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Kusuoka-Stroock estimates for diffusion semigroups

Kusuoka and Stroock analysed the smoothness properties of the
(perturbed) semigroup associated to a diffusion process:

(Pc
t ϕ)(x) = E

[
ϕ(X x

t ) exp

(∫ t

0
c (X x

s ) ds

)]
, t ≥ 0, x ∈ Rd1 ,

where

X x
t = x +

∫ t

0
V0(X x

s )ds +
N∑
i=1

∫ t

0
Vi (X

x
s ) ◦ dB i

s , t ≥ 0, (1)

{Vi i = 0, ...,N} are C∞b satisfying Kusuoka’s UFG
condition.

B be a N-dimensional standard Brownian motion

c ∈ C∞b
(
Rd1
)
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The UFG condition

Notation:

V[i ] = Vi , V[α?i ] =
[
V[α],Vi

]
, i ∈ {0, . . . ,N},

“lengths” of a multi-index α = (α1, . . . , αn) are used:

|α| = |(α1, . . . , αn)| = n, ‖α‖ = ‖(α1, . . . , αn)‖ = n+]{i : αi = 0}.
A1(m) = the set of multi-indices α different from (0) for
which ‖α‖ ≤ m.

Definition

The vector fields {Vi , 0 ≤ i ≤ N} satisfy the UFG condition of
order m if for any α ∈ A1 there exist ϕα,β ∈ C∞b (Rd1) such that

V[α] =
∑

β∈A1(m)

ϕα,βV[β].
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The Kusuoka Stroock gradient estimate

Theorem (Kusuoka and Stroock, 1987; Kusuoka 2003)

Suppose the Vi , i = 0, . . . ,N satisfy the UFG condition. For any
j ,m > 0 and α1, . . . , αj , . . . , αm ∈ A1 there there exists c > 0 such
that ∥∥∥(V[α1] · · ·V[αj ]P

c
t

(
V[αj+1] · · ·V[αm]ϕ

))∥∥∥
Lp(dx)

≤ ct−(‖α1‖+···+‖αm‖)/2 ‖ϕ‖Lp(dx)

for all ϕ ∈ C∞0
(
Rd1
)
, p ∈ [1,∞], t ∈ (0, 1].
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A randomly perturbed semigroup

Define the randomly perturbed semigroup

ρ
Y (ω)
t (ϕ)(x) = E [ϕ(X x

t )Zt(X
x ,Y )| Yt ] (ω) , t ≥ 0, x ∈ Rd1 , (2)

where

Zt(X
x ,Y ) = exp

(
d2∑
i=1

∫ t

0
hi (X x

s ) dY i
s −

1

2

d2∑
i=1

∫ t

0
hi (X x

s )2 ds

)
.

Y =
{(

Y i
t

)d2

i=1
, t ≥ 0

}
is a d2-dim Bm independent of X ,

Yt = σ{Ys , s ∈ [0, t]}.
hi ∈ C∞b

(
Rd2
)
, i = 1, ..., d2
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Application to the filtering equation

Let (Ω,F ,P) be the probability space on which we have definedY .
Y drives the following linear parabolic stochastic PDE

dρxt (ϕ) = ρxt (Aϕ)dt +

d2∑
k=1

ρxt (hkϕ)dY k
t , (3)

ρx0 = δx .

here ρxt is a measure valued process, A is the following differential
operator

Aϕ = V0ϕ+
1

2

N∑
i=1

V 2
i ϕ (4)

and ϕ is a suitably chosen test function.
equation (3) is called the Duncan-Mortensen-Zakai equation.
plays a central role in non-linear filtering: The normalized solution of
gives the conditional distribution of a partially observed stochastic
process.
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The non-linear filtering problem

(Ω,F , P̃) probability space, (Ft)t≥0 satisfies the usual conditions.

• the signal process:

dXt = V0(Xt)dt +
N∑
i=1

Vi (Xt) ◦ dB i
t , X0 = x , t ≥ 0, (5)

W an Ft-adapted d2-dimensional Brownian motion independent of
X .
• the observation process:

Yt =

∫ t

0
h(Xs)ds + Wt , (6)

Yt = σ(Ys , s ∈ [0, t]) ∨N , N comprises all P̃-null sets.

