Navier-Stokes, MHD.

In this case Lagrangian is the classical one, but computed over stochastic
processes (inspired by Feynman path integral approach to QM). Equations are
not perturbed.

Also to derive sde’s (spde’s in the infinite dimensional case) by stochastic
variational principles. Here the Lagrangian is randomly perturbed.



Semimartingales in a Lie group

Lie group structures

G Lie group, left (right) translations smooth, with

< > left (right) invariant metric

V left (right) invariant connection, torsion free

e identity element, G ~ TG Lie algebra;

For g1 € G, Tg,Lg, : Tg,G — T4,4,G tangent map (derivative of Ly, at gp)

Semi-direct products

U vector space, U* dual; suppose that G has a left representation on U —
naturally induce left representations of G and G on U and U*; denote

o:Ux U > TG

<aoa,V>rg=—-<Vo,a>y=<a,va>y, for acl, ac
U, veT.G



Semimartingales in a Lie group

Let g be of the form

{ dg(t) = Telgy) (Siq HAW(1) + u(t)at) "
9(0)=e.
(dW'(t) It6 integral) or, equivalently
{ Ag(t) = Telow (XIo1 Hho WI(t) = JVkHdt + (),
9(0)=e.
(odW/(t) Stratonovich integral) with H; € T,G, 1 < i < k. Then
DVg(t
CZ( ) — ToLyu(t)

( V-generalized derivative )

Z TeL gy HidW'(t)

V-stochastic differential W|th respect to the martingale part
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Stochastic variational principle

Stochastic variational principles
Action functional

T A
AG'O.20) = [ 1 Taploror g ) ot

T DVgl(t
+/0 < g'(t)Lg (1) dt( ),Oz(t)> ; Tg1(t)Lg1(,)_1dvg1(t)> (3)

<
zm;/ < ( ot (kg (- Dvcg],;(t),a(l‘)> ,H/dWi(t)>

Here | : TeG xU" — R is the Lagrangian function, q : TeG xU* — T2 G,
and

o(t) = g?() g, ag € U

Notice that if g = 0 the action functional is simply a classical action
computed on stochastic paths. In this case we define a(t) as the expectation
of the above «(t).



Stochastic variational principle

Domain of the action: the collection of all G-valued semimartingales
defined for t € [0, T].

Admissible variations: For every ¢ € [0, 1) and every process

v e C'([0,1]; TeG) as., let e-,(-) € C'([0, T]; G) be the unique solution of
the (random) time-dependent ode

at e€ V( ) TeLeg v(t) V( t) (4)
e-v(0) =e,

Then (g', g?) is critical for A if for every such variation,

d
£|5:0A(g1 (')ee,v(-)v gz(')eE,V(')) =0



Stochastic variational principle

Let

dg/(t) = TelLgey (X7 H o dWHI(1) + u(t)dt) , g/(0) =&, j=1,2
Assume ) ; Vi = 0.

Theorem. (g1 , g2) is a critical point of A if and only if the process u(t)

coupled with «(t) satisfies the following semidirect (stochastic) product
Euler-Poincaré equation for stochastic particle paths:

d(Z5(u(t), a(1)) = S adfy q(u(t), (1)) dW' (1)
+ad; (35 (U(D), a()dt+( 55 (u(t), (1)) o a(t)dt
+K(%( (1)))at,
da(t) = — S, H2a(t)dW?/(t) — u?(t)a(t)dt + 5 S HZ(H?a(t))d
(5)

where % € TsGand % € U denote the partial functional derivatives of /.



Stochastic variational principle

Who is K?
The linear operator K : TG — T; G is defined for all 4 € T;G and

1
(K(p),v) = — <M> ) Z (Vadvf-/,‘ H/1 + VH;(ade/j)>> .
i=1

BUT, in the right invariant case:
If V is the Levi-Civita connection and V4 H; = 0O for all /. Then

K*(u) = — _12 (Vi ViU + R(u, Hi)H;)

where R is the Riemannian curvature tensor. If, in addition, H; is an o.n. basis
of G, identifying TG with T¢G, we have K(u) = —%(Au + Ricci ).



Stochastic variational principle

Right invariant case:

Just change the tangent map for T¢Ry and the sign of the terms that do not
involve U (and U*).

Proof: long but essentially use of It6 calculus.



Applications

Infinite dimensional groups
The group of homeomorphisms on the torus, M = T3:

G := G°* = {g: M — M bijective : g, g ' € H%}
HS Sobolev maps of order § > 1 + 2

G? is an open subset of H® so a smooth Hilbert manifold and a group under
composition.

TeG® = G5 = HS vector fields on M. Not quite a Lie algebra (the bracket
loses one derivative).

dy the Riemannian volume. Weak L? metric:

< Uy, Vg >::/M < Ug(6), Vg(8) > g(0) du(0)

Not right-invariant.



Applications

Connection:

(VxV)g) = 5

where g; is such that go = g, &|—0g: = X(9).

(Y(g)og; )09+ Vxeg-1Yog ')og

We cannot apply the general theorem directly but we can go through
the proof and repeat it for specific cases.



