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Introduction to Markov chain Monte Carlo (MCMCQ)

General reference: Brooks et al. (2011) MCMC Handbook.
Suppose x represents an unknown (and therefore random!)
parameter, and y represents data depending on the
unknown parameter, joint probability density p(x, y).
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Introduction to Markov chain Monte Carlo (MCMCQ)

General reference: Brooks et al. (2011) MCMC Handbook.
Suppose x represents an unknown (and therefore random!)
parameter, and y represents data depending on the
unknown parameter, joint probability density p(x, y).

Conditional density Joint probability density
! |
pxly) = P
1 1
Build Markov chain with Norming constant Z
this as equilibrium can be hard to compute!

(no need to know Z2)

Simulate Markov chain till approximate equilibrium. ¥ statistics
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Example: MCMC for Anglo-Saxon statistics
Some historians conjecture, Anglo-Saxon placenames cluster
by dissimilar names. Zanella (2015, 2016) uses MCMC:
data \pr/ovidesJ‘ste support, resulting in useful clustering.
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Example: MCMC for Anglo-Saxon statistics
Some historians conjecture, Anglo-Saxon placenames cluster
by dissimilar names. Zanella (2015, 2016) uses MCMC:

data provides some support, resulting in useful clustering.
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MCMC idea
Goal: estimate E = Ex[h(X)].
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Method: simulate ergodic Markov chain with stationary
distribution 1T: use empirical estimate E,, = %Zﬁiﬂg h(Xy).
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Method: simulate ergodic Markov chain with stationary
distribution 7T: use empirical estimate E, = %Zﬁiﬂg h(Xy).
(Much easier to apply theory if chain is reversible.)
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MCMC idea

Goal: estimate E = E[h(X)].
Method: simulate ergodic Markov chain with stationary

distribution 7T: use empirical estimate E, = %Z"Om h(Xy).

n=ng
(Much easier to apply theory if chain is reversible.)

Theory: £, — E almost surely.

/N
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Varieties of MH-MCMC

Here is the famous Metropolis-Hastings recipe for drawing
from a distribution with density f:

Propose Y using conditional density q(yIx);
Accept/Reject move from X to Y,
based on ratio f(Y) q(X|Y) / £(X) a(Y|X)
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Here is the famous Metropolis-Hastings recipe for drawing
from a distribution with density f:

Propose Y using conditional density q(yl|x);
Accept/Reject move from X to Y,
based on ratio f(Y) q(X|Y) / £(X) a(Y|X)

Options:

1. Independence sampler: proposal g(yv|x) = q(y) doesn’t

depend on x;
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Propose Y using conditional density q(yl|x);
Accept/Reject move from X to Y,
based on ratio f(Y) q(X|Y) / £(X) a(Y|X)

Options:

1. Independence sampler: proposal g(yv|x) = q(y) doesn’t
depend on x;

2. Random walk (RW MH-MCMC): proposal
a(y1x) = q(yv — x) behaves as a random walk;

3. MALA MH-MCMC: proposal
q(y|x) = q(y — x — Agradlog f) drifts towards high
target density f.
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Varieties of MH-MCMC
Here is the famous Metropolis-Hastings recipe for drawing
from a distribution with density f:

Propose Y using conditional density q(yl|x);
Accept/Reject move from X to Y,
based on ratio f(Y) q(X|Y) / £(X) a(Y|X)

Options:
1. Independence sampler: proposal g(yv|x) = q(y) doesn’t
depend on x;
2. Random walk (RW MH-MCMC): proposal
a(y1x) = q(yv — x) behaves as a random walk;
3. MALA MH-MCMC: proposal
q(y|x) = q(y — x — Agradlog f) drifts towards high
target density f.
We shall focus on RW MH-MCMC with Gaussian proposals. §# g, e
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Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

£ Statistics



Intro MCMC Dirichlet Results Conc Refs
000 o0

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

£ Statistics



MCMC
0000

Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

£ Statistics



MCMC
0000

Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
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Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).
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Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:
Propose multivariate Gaussian step;
Test whether to accept proposal by comparing
exponential random variable with log MH ratio;
Implement step if accepted (vector addition).
while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):

mcmce.xX += z
mcmc . record_result()
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Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).
while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):

mcmce.xX += z
mcmc . record_result()

What is best choice of scale / standard deviation tau?
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RW MH-MCMC with Gaussian proposals

(smooth target, marginal « exp(—x*))
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Target is given by 10 i.i.d. coordinates.
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Gaussian MH-MCMC state (first coordinate)

1000 2000 3000 4000 5000
Simulation time

Scale parameter for proposal: T = 1 is too large!