The filtering problem. Determine πt , the conditional distribution of
the signal X at time t given Y in the interval [0, t].

πt (ϕ) = Ẽ[ϕ(Xt) | Yt ] , ϕ Borel bounded function. (7)
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The filtering problem continued

Let P be absolutely continuous with respect to P̃ such that

d P̃
dP

∣∣∣∣∣
Ft

= Zt(X ,Y ).

Zt(X ,Y ) = exp

(
d2∑
i=1

∫ t

0
hi (Xs) dY i

s −
1

2

d2∑
i=1

∫ t

0
hi (Xs)2 ds

)
.

By Girsanov’s theorem, under P, Y is a Brownian motion independent of
X ; additionally the law of X under P̃ is the same as its law under P.

Kallianpur-Striebel formula

πt =
ρ
Y (ω)
t

ρ
Y (ω)
t (1)

P̃(P)− a.s., (8)

ρ
Y (ω)
t (ϕ) = E [ϕ(Xt)Zt(X ,Y )| Yt ] (ω) , t ≥ 0, (9)

• 1 is the constant function 1 (x) = 1 for any x ∈ Rd1 .

• ρY (ω)
t the unnormalised conditional distribution the signal.
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Main Results

Suppose the Vi , i = 0, . . . ,N satisfy the UFG condition

Theorem

Let h ∈ C∞b
(
Rd1 ,Rd2

)
and α1, . . . , αj , . . . , αm ∈ A1. Then there exists

c (ω) a.s. finite such that∥∥∥(V[α1] · · ·V[αj ]ρ
Y (ω)
t

(
V[αj+1] · · ·V[αm]ϕ

))∥∥∥
∞

≤ c (ω) t−(‖α1‖+···+‖αm‖)/2 ‖ϕ‖∞
for any ϕ ∈ C∞b

(
Rd1
)

and t ∈ (0, 1].
If h ∈ C∞0

(
Rd1 ,Rd2

)
. There exists c (ω) a.s. finite such that∥∥∥(V[α1] · · ·V[αj ]ρ

Y (ω)
t

(
V[αj+1] · · ·V[αm]ϕ

))∥∥∥
p

≤ c (ω) t−(‖α1‖+···+‖αm‖)/2 ‖ϕ‖p
for all ϕ ∈ C∞0

(
Rd1
)
, p ∈ [1,∞], t ∈ (0, 1].
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Results continued

Corollary

Let h ∈ C∞b
(
Rd1 ,Rd2

)
. There exists c (ω) a.s. finite such that∥∥∥(V[α1] · · ·V[αj ]πt

(
V[αj+1] · · ·V[αm]ϕ

))∥∥∥
∞

≤ c (ω) t−(‖α1‖+···+‖αm‖)/2 ‖ϕ‖∞
for any ϕ ∈ C∞b

(
RN
)

and t ∈ (0, 1].

Vi , i = 0, ...,N satisfy the Hörmander condition: an estimate
for the product of the likelihood function and the density of
the signal follows
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Step 1. Expand ρ
Y (ω)
t

Let S (k) the set of all multi-indices q̄ with k entries in the
set {1, ..., d2}.
Introduce operators Rq,q̄ where q = (t1, t2, . . . , tk) is a
non-empty multi-index with entries 0 < t1 < t2 < · · · < tk < 1
and q̄ = (i1, ..., ik−1) is a multi-index in S(k − 1)

R(s,t),∅(ϕ) = Pt−s (ϕ)

and, inductively, for k > 1,

R(s,t1,t2,...,tk ),(i1,...,ik−1) (ϕ) = R(s,t1,t2,...,tk−1)

(
hik−1

Ptk−tk−1
(ϕ)
)

= Pt1−s
(
hi1Pt2−t1 . . .

