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Introduction to Markov chain Monte Carlo (MCMC)
General reference: Brooks et al. (2011) MCMC Handbook.
Suppose x represents an unknown (and therefore random!)
parameter, and y represents data depending on the
unknown parameter, joint probability density p(x,y).

Conditional density Joint probability density

↓

= p(x,y)
Z

↑ ↑
Build Markov chain with Norming constant Z

this as equilibrium can be hard to compute!

(no need to know Z)

Simulate Markov chain till approximate equilibrium.
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Example: MCMC for Anglo-Saxon statistics
Some historians conjecture, Anglo-Saxon placenames cluster
by dissimilar names. Zanella (2015, 2016) uses MCMC:
data provides some support, resulting in useful clustering.
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MCMC idea
Goal: estimate E = Eπ[h(X)].

Method: simulate ergodic Markov chain with stationary
distribution π : use empirical estimate Ên = 1

n
∑n0+n
n=n0

h(Xn).
(Much easier to apply theory if chain is reversible.)
Theory: Ên → E almost surely.
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Varieties of MH-MCMC
Here is the famous Metropolis-Hastings recipe for drawing
from a distribution with density f :

Propose Y using conditional density q(y|x);
Accept/Reject move from X to Y,

based on ratio f(Y) q(X|Y) / f(X) q(Y|X)

Options:

1. Independence sampler: proposal q(y|x) = q(y) doesn’t
depend on x;

2. Random walk (RW MH-MCMC): proposal
q(y|x) = q(y − x) behaves as a random walk;

3. MALA MH-MCMC: proposal
q(y|x) = q(y − x − λgrad logf) drifts towards high
target density f .

We shall focus on RW MH-MCMC with Gaussian proposals.
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Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):
mcmc.x += z

mcmc.record_result()

What is best choice of scale / standard deviation tau?

8



Intro MCMC Dirichlet Results Conc Refs

Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):
mcmc.x += z

mcmc.record_result()

What is best choice of scale / standard deviation tau?

8



Intro MCMC Dirichlet Results Conc Refs

Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):
mcmc.x += z

mcmc.record_result()

What is best choice of scale / standard deviation tau?

8



Intro MCMC Dirichlet Results Conc Refs

Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):

mcmc.x += z
mcmc.record_result()

What is best choice of scale / standard deviation tau?

8



Intro MCMC Dirichlet Results Conc Refs

Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):

mcmc.x += z
mcmc.record_result()

What is best choice of scale / standard deviation tau?

8



Intro MCMC Dirichlet Results Conc Refs

Gaussian RW MH-MCMC

Simple Python code for Gaussian RW MH-MCMC, using
normal and exponential from Numpy:

Propose multivariate Gaussian step;

Test whether to accept proposal by comparing
exponential random variable with log MH ratio;

Implement step if accepted (vector addition).

while not mcmc.stopped():
z = normal(0, tau, size=mcmc.dim)
if exponential() > mcmc.phi(mcmc.x + z)-mcmc.phi(mcmc.x):

mcmc.x += z
mcmc.record_result()

What is best choice of scale / standard deviation tau?

8



Intro MCMC Dirichlet Results Conc Refs

RW MH-MCMC with Gaussian proposals
(smooth target, marginal ∝ exp(−x4))

Target is given by 10 i.i.d. coordinates.

Scale parameter for proposal: τ = 1 is too large!

Acceptance ratio 1.7%
9
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RW MH-MCMC with Gaussian proposals
(smooth target, marginal ∝ exp(−x4))

Target is given by 10 i.i.d. coordinates.

Scale parameter for proposal: τ = 0.1 is better.

Acceptance ratio 76.5%
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RW MH-MCMC with Gaussian proposals
(smooth target, marginal ∝ exp(−x4))

Target is given by 10 i.i.d. coordinates.

Scale parameter for proposal: τ = 0.01 is too small.

Acceptance ratio 98.5%
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MCMC Optimal Scaling: classic result (I)

RW MH-MCMC on (Rd, π⊗d)

π(dxi) = e−φ(xi)dxi; MH acceptance rule A(d) = 0 or 1.

X(d)0 = ( X1 , . . . , Xd ) Xi
iid∼ π

X(d)1 = (X1 +A(d)W1, . . . , Xd +A(d)Wd ) Wi
iid∼ N(0, σ2

d)

Questions: (1) complexity as d ↑ ∞? (2) optimal σd?

Theorem (Roberts, Gelman and Gilks, 1997)

Given σ2
d =

σ2

d , Lipschitz φ′, and finite Eπ[(φ′)8], Eπ[(φ′′)4]

{X(d)btdc,1}t ⇒ Z where dZt = s(σ)
1
2 dBt + 1

2s(σ)φ
′(Zt) dt .