Acceptance ratio 1.7% i Statistics
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RW MH-MCMC with Gaussian proposals

(smooth target, marginal « exp(—x*))
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Target is given by 10 i.i.d. coordinates.
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Gaussian MH-MCMC state (first coordinate)

1 ObO 20‘00 BObO 40‘00 5000
Simulation time
Scale parameter for proposal: T = 0.1 is better.

ity o
Acceptance ratio 76.5% # Statisties
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RW MH-MCMC with Gaussian proposals
(smooth target, marginal « exp(—x*))

Target is given by 10 i.i.d. coordinates.

‘" l‘iw |l 1‘

Gaussian MH-MCMC state (first coordinate)

1 ObO 20‘00 BObO 40‘00 5000
Simulation time
Scale parameter for proposal: T = 0.01 is too small.

ity o
Acceptance ratio 98.5% # Statisties
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RW MH-MCMC on (R4, 1r®4)
m(dx;) = e~ ?Xi)dx;; MH acceptance rule A4 =0 or 1.

xP = xi ..., Xy ) X; “
gﬁ”” = X1+ ADWy, L X+ ADW,) w; “ N, 03)
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MCMC Optlmal Scaling: classic result (1)

RW MH-MCMC on (R4, rr®4)
m(dx;) = e~ ?Xi)dx;; MH acceptance rule A4 =0 or 1.

XP = xi ..., Xa ) e
XD = X+ ADwWy, L X+ ADW,) w; " N(0,03)

Questions: (1) complexity as d 1 «? (2) optimal 04?

Theorem (Roberts, Gelman and Gilks, 1997)
Given o5 = %, Lipschitz ¢', and finite Ex[(p')®], Ex[(p”)*]
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X4 3> 2Z where dZy=s(0)2dB + is(0) ' (Z)) dt.
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MCMC Optimal Scaling: classic result (l)

RW MH-MCMC on (R4, rr®4)
m(dx;) = e~ ?Xi)dx;; MH acceptance rule A4 =0 or 1.

XP = xi ..., Xa ) e
XD = X+ ADwWy, L X+ ADW,) w; " N(0,03)

Questions: (1) complexity as d 1 «? (2) optimal 04?

Theorem (Roberts, Gelman and Gilks, 1997)
Given o5 = %2, Lipschitz ¢', and finite Ex[($')8], Ex[(p')*]

(X4 }e>2Z where dZ=s(0)2dB + s(0) ¢’ (Zy) dt.

Answers: (1) mix in O(d) steps; (2) Omax = argmaxgs((f).s

“'Statistics
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MCMC Optimal Scaling: classic result (ll)
Optimization: maximize s(o)!
Given 7 = Ex[¢’(X)?] and normal CDF &,

s(o) = 0220(-%%) = 0%A(0) = % (@7 1(2))%A(0)

SIS

So O0max Maximized by choosing asymptotic acceptance rate
A(Omax) = argmaxacqo.] §(@71(5))°Al} ~0.234
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Optimization: maximize s(o)!
Given 7 = Ex[¢’(X)?] and normal CDF &,

s(0) = 0220(-%) = 0A(0) = 7 (&7(A) A0)

So O0max Maximized by choosing asymptotic acceptance rate
A(Omax) = argmaxacio1) (@71(4))A}} ~0.234

Strengths:
@ Establish complexity as d — oo;
@ Practical information on how to tune proposal;
@ Does not depend on ¢ (CLT-type universality).
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MCMC Optimal Scaling: classic result (ll)
Optimization: maximize s(o)!
Given 7 = Ex[¢’(X)?] and normal CDF &,

$(0) = 0% 20(-%) = 0*A(0) = 7 (®7(*F)*A(0)

So O0max Maximized by choosing asymptotic acceptance rate
A(Omax) = argmaxacio1) (@71(4))A}} ~0.234

Strengths:
@ Establish complexity as d — oo;
@ Practical information on how to tune proposal;
@ Does not depend on ¢ (CLT-type universality).

Some weaknesses that we will address: (there are others)
@ Convergence of marginal rather than joint distribution
@ Strong regularity assumptions:

Lipschitz g, finite E[(g")8], E[(g")?].

