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Linear time-invariant system

r = Ax + Bu
y=Cx
Gramians

WC:/ eAt BBT eA" t gy W0:/ eATtC’TC’eAtdt
0 0

Instead of solving Lyapunov equations, approximate the Gramians
by , from snapshots of the impulse response .
z(ty) = e*** B and adjoint impulse response z(t;) = e *C7

Balanced POD

This procedure looks a lot like POD, but get two sets of modes
that are bi-orthogonal, and one does a Petrov-Galerkin projection
instead of a Galerkin projection

Moore, IEEE TAC, 198l
Rowley, Int |. Bifurcation & Chaos, 2005



Example: linearized channel flow in a periodic box

Consider development of small perturbations

Stable system, but large transient growth (non-normal) {

Approach

DNS, Re = 2000, 32 x 65 x 32 grid, 133,120 states "
initial perturbation

Try to capture linear dynamics with a reduced-order model (vertical velocity)

Stable system, large transient growth _
4 . g . g POD eigenvalues
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llak & Rowley, Physics of Fluids, 2008



POD modes 1-3

KE growth

POD model performance

Standard POD

10" (o

500 1000 1500 ] 2000 2500
time

® 5-order model with modes 1,2,3,10,17 much better than 5-mode
model with modes |-5.

Conclusion: some low-energy POD modes are
very important for the system dynamics.

Can’t naively use just the most energetic ones.

POD modes 4-5
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What went wrong?

The most energetic states are not always the most important

Some states that have small can nevertheless have a large
on the flow

This corresponds to controllability/observability

The most controllable states have large energy
The most observable states have large sensitivity

Balanced truncation strikes a balance between these

Determine a change of coordinates in which the most controllable
states are also the most observable states

Balanced POD is an approximation of balanced truncation that is
tractable for high-dimensional systems
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Three-mode BPOD model excellent at capturing the energy growth

Rank 8 BPOD model sufficient to correctly capture the dynamics of
the first five POD modes, compared to at least 23 POD modes

Explanation: BPOD weights modes by their observability, or dynamical

Importance, not just energy
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POD poorly captures low-pass behavior, spurious peaks

BPOD models more “robust” than POD (no spurious lightly-

damped modes)
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POD can perform poorly, even for a system for
which 5 modes capture 99% of the energy

This bad behavior is typical for with
large transient energy growth (common in shear flows)

Reason: can be strongly
(have a large effect on dynamics)

Models that balance controllability and observability
perform well

Rowley and Dawson. Model Reduction for Flow Analysis and Control.
Annual Reviews of Fluid Mechanics 49:387—417,2017
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Dynamic Mode Decomposition (DMD) defined by an
algorithm:

Collect snapshots of data X, X1,Xo,. ..
Assume the data are linearly related:

Xg+1 = AXg

Use Krylov-subspace algorithm to approximate eigenvalues and
eigenvectors of A (without ever determining A explicitly:
know X0, AX(), ce ,An_lXo)

Eigenvectors of A are called “DMD modes”

Hitch: typically the dynamics are ,and the linear
assumption does not hold

P. Schmid, APS 2008; |JFM, 2010



Example: jet in crossflow

® Linearize a jet in crossflow about an unstable equilibrium

R€56< = 165
V}et/Uoo =3

Instantaneous snapshot

Unstable equilibrium

® Compute global modes, compare frequencies with observed
frequencies in shear layer and near-wall fluctuations

Frequency

— mismatch

Observec Global mode
Shear layer St=0.14 St =0.169
Near wall St =0.0174 St =0.043 <

[Bagheri, Schlatter, Schmid, Henningson, |FM 2009]

|3



Dynamic Mode Decomposition for jet in crossflow

¢ DMD modes capture relevant
structures and frequencies

¢ High-frequency mode captures
structures in the shear layer

® Low-frequency mode captures
near-wall structures associated
with horseshoe vortex

St =0.017
Rowley, Mezic, Bagheri, Schlatter, and Henningson, |FM, 2009 14




Comparison with Proper Orthogonal Decomposition

® POD modes

® Show similar spatial structures to M‘
DMD modes

® Time coefficients of POD modes .t
contain multiple frequencies W‘ o

® DMD mode coefficients contain, by (0
construction, a single frequency
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Ficurk 19, The temporal behavior of POD modes are show in terms of the PCD ceefficients.
(a) POD coefficients of the first pair, (b) second pair and (c) third pzir of modes The power
spectrum of the sigrals in (a,b,c) is shown with the same color,




The linearization did not capture the right behavior

The DMD modes did capture the right frequencies, and
the structures look physically reasonable

But DMD was based on the assumption the flow was
linear!

