Yang—Mills measure and the master field on the
sphere
arxiv:1703.10578

James Norris — joint work with Antoine Dahlqvist
University of Cambridge

Durham Symposium on Stochastic Analysis 2017



Yang—Mills measure

Yang—Mills measure is a probability measure on connections,
motivated by physical gauge theories, given formally by

pr(dw) o e 5@/ T py,

where T is a positive parameter, S is the Yang—Mills action
1 2
S)=5 [ 19/%do
M
and Q is the curvature of the connection w
QX, Y) = dw(X, Y) + [w(X), w(Y)].

Here Dw is a formal ‘translation-invariant measure’ on connections.
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where T is a positive parameter, S is the Yang—Mills action
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and Q is the curvature of the connection w
QX,Y)=dw(X,Y)+ [w(X),w(Y)].
Here Dw is a formal ‘translation-invariant measure’ on connections.

This has been formulated as a rigorous object when the underlying
space M is two-dimensional.



For comparison ...

Wiener measure of speed T is a probability measure on paths,
given formally by
pr(dx) o e ECV/ T py

where E is the kinetic energy

1t
ECO =5 [ IklP

Here Dx is a formal ‘translation-invariant measure’ on paths.
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Here Dx is a formal ‘translation-invariant measure’ on paths.
But note that

{E = 0} = constant paths, {S =0} = flat connections

and the second space is much bigger.



Outline

» Yang—Mills holonomy field H : {paths} — U(N)
» Small-area limit T — 0

» High-dimensional limit N — oo
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» High-dimensional limit of the Brownian bridge in U(N)



Yang—Mills holonomy fields

» M a compact d = 2 smooth manifold (e.g. the sphere S)

v

T € (0,00), o a smooth positive probability measure on M
» G a compact Lie group, with Lie algebra g (e.g. U(N), u(N))

v

N
||| an invariant metric on g (e.g. ||g||> = N Z giil?)
ij=1
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» P(M) set of rectifiable (continuous) paths in M
M(P(M), G) set of multiplicative functions

v

h:P(M) = G, hyy, = hoyh

Y21

where v1y, is the extension of v1 by ¥
(pt(g) : t € (0,00),g € G) heat kernel on G associated to ||.||

v



A random process H = (H, : v € P(M)) is a Yang-Mills holonomy
field in G of parameter T if

(a) H(w) € M(P(M),G) for all w € Q
(b) for any discretization (V, E, F) of M

P(He € dhe for all e € E) o< [] progr)(hor) [ dhe
feF ecE

(¢) H(vn) = H(7) in probability whenever 7, — ~ in 1-variation
with fixed endpoints.

Theorem (Lévy 2003, Driver 1989, Sengupta 1997)

There is a unique probability measure pu1 on M(P(M), G) under
which the coordinate process H.(h) = h, is a Yang-Mills
holonomy field in G of parameter T.



For comparison ...

A random process B = (B; : t € [0,1]) is a Brownian bridge in G
from 1 to 1 at speed T if

(a) B(w) € C([0,1], G) for all w € 2
(b) for any partition 0 < t; < --- < th_1 <1, setting go =gn =1
and sy =t — tx_1, where to =0 and t, = 1,

n n—1
P(By, € dgx for all k) o [ [ prs.(grgi’y) [ ] dex-
k=1 k=1

In fact there are many such Brownian bridges embedded in a
Yang-Mills holonomy field (H, : v € P(S)) in G of parameter T ...



Large deviations of the Yang—Mills measure in the
small-area limit

We give M(P(M), G) the weakest topology making the coordinate
maps continuous. Thus h(n) — h iff hy(n) — h,, for all paths ~.

Theorem (Lévy & N. 2005)

In the limit T — 0, the family of Yang—Mills measures
(w1 : T € (0,00)) satisfies a large deviations principle with speed
T and rate function S.



Large deviations of the Yang—Mills measure in the
small-area limit

We give M(P(M), G) the weakest topology making the coordinate
maps continuous. Thus h(n) — h iff hy(n) — h,, for all paths ~.

Theorem (Lévy & N. 2005)

In the limit T — 0, the family of Yang—Mills measures
(ur : T € (0,00)) satisfies a large deviations principle with speed
T and rate function S.

This makes a rigorous link between the Yang—Mills measure and
the Yang—Mills action similar to that made by Schilder’s theorem
between Wiener measure and the kinetic energy.

The Yang-Mills measures disintegrate over bundle topologies: the
LDP holds also conditional on the bundle topology.



High-dimensional limit of the Yang—Mills holonomy field

Let (Hy : v € P(S)) be a Yang-Mills holonomy field in U(N) of
parameter T. Write L(S) for the set of loops in P(S). Set

1N
tr(g) = ;gﬁ-
Theorem
There is a function ®1 : L(S) — C such that
tr(Hy) — o71(¢)
in probability as N — oo for all £ € L(S).

The function ® 1 is the master field on the sphere.

Brian Hall has independently obtained such a statement for regular
loops, conditional on its validity for simple loops.