£ Statistics
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MCMC Optimal Scaling: classic result (llI)
There is a wide range of extensions: for example,

@ Langevin / MALA, for which the magic acceptance
probability is 0.574 (Roberts and Rosenthal, 1998);
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@ Non-identically distributed independent target
coordinates (Bédard, 2007);
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MCMC Optimal Scaling: classic result (llI)
There is a wide range of extensions: for example,

@ Langevin / MALA, for which the magic acceptance
probability is 0.574 (Roberts and Rosenthal, 1998);

@ Non-identically distributed independent target
coordinates (Bédard, 2007);

@ Gibbs random fields (Breyer and Roberts, 2000);

@ Infinite dimensional random fields (Mattingly, Pillai and
Stuart, 2012);
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MCMC Optimal Scaling: classic result (llI)
There is a wide range of extensions: for example,

@ Langevin / MALA, for which the magic acceptance
probability is 0.574 (Roberts and Rosenthal, 1998);

@ Non-identically distributed independent target
coordinates (Bédard, 2007);

@ Gibbs random fields (Breyer and Roberts, 2000);

@ Infinite dimensional random fields (Mattingly, Pillai and
Stuart, 2012);

@ Markov chains on a hypercube (Roberts, 1998);
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There is a wide range of extensions: for example,

@ Langevin / MALA, for which the magic acceptance
probability is 0.574 (Roberts and Rosenthal, 1998);

@ Non-identically distributed independent target
coordinates (Bédard, 2007);

@ Gibbs random fields (Breyer and Roberts, 2000);

@ Infinite dimensional random fields (Mattingly, Pillai and
Stuart, 2012);

@ Markov chains on a hypercube (Roberts, 1998);

@ Adaptive MCMC; adjust online to optimize acceptance
probability (Andrieu and Thoms, 2008; Rosenthal, 2011).
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MCMC Optimal Scaling: classic result (llI)

There is a wide range of extensions: for example,

Langevin / MALA, for which the magic acceptance
probability is 0.574 (Roberts and Rosenthal, 1998);

Non-identically distributed independent target
coordinates (Bédard, 2007);

@ Gibbs random fields (Breyer and Roberts, 2000);
@ Infinite dimensional random fields (Mattingly, Pillai and

Stuart, 2012);

@ Markov chains on a hypercube (Roberts, 1998);

@ Adaptive MCMC; adjust online to optimize acceptance

probability (Andrieu and Thoms, 2008; Rosenthal, 2011).

All these build on the s.d.e. approach of Roberts,
Gelman and Gilks (1997); hence regularity conditions
tend to be severe (but see Durmus et al., 2016). by ok
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Dirichlet forms and MCMC 1

Definition of Dirichlet form

A (symmetric) Dirichlet form F on a Hilbert space H is a
closed bilinear function E(u,v), defined / finite for any
u,v € D < H, which satisfies:

1.

D is a dense linear subspace of H;

2. E(u,v) =E(v,u) foru,v € D, so E is symmetric;
3.
4. D is a Hilbert space under the (“Sobolev”) inner product

F(u) = Eu,u) =0 foru e D;

(u,v)y + E(u,v);

Ifu e Dthenuy =(uAl)v0eD, moreover
F(us,ux) <E(u,u).

Relate to Markov process if (quasi)-regular.

£ Statistics
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Dirichlet forms and MCMC 1

Definition of Dirichlet form

A (symmetric) Dirichlet form F on a Hilbert space H is a
closed bilinear function E(u,v), defined / finite for any
u,v € D < H, which satisfies:

1.

D is a dense linear subspace of H;

2. E(u,v) =E(v,u) foru,v € D, so E is symmetric;
3.
4. D is a Hilbert space under the (“Sobolev”) inner product

F(u) = Eu,u) =0 foru e D;

(u,v)y + E(u,v);

Ifu e Dthenuy =(uAl)v0eD, moreover
F(us,ux) <E(u,u).

Relate to Markov process if (quasi)-regular.
Regular Dirichlet form for locally compact Polish E:
1

D n Co(E) is E2-dense in D, uniformly dense in Cy(E).
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Dirichlet forms and MCMC 2

Two examples
1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:
d 2
rah) = GE[ (R - nxi™)’|

(E4 can be viewed as the Dirichlet form arising from
speeding up the RW MH-MCMC by rate d.)
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Dirichlet forms and MCMC 2

Two examples

1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:

g = TE[(he®) - o)’

(E4 can be viewed as the Dirichlet form arising from
speeding up the RW MH-MCMC by rate d.)

2. Heuristic “infinite-dimensional diffusion” limit of this
form under scaling:

Fo(h) = 5(2“)[E,T®oo[|vm2].