(
hik−1

Ptk−tk−1
(ϕ)
))
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Lemma

We have almost surely that

ρxt (ϕ) = Pt(ϕ)(x) +
∞∑

m=1

∑
q̄∈S(m)

Rm,q̄
0,t (ϕ) (10)

where, for q̄ = (i1, ..., im),

Rm,q̄
0,t (ϕ) =

∫ t

0

∫ tm

0
. . .

∫ t2

0︸ ︷︷ ︸
m times

R(0,t1,...,tm,t),q̄(ϕ)(x)dY i1
t1
. . . dY im

tm .
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Step 2. Pathwise representation of the Rm
t (ϕ)

qks,t (Y ) =

∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

dYt1
...dY i

tk

and qk̄t̄ (Y ) , k̄ = (k1, ..., kr ) t = (t1, ...tr ) be the products of iterated integrals

qk̄s,t̄ (Y ) =
r∏

i=1

qkis,ti (Y ) .

We define a formal degree on these products of iterated integrals by letting

deg
(
qk̄s,t̄ (Y )

)
=

r∑
i=1

ki .

Next define the sets Θk

Θk = sp

{
qk̄t̄ (Y ) , k̄ = (k1, ..., kr ) ,

r∑
i=1

ki ≤ k

}
.
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Also for q̄ ∈ S (k) let q̄ ∈ (i1, ..., ik) define Φq̄, Ψq̄, be the
following operators

Φq̄ϕ = hi1 ...hikϕ

Ψq̄ϕ = A(hi1 ...hik )ϕ+
d∑

i=1

Vi (h
i1 ...hik )Viϕ.

and Γ be the set of operators

Γ = {Φq̄1 ,Ψq̄2 ,Ψq̄1Φq̄2 , q̄1, q̄2 ∈ S (k) , k ≥ 1} .
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Theorem

Rm
s,t (ϕ) =Pt−s(hmϕ)(x)

∫ t

s

∫ tm

s
. . .

∫ t2

s︸ ︷︷ ︸
m times

dYt1 ...dYtm

+
m−1∑
k=1

qk,ms,t (Y )

∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

qk,m(s,t1,...,tk ) (Y ) R̄k
(s,t1,...,tk ,t)(ϕ)(x)dt1...dtk

+
m∑

k=1

∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

q̄k,m(s,t1,...,tk ) (Y ) R̂k
(s,t1,...,tk ,t)(ϕ)(x)dt1...dtk , (11)

and qk,m(s,t1,...,tk ) (Y ), q̄k,m(s,t1,...,tk ) (Y ) ∈ Θm are linear combinations of (products

of) iterated integrals of Y and R̄k
(t1,...,tk ,t)(ϕ) are given by

R̄k
(s,t1,...,tk ,t)(ϕ) = Pt1−s

(
Φ̄1Pt2−t1 . . .

(
Φ̄kPt−tk (ϕ)

))
and Φ̄i ∈ Γ, i = 1, .., k .
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A first a priori estimate

Proposition

Under the assumptions of Theorem 3 let α, β ∈ A1 (`) ,
γ ∈ (1/3, 1/2) then there exists a r.v. C (ω,m, γ) > 0 a.s. finite
such that∥∥V[α]R

m
0,tV[β]ϕ

∥∥
∞ ≤ C (ω,m, γ) t−(‖α‖+‖β‖)/2+mγ ‖ϕ‖∞

for all ϕ ∈ C∞b
(
RN
)

and t ∈ (0, 1].
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Proof ideas

We have Hölder type controls on the iterated integrals∣∣∣qks,t (Y )
∣∣∣ ≤ (c (ω, γ) |s − t|)kγ

θ (kγ)!

for all 0 ≤ s ≤ t ≤ 1,

estimate the regularity of the integral kernels R̄k
(s,t1,...,tk ,t)

using the Kusuoka-Stroock techniques

the kernels roughly have the form

Pt1−t0W1Pt2−t1W2 · · ·WkPt−tk ,

where Wj = uiVij + vj for some ui , vi ∈ C∞b
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Proof ideas continued