Easy properties of the master field

The master field inherits a number of properties from its finite N
approximations

» ®1 =1 on constant loops
> &7(7172) = ®1(7271) whenever 172 € L(S)
» O is invariant under reduction: ®1(¢1) = ®1(¢2) whenever
by ~ L
» O1(0(¢)) = ®1(¢) whenever 0 is an area-preserving
diffeomorphism of S.
Here, we write ¢1 ~ £ if £1 and ¢ have a common reduction £,
where /g is a reduction of £ if it may be obtained by cutting finitely
many treelike paths from /.



Makeenko—Migdal equations

Given a regular loop ¢ and a point v of self-intersection of /¢, let

O(7,.): 7 € (—¢,¢))

be a Makeenko—Migdal flow at (¢, v), that is, a smooth family of
diffeomorphisms of S which preserve the areas of all faces of /,
except for the faces fi, ..., f; around v, for which we have

d :
Zo(0(r. ) = (-1)"*L.
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Let (Hy : v € P(S)) be a Yang-Mills holonomy field in U(N) of
parameter T.

Theorem (Driver, Gabriel, Hall & Kemp 2016)
Set {(1) = 0(r,£) and write {,,{, for the loops obtained by
splitting £ at v. Then

d

gr | Blir(Hey) = TEGr(H) (M)



Makeenko—Migdal equations

Theorem (Driver, Gabriel, Hall & Kemp 2016)

Set () = 0(r,£) and write £, ¢, for the loops obtained by
splitting £ at v. Then

d

dr

OE(tr(He(T))) = TE(tr(H, ) tr(Hy,))-

T=

On letting N — oo, we deduce that the master field ¢ 1 satisfies
the Makeenko-Migdal equations

d

| o) =Tor(t)or(l).

=0




Representation by a discrete Coulomb gas
Let ¢ € L(S) be a simple loop which divides S into components of
areas a and b. Then, for all m,n € Z,

E(tr(H, ™) tr(H)) = E(I5(A)17 (A))-
Here A is the discrete Coulomb gas in Z given by

N
PA=A) o J] -2 [[e ™72
1<j<k<N j=1
where A runs over increasing sequences (A1, ..., Ay) in Z.

Also, for a € [0,1], I¢(\) =1 and, for n € Z\ {0},
e—aTn2/(2N) N

120\ = /exp{—n(aTz —6M(2))yde

v

2min

where v is a contour around the set [A1, An] + {|z] < |n|/N} and

N
o o« 1



Large deviations of the Coulomb gas
For u € M1(R), set
Ir(u) = /RZ {02+ y*)T +log |x — y|} u(dx)u(dy)

if u([a, b]) < b — a for all intervals [a, b], and set Z7(u) = oo
otherwise.

Theorem (Guionnet & Maida 2005)
The laws of the empirical distributions

LN
pA = Z oA,
i—1

on M1 (R) satisfy a large deviations principle with speed N> and
rate function It.

=|



Bulk scaling limit of the Coulomb gas

Theorem (Lévy & Maida 2015)

The functional Zt has a unique minimizer 1 on Mi(R), which
has a continuous, symmetric, unimodal and compactly supported
density pt with respect to Lebesgue measure, with p1(x) € [0, 1]
for all x.

For T € (0,7?],
T /4 2

pr(x) = o\ = =X, x| < —=

2V T VT

For T € (w2, 00), the density pr may be expressed in terms of the
complete elliptic integrals K and E of the first and second kind. In
particular, there is a non-trivial interval around 0 where pt = 1.



The master field on simple loops

Set

zZ— X

GT(z):/RpT(X)dx.

The following limit holds in probability as N — oo for all n € N
1
I2(N) — 2m,ﬂ/yexp{—n(aTz — G7(2))}dz

_ % /OO cosh {n(a — b) Tx/2} sin {nmp7(x)} dx.
0

So, by the representation formula, for any simple loop ¢ which
divides S into components of areas a and b, tr(H]) also converges
in probability, with the same limit.



Characterization of the master field on the sphere

Theorem

The master field 1 has the following properties, which
characterize it uniquely among functions L(S) — C:

(a) @1 is continuous for the 1-variation topology on L(S)
(b) &7 is invariant under reduction

(c) &7 satisfies the Makeenko-Migdal equations

(d) for all simple loops ¢, dividing S into components of areas a
and b, and all n € N,

(M) = 2 /OOO cosh {n(a — b) Tx/2} sin {nmpr(x)} dx.

nm



High-dimensional limit of the Brownian bridge in U(N)

There is a unique family of probability measures (v7(t) : t € [0, 1])
on the unit circle T = {|z| = 1} such that, for all n € N,

n 1
/Tz vr(t,dz) = 27Tl_n/vexp{—n(th — Gr(2))}dz
For T € (0,72%] and t € [0, 1], consider the random variable
, VA — 2
Br(t) = eVTEA=DX x| X on [-2,2].

’ 21

Then B7(t) has law v7(t) on T.

Theorem

Let (B: : t € [0,1]) be a Brownian bridge in U(N) from 1 to 1 at
speed T. The empirical distribution of eigenvalues of B; converges
weakly in probability to v (t) as N — oo for all t € [0, 1].