£ Statistics
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Two examples

1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:

a 2
rah) = GE[ (R - nxi™)’|
(E4 can be viewed as the Dirichlet form arising from

speeding up the RW MH-MCMC by rate d.)

. Heuristic “infinite-dimensional diffusion” limit of this

form under scaling:

Fo(h) = 5(2“)[E,T®oo[|vm2].

Under mild conditions this is:
closable ./, Dirichlet ./, quasi-regular /.
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Dirichlet forms and MCMC 2

Two examples
1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:
d 2
rah) = GE[ (R - nxi™)’|

(E4 can be viewed as the Dirichlet form arising from
speeding up the RW MH-MCMC by rate d.)

2. Heuristic “infinite-dimensional diffusion” limit of this

form under scaling:

Fo(h) = S(;)Enw[wmz].

Under mild conditions this is:

closable ./, Dirichlet ./, quasi-regular /.

Can we deduce that the RW MH-MCMC scales to look like

the “infinite-dimensional diffusion”,

by showing that Z; “converges” to Z? ¥ Statistics
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Useful modes of convergence for Dirichlet forms
1. Gamma-convergence; E;, ‘T-converges” to E if
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Useful modes of convergence for Dirichlet forms

1. Gamma-convergence; E, “T-converges” to E if
(I'l) Ex(h) <liminf, £, (h;) whenever h,, — h € H;
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Useful modes of convergence for Dirichlet forms

1. Gamma-convergence; E, “T-converges” to E if
T'l) Ex(h) < liminf, £, (h,) whenever h,, - h € H;
(I'2) For every h € H there are h,, — h € H such that

Fw(h) = limsup,, £y (hy).

£ Statistics
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Useful modes of convergence for Dirichlet forms

1. Gamma-convergence; E, “T-converges” to E if
(I'l) Ex(h) <liminf, £, (h;) whenever h,, — h € H;
(I'2) For every h € H there are h,, — h € H such that

Fw(h) = limsup,, £y (hy).
2. Mosco (1994) introduces stronger conditions;
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Useful modes of convergence for Dirichlet forms

1. Gamma-convergence; E, “T-converges” to E if
T'l) Ex(h) < liminf, £, (h,) whenever h,, - h € H;
(I'2) For every h € H there are h,, — h € H such that
Fw(h) = limsup,, £y (hy).
2. Mosco (1994) introduces stronger conditions;
(M1) E.(h) < liminf, £, (h,) whenever h,, — h weakly in H;
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Useful modes of convergence for Dirichlet forms

1. Gamma-convergence; E, “T-converges” to E if
T'l) Ex(h) < liminf, £, (h,) whenever h,, - h € H;
(I'2) For every h € H there are h,, — h € H such that
Fw(h) = limsup,, £y (hy).
2. Mosco (1994) introduces stronger conditions;
(M1) E.(h) < liminf, £, (h,) whenever h,, — h weakly in H;
(M2) For every h € H there are h,, — h strongly in H such
that £, (h) = lim sup,, £y, (hy).
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Useful modes of convergence for Dirichlet forms

1. Gamma-convergence; E, “T-converges” to E if
T'l) Ex(h) < liminf, £, (h,) whenever h,, - h € H;
(I'2) For every h € H there are h,, — h € H such that
Fw(h) = limsup,, £y (hy).
2. Mosco (1994) introduces stronger conditions;
(M1) E.(h) < liminf, £, (h,) whenever h,, — h weakly in H;
(M2) For every h € H there are h,, — h strongly in H such
that £, (h) = lim sup,, £y, (hy).
3. Mosco (1994, Theorem 2.4.1, Corollary 2.6.1):
conditions (M1) and (M2) imply convergence of
associated resolvent operators,
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Useful modes of convergence for Dirichlet forms

1. Gamma-convergence; E, “T-converges” to E if
T'l) Ex(h) < liminf, £, (h,) whenever h,, - h € H;

(I'2) For every h € H there are h,, — h € H such that
Fw(h) = limsup,, £y (hy).

2. Mosco (1994) introduces stronger conditions;

(M1) E.(h) < liminf, £, (h,) whenever h,, — h weakly in H;
(M2) For every h € H there are h,, — h strongly in H such
that £, (h) = lim sup,, £y, (hy).

3. Mosco (1994, Theorem 2.4.1, Corollary 2.6.1):
conditions (M1) and (M2) imply convergence of
associated resolvent operators,
and indeed of associated semigroups.