In spirit we have two kinds of regularity estimates for the heat
kernel

first:
‖∇Ptϕ‖∞ ≤ C (‖ϕ‖∞ + ‖∇ϕ‖∞)

second:
‖∇Ptϕ‖∞ ≤ Ct−`/2‖ϕ‖∞

kernels are integrated over a simplex

use the second estimate on the largest interval of the partition

this interval is always at least T/k
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Proof of the main theorem ct’ed

the estimate for the Rm follows

Back to the perturbation expansion: the asymptotics of the
series are determined by the lower order terms

Are we done?

no : the estimates are not summable!
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take a step back:

define Sobolev and distribution type spaces H1 and H−1:
encode the effect of V[α] and V[β]

regard the Rm
s,t as operators from H−1 to H1

The Rm
s,t satisfy for 0 ≤ s < u < t ≤ T

Rm
s,t =

m∑
j=0

R j
s,uR

m−j
u,t

an algebraic relation known as the multiplicative property in
the rough path context

such functionals also arise in the work of Deya, Gubinelli,
Tindel et al when analysing the rough heat equation

the a priori estimates provide us with bounds for the first few
Rm

Can we use the arguments of the extension theorem to get
factorial decay?
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Rough paths

introduced by T. Lyons in the 90s to model and analyse the
interaction of highly oscillatory and potentially non-differentiable
systems

dYt = f (Yt)dXt

A rough path X of order p ∈ [2, 3) with values in a Banach space
W is a pair of functions

Xs,t := (xs,t ,Xs,t) ∈W ⊕W ⊗W ,

where 0 ≤ s ≤ t ≤ T .
think of xs,t as the increment of the path x itself and Xs,t as an
area term.
satisfy an analytic p− variation type constraint on increments and
area
satisfy an algebraic constraint

Xs,t − Xu,t − Xs,u = xs,u ⊗ xu,t
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Stochastic processes lifted to rough paths

Motivating this definition: The (truncated) signature

Ss,t (ϕ) =
∞∑
j=0

∫
s<t1<···<tj<t

dϕt1 ⊗ · · · ⊗ dϕtj

A great variety of stochastic processes lift to rough paths e.g.
every Rd valued continuous semi-martingale, a great number
of Gaussian processes, etc. If xt is a semi-martingale we may
define

Xs,t =

∫
s≤τ≤t

xτ ⊗ dxτ

the choice of the stochastic integration matters!

obtain a pathwise approach to stochastic calculus
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The rough path extension theorem

Theorem (Lyons)

Let p ≥ 1 and n ≥ bpc and suppose X : ∆T → T n (V ) is a
multiplicative function with finite p -variation controlled by ω.
Then for every m ≥ bpc+ 1 there exists a unique continuous
function Xm : ∆T → V⊗m such that

(s, t)→ Xs,t =
(

1,X 1
s,t , . . . ,X

bpc
s,t , . . . ,X

m
s,t , . . .

)
∈ T ((V ))

is a multiplicative functional with

∥∥X i
s,t

∥∥ ≤ ω (s, t)i/p

θ (i/p)!

for all i ≥ 1, (s, t) ∈ ∆T .
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The neo-classical inequality

Theorem (Neo-classical inequality, Lyons 98)

For any q ∈ [1,∞), n ∈ N and s, t ≥ 0

1

q2

n∑
i=0

s
i
q t

n−i
q(

i
q

)
!
(
n−i
q

)
!
≤ (s + t)n/q

(n/q)!
.
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Consequences of the a priori estimates

Let ` be the smallest number for which we can satisfy UFG.

Lemma

For any 0 < γ < 1/2, m ≥ 1 there exist random variables
c(γ,m, ω) such that, almost surely∥∥Rm

s,t

∥∥
H−1→H−1 ≤ c (γ,m, ω) |t − s|mγ . (12)∥∥Rm

s,t

∥∥
H1→H1 ≤ c (γ,m, ω) |t − s|mγ . (13)

and finally ∥∥Rm
s,t

∥∥
H−1→H1 ≤ c (γ,m, ω) |t − s|mγ−2` . (14)

for all 0 < s < t < 1.
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Preliminary factorial decay estimates