Answers: (1) mix in O(d) steps; (2) σmax = arg maxσ s(σ).
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MCMC Optimal Scaling: classic result (II)
Optimization: maximize s(σ)!

Given I = Eπ[φ′(X)2] and normal CDF Φ,

s(σ) = σ2 2Φ(−σ
√
I

2 ) = σ2A(σ) = 4
I
(
Φ−1(A(σ)2 )

)2A(σ)

So σmax maximized by choosing asymptotic acceptance rate

A(σmax) = arg maxA∈[0,1]
{(
Φ−1(A2 )

)2A}
}
≈ 0.234

Strengths:
Establish complexity as d→∞;
Practical information on how to tune proposal;
Does not depend on φ (CLT-type universality).

Some weaknesses that we will address: (there are others)
Convergence of marginal rather than joint distribution
Strong regularity assumptions:
Lipschitz g′, finite E

[
(g′)8

]
, E
[
(g′′)4

]
.
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MCMC Optimal Scaling: classic result (III)
There is a wide range of extensions: for example,

Langevin / MALA, for which the magic acceptance
probability is 0.574 (Roberts and Rosenthal, 1998);

Non-identically distributed independent target
coordinates (Bédard, 2007);

Gibbs random fields (Breyer and Roberts, 2000);

Infinite dimensional random fields (Mattingly, Pillai and
Stuart, 2012);

Markov chains on a hypercube (Roberts, 1998);

Adaptive MCMC; adjust online to optimize acceptance
probability (Andrieu and Thoms, 2008; Rosenthal, 2011).

All these build on the s.d.e. approach of Roberts,
Gelman and Gilks (1997); hence regularity conditions
tend to be severe (but see Durmus et al., 2016).
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Dirichlet forms and MCMC 1
Definition of Dirichlet form

A (symmetric) Dirichlet form E on a Hilbert space H is a
closed bilinear function E(u,v), defined / finite for any
u,v ∈ D ⊆ H, which satisfies:

1. D is a dense linear subspace of H;

2. E(u,v) = E(v,u) for u,v ∈ D, so E is symmetric;

3. E(u) = E(u,u) ≥ 0 for u ∈ D;

4. D is a Hilbert space under the (“Sobolev”) inner product
〈u,v〉 + E(u,v);

5. If u ∈ D then u∗ = (u∧ 1)∨ 0 ∈ D, moreover
E(u∗, u∗) ≤ E(u,u).

Relate to Markov process if (quasi)-regular.
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Dirichlet forms and MCMC 2
Two examples

1. Dirichlet form obtained from (re-scaled) RW MH-MCMC:

Ed(h) = d
2
E
[(
h(X(d)1 )− h(X(d)0 )

)2
]
.

(Ed can be viewed as the Dirichlet form arising from
speeding up the RW MH-MCMC by rate d.)

2. Heuristic “infinite-dimensional diffusion” limit of this
form under scaling:

E∞(h) = s(σ)
2
Eπ⊗∞

[
|∇h|2

]
.

Under mild conditions this is:
closable

√
, Dirichlet

√
, quasi-regular

√
.

Can we deduce that the RW MH-MCMC scales to look like
the “infinite-dimensional diffusion”,
by showing that Ed “converges” to E∞?
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Useful modes of convergence for Dirichlet forms
1. Gamma-convergence; En “Γ -converges” to E∞ if

(Γ1) E∞(h) ≤ lim infnEn(hn) whenever hn → h ∈ H;
(Γ2) For every h ∈ H there are hn → h ∈ H such that

E∞(h) ≥ lim supnEn(hn).
2. Mosco (1994) introduces stronger conditions;

(M1) E∞(h) ≤ lim infnEn(hn) whenever hn → h weakly in H;
(M2) For every h ∈ H there are hn → h strongly in H such

that E∞(h) ≥ lim supnEn(hn).

3. Mosco (1994, Theorem 2.4.1, Corollary 2.6.1):
conditions (M1) and (M2) imply convergence of
associated resolvent operators,

and indeed of associated semigroups.

4. Sun (1998) gives further conditions which imply weak
convergence of the associated processes: these
conditions are implied by existence of a finite constant C
such that En(h) ≤ C(|h|2 +E(h)) for all h ∈ H.
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Results

Theorem (Zanella, Bédard and WSK, 2016)

Consider the Gaussian RW MH-MCMC based on proposal
variance σ2/d with target π⊗d, where dπ = f dx = e−φ dx.
Suppose I =

∫∞
∞ |φ′|2f dx <∞ (finite Fisher information),

and |φ′(x + v)−φ′(x)| < κmax{|v|γ , |v|α}
for some κ > 0, 0 < γ < 1, and α > 1.