4. Sun (1998) gives further conditions which imply weak
convergence of the associated processes: these
conditions are implied by existence of a finite constant C

such that Zn(h) < C(|h|2 + f(h)) forall h € H. ¥ 5tatistios
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Results

Theorem (Zanella, Bédard and WSK, 2016)

Consider the Gaussian RW MH-MCMC based on proposal
variance o?/d with target 84, where drmr = fdx = e~ ® dx.
Suppose 1 = |2 |¢p'|2f dx < oo (finite Fisher information),
and |’ (x +v) — P’ (x)| < kmax{|v|?,|v|*}

for somek >0,0<y <1, and x> 1.

Let E; be the corresponding Dirichlet form scaled as above.
F,4 Mosco-converges to E [1 A exp(N (-30?1, 027))] Foo,
so corresponding L? semigroups also converge.
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Results

Theorem (Zanella, Bédard and WSK, 2016)

Consider the Gaussian RW MH-MCMC based on proposal
variance o?/d with target 84, where drmr = fdx = e~ ® dx.
Suppose 1 = |2 |¢p'|2f dx < oo (finite Fisher information),
and |’ (x +v) — P’ (x)| < kmax{|v|?,|v|*}

for somek >0,0<y <1, and x> 1.

Let E; be the corresponding Dirichlet form scaled as above.
F,4 Mosco-converges to E [1 A exp(N (-30?1, 027))] Foo,
so corresponding L? semigroups also converge.

Corollary

Suppose in the above that ¢’ is globally Lipschitz. The
correspondingly scaled processes exhibit weak convergence.

tatistics
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Methods of proof 1: a CLT result

Lemma (A conditional CLT)

Under the conditions of the Corollary, almost surely (in x
with invariant measure TT®%) the log Metropolis-Hastings
ratio converges weakly (in W) as follows as d — oo

4 flox; + 24
log( A/ B )
iznl f(xi)

d

1(¢(xi+%)—d>(xi)) = N(-30%1,0%).

il
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Methods of proof 1: a CLT result

Lemma (A conditional CLT)

Under the conditions of the Corollary, almost surely (in x
with invariant measure TT®%) the log Metropolis-Hastings
ratio converges weakly (in W) as follows as d — oo

d f(x; +24)
log (l‘[ ﬁ)
i=1 f(-xl)
d
(C/J(xi + %‘f) - d)(xi)) = N(-30°1,0%).
=1

il

We may use this to deduce the asymptotic acceptance rate of
the RW MH-MCMC sampler.
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Key idea for CLT

Use exact Taylor expansion techniques:

> (blxi+ T —dlxi) =

i=1

~

d
Z (i) St + Z o jol (¢ (xi + Thiu) — ¢ (x)) du
i=1 i=1
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Key idea for CLT

Use exact Taylor expansion techniques:

> (blxi+ T —dlxi) =

d d
ALy “le (' Gxi + 2wy — ¢ (x0) du.
‘ i=1

Condition implicitly on x for first 2.5 steps.
1. First summand converges weakly to N (0, o21).
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O@000

Key idea for CLT

Use exact Taylor expansion techniques:

(qb(xl “Zﬁ)—qsoci)) -

£

Condition implicitly on x for first 2.5 steps.
1. First summand converges weakly to N (0, o21).

2. Decompose variance of second summand to deduce
Var [Zl 1 UWl JO (qb (xl U\/%Viu - (b,(xi)) du] - 0.

e 3o [ (i S0 - 9'00) au
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O@000

Key idea for CLT

Use exact Taylor expansion techniques:

(qb(xl “Zﬁ)—mxo) -

e 3o [ (i S0 - 9'00) au

£

Condition implicitly on x for first 2.5 steps.
1. First summand converges weakly to N (0, o21).

2. Decompose variance of second summand to deduce
Var[ i=1 O\—/I/Kl Jo (4’ (xi + UWlu ¢’ (xi) ) du] - 0.

3. Use Hoeffding’s inequality then absolute expectations:
E [Zil U\/vdzi Jo <¢'(Xi UW‘M @’ (x;) ) ] ~ 3071,

" statistics
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Methods of proof 2: establishing condition (M2)

[e]
00e00

For every h € L2(1r®®), find hy, — h (strongly) in L2(11®%)
such that Z« (h) > limsup,, £, (hy).

1. Sufficient to consider case £ (h) < .
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For every h € L2(1r®®), find hy, — h (strongly) in L2(11®%)
such that £« (h) > lim sup,, £, (hy).