Applications

Take the constant vector fields H; = v/2ve;, e; canonical bases of R3;
TM = M x R® and consider

{ dg(t,0) = vV2vdW(t) + u(t, g(t, 0))dt, )

9(0,0) = 0.

with u € C[0, T]; G5(M)), s large enough to define a flow of G°
diffeomorphisms. U* can be a space of functions or differential forms
on M. Action of G° on U*:

a(t) == apg(t) ™" = (g(t) ") a0
for oy € U* is the pullback by g(t)~".



Applications

ag : M — R smooth function:
da(t,0) = —vV2uVa(t,0) - dW(t) — u(t,0) - Va(t,0)dt + vAa(t,0)dt
ag = po(#)dl a density form: «(t, ) = p(t, 8)do with
dp(t,0) = —vV2uVp(t,0) - dW(t) = V - (pu)(t,0) + vLp(t, 0)
g a one-form:
ag = 2?21 Aoy,’daii
3 .
dA(t,0) =— > V2vgA(t,0)dW!(1)
j=1
3
-3 (u,-(t, 0)0,A(, 0) + Ai(t, 0)du(t, 9)>dt

j=1
+ vAA(t,0)dt



Applications

The compressible Navier-Stokes equation

Let U* be the space of probability densities on M = T3.
Consider the Lagrangian / : G5 x U* — R

I(u, o) := /M(p(j)!U(H)\Q—p(H)e(p(Q)))d& vu € G3(T°), a = p(6)dd € U*

e(p) = fluid’s internal energy
p(p) = pressure, de = —pd(%), a = p(0)dé.

Stochastic force g : G5 x U* - R
q(u,a) = %(U, a) = up.
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Applications

Action:

)
A" g = [ [ (GIw(E0o(t.0) - . 0)e((t. o)) doct
T
+/O /M<W(t,9),dM(t,9)>p(t,9)d9
3 T .
_;@/0 /MW,-(t,H)p(t,G)dOdW(t)

V v
where w(t, ) := Tger(n Ry (g1 (52)),

(L) = Ty B (079 (1),
p(t,0)do = (g2(t,-) ") *ap.



Applications

Theorem. The semi-martingale (g1, g*2) is a critical point of A if and only
if (u, p) satisfies the following SPDE

Au(t) = —/2rrVu - dW(t) — (v20r — \/203)uV logp - dW(1)
—u-Vudt 4+ vy Audt 4+ 2v1Viogp - Vudt

+(v1 — ug)u%dt + %dt

dp(t) = —/2vaVp - dW(t) — V - (up)dt + voApdt,

(8)

where p(t,0)d6 = (g*2(t,-)~")*(po(0)d6).



Applications

In particular, if 1 = vo = v,

du(t) = —v2uVu - dW(t) — u - Vudt + vAudt
+2vVlogp - Vudt + “Lat (9)
dp(t) = —v2uVp - dW(t) — V - (up)dt + vApdt.

For the deterministic action, v1 = v» = v, we obtain:

du(t) = —(u-Vu)dt + vAudt + 2vViogp - Vudt
+Pat, (10)
dp(t) = —V - (up)dt + vApat.

with 7(t,-)d8 = E[(g(t.)~") o,



Applications

Compressible MHD (magnetohydrodynamical) equation

Let ag := (bo(-), Bo(8) - dS, Do(#)dh), by a C? function , By(6) - dS an

exact two-form on T2, i.e., there is some one-form Ag(#) - df such that

Bo(6) - dS = d(Ao(e) : de) = 3 (curl Ay(6)),d6; A dbx,
1<j<k<3,i#j, ik

and Dy(6)d®6 a density. We let U* denote the vector space of all such triples
(b(-), B(0) - dS, D(6)db).



Applications

I: TeG® x U* — R be defined by

iw.5.8.0) = [(Cu0) — DW)e((0).b®)) - H 18O )0,

with u € T,G? the Eulerian velocity of the fluid, b € C? the entropy
function, B(0) - dS an exact differential two-form representing the
magnetic field in the fluid, D(#)d6 the mass density, and the function
e(D, b) the fluid’s internal energy. The pressure p(D, b) and the
temperature T(D, b) are related by de = —pd () + Tdb.



Applications

Lagrangian:

i.5.8.0) = [(C1u(0)? — DW)e((0).b®)) - 318 )0,

In the case of the non-stochastic action, namely

.
Ag”.g"”.g".g") = /0 I(w(t), B(t), D(1), b(t))at

where w(t, ) := Tgui Ly 1(DV g (1) )
B(t,0)-dS := E[(g" (7-)‘1) (Bo(0) - dS)],

b(t.6) == E[(g"s(t,-)"t)"bol,
D(t,-)d6 = E[(g*2(t.-)~")*(Do(6)d)].



Applications

Then (g¥', g*2) is a critical point of A if and only if (u, B, D, b) satisfies
the following PDE

du(t) = —u-Vudt + %ﬂ’;”é + AU+ (v — VZ)U%D
+2v1ViogD - Vudt + ~Lat
dD(t) = —V - (uD)dt + v, ADalt
db(t) = —u- Vbdt + vaAbdt
N(t) = curl (U X B)dt+ V3ABdT

(11)
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Applications

Existence of critical paths: the best method seems to be the use of entropy
methods.
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