Lemma

For any 1/3 < γ < 1/2 there exist a constant θ > 0 and random
variables c(γ, ω), almost surely finite, such that

∥∥Rn
s,t

∥∥
H1→H1 ≤

(c (γ, ω) |t − s|)nγ

θ (nγ)!
. (15)

and ∥∥Rn
s,t

∥∥
H−1→H−1 ≤

(c (γ, ω) |t − s|)nγ

θ (nγ)!
(16)

for all n ∈ N, 0 < s < t ≤ 1.
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The main decay estimate

Proposition

Under the assumptions of Theorem 3 there exist constants θ > 0,
γ′ ∈ (1/3, 1/2) , m0 (γ′, `) ∈ N and a random variable c(γ′, ω),
almost surely finite, such that

∥∥Rm
0,t

∥∥
H−1→H1 ≤

(c (γ′, ω) t)mγ
′

θ (mγ′)!
(17)

for all m ≥ m0 and t ∈ (0, 1].
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Proof ideas

pick γ′ ∈ (1/3, γ)

for m ≥ m0 sufficiently large mγ − 2` ≥ mγ′ and∥∥Rm
s,t

∥∥
H−1→H1 ≤ c (γ,m, ω) |t − s|mγ

′
. (18)

m0 depends on γ′ and `

the estimate in (18) with m ∈ [m0, 2m0] serves as inductive
hypothesis

construct the extension for n > 2m0
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Proof ideas continued

Two ways to estimate the operator norm H−1 → H1 of the
composition Rm

s,uR
m
u,t

Suppose m ≥ 2m0

‖R j
s,uR

m−j
u,t ‖H−1→H1

≤ min
(
‖R j

s,u‖H1→H1‖Rm−j
u,t ‖H−1→H1 , ‖R j

s,u‖H−1→H1‖Rm−j
u,t ‖H−1→H−1

)
consequence: for m ≥ 2m0 we can always find a Hölder type
bound for ‖R j

s,uR
m−j
u,t ‖H−1→H1

use the preliminary factorial decay estimates and the inductive
hypothesis
the missing ingredient to apply the arguments of the extension
theorem
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Putting it all together

recall

ρ
Y (ω)
t (ϕ) = Pt(ϕ) +

∞∑
m=1

Rm
0,t (ϕ) (19)

the second, factorially decaying, estimate holds for m ≥ m0

m0 depends on γ′ and the geometry of the problem

the small time asymptotics of these estimates are not sharp

consider a mix of the a priori and the factorially decaying
estimates

cut off depends in an explicit way on the number of
derivatives we are considering

the resulting estimate has sharp small time asymptotics
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Proof of the Lp estimate

follow the arguments of Kusuoka and Stroock

prove an L1 estimate by duality arguments and deduce the
claim using Riesz-Thorin interpolation

‖ϕ‖1 = sup
‖g‖∞ ≤ 1

g ∈ C∞0
(
RN
)
∣∣∣∣∫ ϕg

∣∣∣∣ . (20)

identify the (formal) adjoint of the semi-group Pt
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Proof of the Lp estimate continued

Let

c̃ = div (V0) +
1

2

d∑
j=1

Vj (div (Vj)) +
1

2

d∑
j=1

(div (Vj))2

and

Ṽ0 = −V0 +
1

2

d∑
j=1

Vj (div (Vj)) .

Let X̃t be the diffusion associated to the vector fields(
Ṽ0,V1, . . . ,Vd

)
. Set

P∗t ϕ (x) := E

(
exp

(∫ t

0
c̃
(
X̃ x
s

)
ds

)
ϕ
(
X̃ x
t

))
.
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Theorem (Kusuoka-Stroock)

Let ϕ ∈ C∞0
(
RN
)

and g ∈ C∞0
(
RN
)

then we have∫
Ptϕ (x) g (x) dx =

∫
ϕ (x)P∗t g (x) dx ,

i.e. the semi group P∗t is the (formal) adjoint to Pt .

iteratively use the adjoint relation on each term Rm in the
perturbation expansion

conclude the estimate by applying (appropriately modified
versions of) the forward estimates
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