This worked because there was a that fit
the observed behavior (oscillations at a few frequencies)

Can DMD say anything about truly systems!

To answer this, we look at something called the



Dynamic Mode Decomposition (DMD)

Nonlinear systems and the Koopman operator
Extended DMD for nonlinear systems



The Koopman operator

Infinite-dimensional linear operator that completely describes the
behavior of a nonlinear system

|dea: trade nonlinearity for increased system dimension

Two key features

Eigenfunctions of the Koopman operator determine coordinates in
which a system is

Eigenfunctions separate from

(Extended) DMD

provides an algorithm for approximating Koopman eigenvalues/
eigenfunctions
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Consider a nonlinear system (discrete time)
Tir1 = 1 (k) 1 € X
The Koopman operator U acts on of x:
U:L*(X)— L*(X)
Uf(z) = f(T(z))

It is linear:
U(af + Bg)(z) = aU f(x) + BUg(x)

Suppose U has an eigenfunction Uy = A\p
and let z = ¢(x)

Then z evolves
21 = P(Trt1) = o(T(zk)) = Up(ar) = Ap(ar) = Az

Koopman, PNAS, 1931
Cornfeld, Sinai, Fomin, Ergodic Theory, 1982



Consider the map

X1 N )\331
T2 pxe + (A — p)ex?

This system has an equilibrium at the origin, and invariant manifolds

given by 1 =0 and 22 = caj%

Koopman eigenvalues are A, p
Ty = Cxy with eigenfunctions

\/ . oA (X) = 11

In the coordinates (21, 22) = (21,12 — cx?) , the dynamics are linear:

~

21 AZq
. — - Tu, Rowley, et al, JCD, 2014
> =2 Rowley & Dawson, ARFM, 2017 20



Approximate the Koopman operator directly

For Extended DMD, the user supplies:

A set of observables ©; € L*(X) (basis functions)
Values of the observables at sample points x; and T'(x;)

May be viewed as a projection of the Koopman operator
onto a subspace spanned by the observables ¥;

Y1(x1) o Y1(Xn) | U1 (T(x1)) - i(T(xn))
X=| z XF=1 '

P(x1) o W), Pn(T(x1)) (T (%))

Let A = X7 XT. Then A is a projection of U onto subspace

spanned by {v;}

Note: if the observables are the components of the state, this is
regular DMD

21



Recall our 2D example:
Z1 N )\21
29 nze + (A% — p)ez?

This system has an equilibrium at the origin, and invariant manifolds given
by zi = 0 and z2 = cz/?

1 %2 Koopman eigenvalues are A\, p
29 = 23 with eigenfunctions
N P2
N _\\___// 2 QO)\(Z) = 21

In addition, ¥) is an eigenfunction with eigenvalue A" the product YxP, is
;an eigenfunction with eigenvalue \u , etc.

22



Apply DMD to this example, with initial states z given by (I,1), (5,5),
(-1,1), (-5,5), with A = 0.9, 4 = 0.5

Case |:observable ¥ (z) = (21, 22)
If ¢ = 0, so that the system is linear, then DMD eigenvalues are 0.9
and 0.5: good!

If ¢ = |, however, then DMD eigenvalues are 0.9 and 2.002.
These do not correspond to Koopman eigenvalues, and one might
even presume the equilibrium is unstable!

Case 2: observable 1(z) = (21, 22, 27)
The EDMD eigenvalues are 0.9,0.5,and 0.81 = 0.92, which agree

with the Koopman eigenvalues.

Main point: for a nonlinear system, DMD can give
; erroneous results. Need a richer set of "observables."




Example: a nonlinear ODE

Consider the Duffing equation

P40+ x(z®—1)=0

Compute EDMD

o 6 =0.5, 103 trajectories with || samples each

® Basis functions: 1000 radial basis functions (thin plate splines)
A0
A1

10~ eigenfunction is the constant function

1 n—3 : : : :
10 eigenfunction reveals basins of attraction

2 I 0.050
1= 0.025
> -
0.000
_]_ —
—0.025
—2 I I

—2 —1 2

SESES
—
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Dynamics in each basin

Eigenfunctions determine coordinates in which dynamics

in each basin are linear
Ao =

—0.237 + 1.387¢

0.020

0.015

0.010

0.005

0.000

25



Outline
® Balanced POD

® Approximate balanced truncation using empirical Gramians
® Example: linearized channel flow

® Dynamic Mode Decomposition (DMD)

Overview of DMD

Nonlinear systems and the Koopman operator
Extended DMD for nonlinear systems

Ergodic theory: separating structure from randomness

26



Many physical problems exhibit some “structure” amidst
apparent “‘randomness’’:

For instance, small-scale turbulence on top of a regular vortex
shedding

There is little hope of a low-order model capturing details
of the “randomness”

Goal: determine a low-order model for the “structured”
part, ighore the “random” part.

