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Yang–Mills measure

Yang–Mills measure is a probability measure on connections,
motivated by physical gauge theories, given formally by

µT (dω) ∝ e−S(ω)/TDω

where T is a positive parameter, S is the Yang–Mills action

S(ω) =
1

2

∫
M
‖Ω‖2dσ

and Ω is the curvature of the connection ω

Ω(X ,Y ) = dω(X ,Y ) + [ω(X ), ω(Y )].

Here Dω is a formal ‘translation-invariant measure’ on connections.

This has been formulated as a rigorous object when the underlying
space M is two-dimensional.
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For comparison ...

Wiener measure of speed T is a probability measure on paths,
given formally by

µT (dx) ∝ e−E(x)/TDx

where E is the kinetic energy

E (x) =
1

2

∫ 1

0
‖ẋ‖2dt.

Here Dx is a formal ‘translation-invariant measure’ on paths.

But note that

{E = 0} = constant paths, {S = 0} = flat connections

and the second space is much bigger.
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Yang–Mills holonomy fields

I M a compact d = 2 smooth manifold (e.g. the sphere S)

I T ∈ (0,∞), σ a smooth positive probability measure on M

I G a compact Lie group, with Lie algebra g (e.g. U(N), u(N))

I ‖.‖ an invariant metric on g (e.g. ‖g‖2 = N
N∑

i ,j=1

|gij |2)

I P(M) set of rectifiable (continuous) paths in M

I M(P(M),G ) set of multiplicative functions

h : P(M)→ G , hγ1γ2 = hγ2hγ1

where γ1γ2 is the extension of γ1 by γ2

I (pt(g) : t ∈ (0,∞), g ∈ G ) heat kernel on G associated to ‖.‖
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A random process H = (Hγ : γ ∈ P(M)) is a Yang-Mills holonomy
field in G of parameter T if

(a) H(ω) ∈M(P(M),G ) for all ω ∈ Ω

(b) for any discretization (V ,E ,F ) of M

P(He ∈ dhe for all e ∈ E ) ∝
∏
f ∈F

pTσ(f )(h∂f )
∏
e∈E

dhe

(c) H(γn)→ H(γ) in probability whenever γn → γ in 1-variation
with fixed endpoints.

Theorem (Lévy 2003, Driver 1989, Sengupta 1997)

There is a unique probability measure µT on M(P(M),G ) under
which the coordinate process Hγ(h) = hγ is a Yang–Mills
holonomy field in G of parameter T .



For comparison ...

A random process B = (Bt : t ∈ [0, 1]) is a Brownian bridge in G
from 1 to 1 at speed T if

(a) B(ω) ∈ C ([0, 1],G ) for all ω ∈ Ω

(b) for any partition 0 < t1 < · · · < tn−1 < 1, setting g0 = gn = 1
and sk = tk − tk−1, where t0 = 0 and tn = 1,

P(Btk ∈ dgk for all k) ∝
n∏

k=1

pTsk (gkg−1
k−1)

n−1∏
k=1

dgk .

In fact there are many such Brownian bridges embedded in a
Yang–Mills holonomy field (Hγ : γ ∈ P(S)) in G of parameter T ...



Large deviations of the Yang–Mills measure in the
small-area limit

We give M(P(M),G ) the weakest topology making the coordinate
maps continuous. Thus h(n)→ h iff hγ(n)→ hγ for all paths γ.

Theorem (Lévy & N. 2005)

In the limit T → 0, the family of Yang–Mills measures
(µT : T ∈ (0,∞)) satisfies a large deviations principle with speed
T and rate function S.

This makes a rigorous link between the Yang–Mills measure and
the Yang–Mills action similar to that made by Schilder’s theorem
between Wiener measure and the kinetic energy.

The Yang-Mills measures disintegrate over bundle topologies: the
LDP holds also conditional on the bundle topology.
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High-dimensional limit of the Yang–Mills holonomy field

Let (Hγ : γ ∈ P(S)) be a Yang-Mills holonomy field in U(N) of
parameter T . Write L(S) for the set of loops in P(S). Set

tr(g) =
1

N

N∑
i=1

gii .

Theorem
There is a function ΦT : L(S)→ C such that

tr(H`)→ ΦT (`)

in probability as N →∞ for all ` ∈ L(S).

The function ΦT is the master field on the sphere.

Brian Hall has independently obtained such a statement for regular
loops, conditional on its validity for simple loops.



Easy properties of the master field

The master field inherits a number of properties from its finite N
approximations

I ΦT = 1 on constant loops

I ΦT (γ1γ2) = ΦT (γ2γ1) whenever γ1γ2 ∈ L(S)

I ΦT is invariant under reduction: ΦT (`1) = ΦT (`2) whenever
`1 ∼ `2

I ΦT (θ(`)) = ΦT (`) whenever θ is an area-preserving
diffeomorphism of S.

Here, we write `1 ∼ `2 if `1 and `2 have a common reduction `0,
where `0 is a reduction of ` if it may be obtained by cutting finitely
many treelike paths from `.