1. Sufficient to consider case £ (h) < .

2. Find sequence of smooth cylinder functions h, with
“compact cylindrical support”, such that
| (h) = Ewo(hp)| < 1/nm.
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1. Sufficient to consider case £ (h) < .

2. Find sequence of smooth cylinder functions h, with
“compact cylindrical support”, such that
| (h) = Ewo(hp)| < 1/nm.

3. Using smoothness etc, Ey(hy) — Eo(hy) as m — oo.
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Methods of proof 2: establishing condition (M2)

For every h € L2(1r®®), find hy, — h (strongly) in L2(11®%)
such that £« (h) > lim sup,, £, (hy).

1. Sufficient to consider case £ (h) < .

2. Find sequence of smooth cylinder functions h, with
“compact cylindrical support”, such that
| (h) = Ewo(hp)| < 1/nm.

3. Using smoothness etc, Ey(hy) — Eo(hy) as m — oo.
4. Subsequences ....
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Methods of proof 3: establishing condition (M1)

If h,, — h weakly in L2(118%), show Eo (h) < liminf, £, (hy).
Detailed stochastic analysis involves:

1. Set ¥y (h) = 2 (h(XE") — h(X{™)).
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Methods of proof 3: establishing condition (M1)

If h,, — h weakly in L2(118%), show Eo (h) < liminf, £, (hy).
Detailed stochastic analysis involves:
1. Set ¥ (h) =[5 (h(Xg") - h(X{™)).
2. Integrate against test function
XN, Wi N I(U < a(Xyy, Wyy)) for & smooth,
compact support, U a Uniform(0, 1) random variable.
Apply Cauchy-Schwarz.
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Methods of proof 3: establishing condition (M1)

If h,, — h weakly in L2(118%), show Eo (h) < liminf, £, (hy).
Detailed stochastic analysis involves:
1. Set ¥ (h) =[5 (h(Xg") - h(X{™)).
2. Integrate against test function
XN, Wi N I(U < a(Xyy, Wyy)) for & smooth,
compact support, U a Uniform(0, 1) random variable.
Apply Cauchy-Schwarz.

3. Use integration by parts, careful analysis and conditions

on ¢’.
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Doing even better

Durmus et al. (2016) introduce LP mean differentiability:

Refs

£ Statistics



23

Intro MCMC Dirichlet Results Conc Refs

0000 (e]e]
[e]

[e]
[e]e]e} [e]e]e]e] }

Doing even better

Durmus et al. (2016) introduce L” mean differentiability:
there is ¢ such that, for some p > 2, some & > 0,

PX+u)—pX) = (X)) +R(X,u)u,
E[IR(X,w) 1" = o(ul®).
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Doing even better

Durmus et al. (2016) introduce L” mean differentiability:
there is ¢ such that, for some p > 2, some & > 0,

P (X +u) — p(X) (¢p(X) +R(X,u) u,
E[IR(X,w) 1" = o(ul®).

Also7 =T [IqSIZ] < 0.

Durmus et al. (2016) obtain optimal scaling results when
p>4,and E[1¢[6] < w,
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Doing even better

Durmus et al. (2016) introduce L” mean differentiability:
there is ¢ such that, for some p > 2, some « > 0,

P (X +u) — p(X) (¢p(X) +R(X,u) u,
E[IR(X,w) 1" = o(ul®).

Also7 =T [IqSIZ] < 0.

Durmus et al. (2016) obtain optimal scaling results when
p>4,and E[1¢[6] < w,

L?P mean differentiability applies straightforwardly to the
Zanella, Bédard and WSK (2016) argument mutatis mutandis:
the regularity conditions can be weakened even more at least
for vague convergence.
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Conclusion

@ The Dirichlet form approach allows significant relaxation
of conditions required for optimal scaling results;
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@ Need to explore development beyond i.i.d. targets;
e.g. can regularity be similarly relaxed in more general
random field settings?
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Conclusion

@ The Dirichlet form approach allows significant relaxation

of conditions required for optimal scaling results;

Combine with L? mean differentiability to obtain further
relaxation of regularity conditions;

Soft argument for %variance + mean =~ 0 implied by
N(—%UZTZ,UZQ);

@ MALA generalization (exercise in progress);
@ Need to explore development beyond i.i.d. targets;

e.g. can regularity be similarly relaxed in more general
random field settings?

Apply to discrete Markov chain cases?
(c.f. Roberts, 1998);

Investigate applications to Adaptive MCMC.
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Made it explicit that Lp mean differentiability still doesn’t cover weak
without extra regularity: need to beat this!
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