27



The Koopman operator provides a way to separate
“structure” from “randomness”

Look at maps x+— T(x) x€]0,1]
Two examples:
Tx)=xz+a (mod1)
T(x)=2x (mod 1)

28



Consider the map

r—T(x) x€]|0,1]

T(x)=x4+a (mod1)

o irrational

Identify |0, 1] with the unit circle:

271X

X = €

The system is

The only are sets of full measure (or zero measure)

The dynamics are simple and “structured”

29



Now consider the map 226

T(x)=2x (mod 1)

7 4
Fixed pointat «* = 0 \

Some points go to the fixed point: ‘3 & 4
s 220

3
Period 2 orbit: \\ 8

1 2
3 3

Wl
N

Period 3 orbit:

1 2 4 1
A A A A

Any irrational number: dense orbit

This map is also
(the only invariant sets have measure zero or one)

? However, the dynamics are not at all “structured”

30



Now consider the map 5

I
T(x)=2x (mod 1) g \
\ 4
The map is
The only invariant sets have 3¢

Measure Zzero or one

I

The map is also “

Any subset of finite measure is “evenly spread” 2
around the circle

Has all the hallmarks of chaos

Countably infinite number of periodic orbits, all unstable
A dense orbit
Nearby points spread exponentially

Symbolic dynamics: T corresponds to shifting the decimal to the
? right in the binary expansion of x:e.g., x = 0.01101010000100. ..

31



~

Koopman operator U acts on functions f ¢ L*([0, 1])

Uf(z) = f(T'(x))

Ergodicity and mixing are spectral properties of U:

T is iff any function f that satisfies U f = f is a constant (a.e.)

T is (weak)
First example:

U has an

iff U has no eigenfunctions besides constants

T(x)=z+a (mod1)

p(xr) = e2™T  \with g2

(Up)(z) = (T (z)) = > = 2™%p(g)

Dynamics are “structured”

Second example: | T(z) =2z (mod 1)

U has

besides the constant function

The dynamics are purely “chaotic’: there is no structure

32



Plan:

Use EDMD to approximate the Koopman operator from data

Eigenvalues and corresponding eigenfunctions indicate
“structured” components of dynamics

Question: what will happen to the continuous spectrum? Will we
be able to tell the difference between “true” eigenvalues and
spurious ones!

33



Use EDMD to separate structure from randomness

® Example: system with mixed spectrum
T(z,y) = (z +a,3y) (mod 1)
® x-coordinate is “structured”, y-coordinate is “mixing”’

2mikx

® Eigenfunctions o (x,y) =¢€ eigenvalues e?™** k€ Z

® Nonlinear coordinate change to make more interesting

~

T =g 1Tg g(z,y) = (z + 3 (1 + cos 2my), y)
Zp1 Z(p109)

1

0.6

0.6
>

0.4

0.2

34



Apply EDMD to this example

. . . 2mi(z+jy) VY
Fourier basis functions {e m(xﬂy)}j:_N

Sample 1000 random points

The “true” eigenvalue clearly stands out

The eigenvalue and eigenfunction are close to the correct value
for N = 3,and nearly identical for N = 5.

Eigenvalue Eigenfunction
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Apply DMD to separated flow past a flat plate

(4

® No forcing

.
® Forcing at f* = 4.7 ‘3

® Forcingatf" =6.4

g N

36



DMD modes in flow past a flat plate

No forcing Forcing at f* = 4.7

f* = 10.56 oo 1416

37



Balanced models

Many shear flows are non-normal: large transient energy growth.

For these systems, POD typically performs poorly; balanced
models perform well

Dynamic mode decomposition

Fit linear dynamics to data

For nonlinear systems, extended DMD approximates the
Koopman operator

Eigenfunctions of the Koopman operator determine coordinates in
which a system is linear, and can separate structured from random

components

Many unanswered questions

How to choose good basis functions (observables) for EDMD?
How to distinguish “true” eigenvalues from “spurious” ones!?

-High-dimensional nonlinear systems!?

38
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