Let Ed be the corresponding Dirichlet form scaled as above.
Ed Mosco-converges to E

[
1∧ exp(N (−1

2σ
2I, σ2I))

]
E∞,

so corresponding L2 semigroups also converge.

Corollary

Suppose in the above that φ′ is globally Lipschitz. The
correspondingly scaled processes exhibit weak convergence.
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Methods of proof 1: a CLT result

Lemma (A conditional CLT)

Under the conditions of the Corollary, almost surely (in x
with invariant measure π⊗∞) the log Metropolis-Hastings
ratio converges weakly (in W ) as follows as d→∞:

log

 d∏
i=1

f(xi + σWi√
d )

f (xi)

 =

d∑
i=1

(
φ(xi + σWi√

d )−φ(xi)
)
⇒ N (−1

2σ
2I, σ2I) .

We may use this to deduce the asymptotic acceptance rate of
the RW MH-MCMC sampler.
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Key idea for CLT

Use exact Taylor expansion techniques:

d∑
i=1

(
φ(xi + σWi√

d )−φ(xi)
)
=

d∑
i=1

φ′(xi)
σWi√
d +

d∑
i=1

σWi√
d

∫ 1

0

(
φ′(xi + σWi√

d u)−φ
′(xi)

)
du .

Condition implicitly on x for first 2.5 steps.

1. First summand converges weakly to N (0, σ2I).
2. Decompose variance of second summand to deduce

Var
[∑d

i=1
σWi√
d

∫ 1
0

(
φ′(xi + σWi√

d u−φ
′(xi)

)
du
]
→ 0.

3. Use Hoeffding’s inequality then absolute expectations:

E
[∑d

i=1
σWi√
d

∫ 1
0

(
φ′(xi + σWi√

d u−φ
′(xi)

)
du
]
→ −1

2σ
2I.
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Methods of proof 2: establishing condition (M2)

For every h ∈ L2(π⊗∞), find hn → h (strongly) in L2(π⊗∞)
such that E∞(h) ≥ lim supnEn(hn).

1. Sufficient to consider case E∞(h) <∞.

2. Find sequence of smooth cylinder functions hn with
“compact cylindrical support”, such that
|E∞(h)−E∞(hn)| ≤ 1/n.

3. Using smoothness etc, Em(hn)→ E∞(hn) as m →∞.

4. Subsequences . . . .
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Methods of proof 3: establishing condition (M1)

If hn → h weakly in L2(π⊗∞), show E∞(h) ≤ lim infnEn(hn).
Detailed stochastic analysis involves:

1. Set Ψn(h) =
√
n
2 (h(X

(n)
0 )− h(X(n)1 )).

2. Integrate against test function
ξ(X1:N ,W1:N)I(U < a(X1:N ,W1:N)) for ξ smooth,
compact support, U a Uniform(0,1) random variable.
Apply Cauchy-Schwarz.

3. Use integration by parts, careful analysis and conditions
on φ′.
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Doing even better

Durmus et al. (2016) introduce Lp mean differentiability:

there is φ̇ such that, for some p > 2, some α > 0,

φ(X +u)−φ(X) = (φ̇(X)+ R(X,u)) u ,
E [|R(X,u)|p]1/p = o(|u|α) .

Also I = E
[
|φ̇|2

]
<∞.

Durmus et al. (2016) obtain optimal scaling results when

p > 4, and E
[
|φ̇|6

]
<∞,

Lp mean differentiability applies straightforwardly to the
Zanella, Bédard and WSK (2016) argument mutatis mutandis:
the regularity conditions can be weakened even more at least
for vague convergence.
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Conclusion

The Dirichlet form approach allows significant relaxation
of conditions required for optimal scaling results;

Combine with Lp mean differentiability to obtain further
relaxation of regularity conditions;

Soft argument for 1
2variance+mean ≈ 0 implied by

N (−1
2σ

2I, σ2I);
MALA generalization (exercise in progress);

Need to explore development beyond i.i.d. targets;
e.g. can regularity be similarly relaxed in more general
random field settings?

Apply to discrete Markov chain cases?
(c.f. Roberts, 1998);

Investigate applications to Adaptive MCMC.
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Made it explicit that Lp mean differentiability still doesn’t cover weak ocnvergence
without extra regularity: need to beat this!
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