Makeenko–Migdal equations
Given a regular loop ` and a point v of self-intersection of `, let

(θ(τ, .) : τ ∈ (−ε, ε))

be a Makeenko–Migdal flow at (`, v), that is, a smooth family of
diffeomorphisms of S which preserve the areas of all faces of `,
except for the faces f1, . . . , f4 around v , for which we have

d

dτ
σ(θ(τ, fi )) = (−1)i+1.

Let (Hγ : γ ∈ P(S)) be a Yang-Mills holonomy field in U(N) of
parameter T .

Theorem (Driver, Gabriel, Hall & Kemp 2016)

Set `(τ) = θ(τ, `) and write `v , ˆ̀
v for the loops obtained by

splitting ` at v . Then

d

dτ

∣∣∣∣
τ=0

E(tr(H`(τ))) = TE(tr(H`v ) tr(Hˆ̀v
)).
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Theorem (Driver, Gabriel, Hall & Kemp 2016)

Set `(τ) = θ(τ, `) and write `v , ˆ̀
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d

dτ

∣∣∣∣
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On letting N →∞, we deduce that the master field ΦT satisfies
the Makeenko-Migdal equations

d

dτ

∣∣∣∣
τ=0

ΦT (`(τ)) = T ΦT (`v )ΦT (ˆ̀
v ).



Representation by a discrete Coulomb gas
Let ` ∈ L(S) be a simple loop which divides S into components of
areas a and b. Then, for all m, n ∈ Z,

E(tr(H−m` ) tr(Hn
` )) = E(I am(Λ)I bn (Λ)).

Here Λ is the discrete Coulomb gas in Z given by

P(Λ = λ) ∝
∏

16j<k6N

(λj − λk)2
N∏
j=1

e−Nλ
2
j T/2

where λ runs over increasing sequences (λ1, . . . , λN) in Z.

Also, for a ∈ [0, 1], I a0 (λ) = 1 and, for n ∈ Z \ {0},

I an (λ) =
e−aTn

2/(2N)

2πin

∫
γ

exp{−n(aTz − G
N/n
λ (z))}dz

where γ is a contour around the set [λ1, λN ] + {|z | 6 |n|/N} and

Gα
λ (z) =

α

N

N∑
j=1

Log

(
1 +

1

α(z − λj)

)
.



Large deviations of the Coulomb gas

For µ ∈M1(R), set

IT (µ) =

∫
R2

{
(x2 + y 2)T + log |x − y |

}
µ(dx)µ(dy)

if µ([a, b]) 6 b − a for all intervals [a, b], and set IT (µ) =∞
otherwise.

Theorem (Guionnet & Mäıda 2005)

The laws of the empirical distributions

µΛ =
1

N

N∑
i=1

δΛi

on M1(R) satisfy a large deviations principle with speed N2 and
rate function IT .



Bulk scaling limit of the Coulomb gas

Theorem (Lévy & Mäıda 2015)

The functional IT has a unique minimizer µT on M1(R), which
has a continuous, symmetric, unimodal and compactly supported
density ρT with respect to Lebesgue measure, with ρT (x) ∈ [0, 1]
for all x.

For T ∈ (0, π2],

ρT (x) =
T

2π

√
4

T
− x2, |x | 6 2√

T
.

For T ∈ (π2,∞), the density ρT may be expressed in terms of the
complete elliptic integrals K and E of the first and second kind. In
particular, there is a non-trivial interval around 0 where ρT = 1.



The master field on simple loops

Set

GT (z) =

∫
R

ρT (x)

z − x
dx .

The following limit holds in probability as N →∞ for all n ∈ N

I an (Λ)→ 1

2πin

∫
γ

exp{−n(aTz − GT (z))}dz

=
2

nπ

∫ ∞
0

cosh {n(a− b)Tx/2} sin {nπρT (x)} dx .

So, by the representation formula, for any simple loop ` which
divides S into components of areas a and b, tr(Hn

` ) also converges
in probability, with the same limit.



Characterization of the master field on the sphere

Theorem
The master field ΦT has the following properties, which
characterize it uniquely among functions L(S)→ C:

(a) ΦT is continuous for the 1-variation topology on L(S)

(b) ΦT is invariant under reduction

(c) ΦT satisfies the Makeenko-Migdal equations

(d) for all simple loops `, dividing S into components of areas a
and b, and all n ∈ N,

ΦT (`n) =
2

nπ

∫ ∞
0

cosh {n(a− b)Tx/2} sin {nπρT (x)} dx .



High-dimensional limit of the Brownian bridge in U(N)

There is a unique family of probability measures (νT (t) : t ∈ [0, 1])
on the unit circle T = {|z | = 1} such that, for all n ∈ N,∫

T
znνT (t, dz) =

1

2πin

∫
γ

exp{−n(tTz − GT (z))}dz

For T ∈ (0, π2] and t ∈ [0, 1], consider the random variable

βT (t) = e i
√

Tt(1−t)X , X ∼
√

4− x2

2π
on [−2, 2].

Then βT (t) has law νT (t) on T.

Theorem
Let (Bt : t ∈ [0, 1]) be a Brownian bridge in U(N) from 1 to 1 at
speed T . The empirical distribution of eigenvalues of Bt converges
weakly in probability to νT (t) as N →∞ for all t ∈ [0, 1].


