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Two-player combinatorial games (deterministic, perfect information)



Directed game on Zd

Lattice Zd with directed edges.

A token starts at some site x . The players take turns; a turn consists of
moving the token along a directed edge.

Let p, q ≥ 0 with p + q < 1. Each site is forbidden with probability p, a
target with probability q, and open with probability 1− p − q
(independently for different sites).

A player moving to a forbidden site loses immediately. A player moving
to a target site wins immediately.



d = 2. Outcomes of the game on the region {x ∈ Z2
+ : x1 + x2 ≤ 200},

declaring a draw if the token reaches the diagonal x1 + x2 = 200, with
q = 0 and p = 0.05, 0.1, 0.2. Colours indicate the outcome when the
game is started from that site: first player win (blue); first player loss
(green); draw (red). Forbidden sites are black.

We could also consider boundary conditions corresponding to “next
player win” or “next player lose”. A site in the interior is a “draw” under
“draw boundary conditions” (as above) if its value is different under the
two extreme boundary conditions.



Classify open sites as “win”, “loss” or “draw” according to the outcome
of the game started from the site (from the perspective of the starting
player).

In addition count a forbidden site as a win, and a target site as a loss.

Encoding of sites:

η(x) =


“0” if x is a win (or forbidden);

“1” if x is a loss (or a target);

“?” if x is a draw.



Recurrences:

η(x) =


0 if x forbidden, or if x open and η(y) = 1 for some y ∈ Out(x);

1 if x is a target, or if x open and η(y) = 0 for all y ∈ Out(x);

? otherwise.

Let d = 2. Let Sk be the set {x = (x1, x2) ∈ Z2 : x1 + x2 = k} (a
NW-SE diagonal of Z2). The recursion gives the values {η(x), x ∈ Sk} in
terms of the values {η(x), x ∈ Sk+1} together with the information about
the types of the vertices in Sk .

We can regard the configurations on successive diagonals Sk , as k
decreases, as states of a 1D probabilistic cellular automaton (PCA) at
successive times. Specifically, set

ηt(n) = η
(
(−t − n, n)

)
.

Then ηt , t ∈ Z evolves as a PCA.



PCA Ap,q with alphabet {0, 1}:

0 0 0

1

1

1

0

1

0 with probability p

1 with probability 1− p 1 with probability q

0 with probability 1− q

PCA Fp,q with alphabet {0, ?, 1} (with ∗ denoting an arbitrary symbol):

0 0 1

∗
∗
1

?

0

?

?

?

0

0 with probability p

1 with probability 1− p

0 with probability 1− q

1 with probability q

1 with probability q

? with probability 1− p− q

0 with probability p

Fp,q is the envelope of the PCA Ap,q.



PCA Ap,q with alphabet {0, 1}:

0 0 0

1

1

1

0

1

0 with probability p

1 with probability 1− p 1 with probability q

0 with probability 1− q

Formally, let Ap,q be the operator on the set of distributions on {0, 1}Z
representing the action of the PCA; if µ is the distribution of a
configuration in {0, 1}Z, then Ap,qµ is the distribution of the
configuration obtained by performing one update step of the PCA. A
stationary distribution of a PCA G is a distribution µ such that Gµ = µ.

A PCA is ergodic if it has a unique stationary distribution and if from any
initial distribution, the iterates of the PCA converge to that stationary
distribution.

Question (e.g. Toom, Vasilyev Stavskaya, Mityushin, Kurdyumov and
Pirogov, 1990): Is Ap,q ergodic for all p, q? (Cf. “positive rates”).



Proposition
For all p, q ∈ (0, 1) with 0 < p + q < 1, the following are equivalent:

(i) Ap,q is ergodic;

(ii) Fp,q is ergodic;

(iii) The percolation game has probability 0 of a draw.

Proof is quite straightforward using the fact that Fp,q is monotonic
decreasing with respect to the ordering 0 <? < 1, and monotonic
increasing with respect to the partial order given by 0 <? and 1 <?.

Theorem
For all p, q ∈ (0, 1) with 0 < p + q < 1, (i), (ii) and (iii) above hold.

Approach: show that Fp,q has no translation invariant stationary
distribution with positive probability of a ? symbol. (Then (iii) follows.)
To do this we introduce a local weighting on instances of ?; we show that
if the average weight per site in a stationary distribution is positive, then
it should be strictly decreasing under the action of Fp,q.



Hard-core model

The case q = 0 is closely related to the hard-core model.

Take a finite undirected graph with vertex set W and some λ > 0. The
hard-core model on W with activity λ is given by a probability measure
on {0, 1}W defined by

νλ
(
(η(w),w ∈W )

)
∝

{
λ
∑
η(w) if ηvηw = 0 for all v ∼ w

0 if ηv = ηw = 1 for some v ∼ w .
(†)

State 1 represents an “occupied site” and state 0 represents an “empty
site”. The form of the RHS ensures that no two neighbours are both
occupied (the set of occupied sites forms an independent set).

The measure νλ satisfies, for all v ∈W ,

νλ
(
η(v) = 1

∣∣(η(w)w 6=v )
)

=

{
λ

1+λ if η(w) = 0 for all w ∼ v

0 if η(w) = 1 for some w ∼ v .
(*)

For W infinite, (†) no longer works, but we can consider (*). A measure
satisfying (*) is called a Gibbs measure for the hard-core model on W .



Hard-core model cont.

Take for example Zd , d ≥ 2. Then:

I for λ sufficiently small, there is a unique Gibbs measure;

I for λ sufficiently large, there are multiple Gibbs measures.



Glauber dynamics

Hard-core measure condition: for v ∈W ,

νλ
(
η(v) = 1

∣∣(η(w)w 6=v )
)

=

{
λ

1+λ if η(w) = 0 for all w ∼ v

0 if η(w) = 1 for some w ∼ v .
(*)

We can resample the value at v ∈W according to (*).

If a measure is invariant under all such resamplings, it is a hard-core
Gibbs measure.

We can also extend to resample the values at several different sites
simultaneously, as long as no two of them are neighbours. For example, if
the graph is bipartite, we can resample at all the vertices in one class of
the bipartition.



Doubling graph

The state of the PCA Ap,0 at a single time corresponds to the values
{η(x), x ∈ Sk} where Sk = {x : x1 + x2 = k}.

We can consider a doubling graph D corresponding to two successive
lines Sk+1 and Sk ; then D is isomorphic to Z and is bipartite. Suppose
we set p = 1/(1 + λ). Then the procedure of obtaining the values on Sk
given those on Sk+1 is identical to the procedure of carrying out a
hard-core Glauber update on the sites of Sk ⊂ D, while keeping the
values on Sk+1 ⊂ D fixed.

Next we can obtain the values on Sk−1 from those on Sk ; this then
corresponds to carrying out the Glauber update on the other half of D.
In this way the PCA evolution corresponds to alternating updates on the
two parts of D.



The hard-core model on D = Z is very well-behaved! It has a unique
Gibbs measure for all λ. This can be used to show ergodicity of Ap,0.

Moreover the Gibbs measure is Markovian (in space), with transition
matrix

P =

(
p0,0 p0,1
p1,0 p1,1

)
=


2−p−

√
p(4−3p)

2(1−p)2
2p2−3p+

√
p(4−3p)

2(1−p)2

−p+
√

p(4−3p)
2(1−p)

2−p−
√

p(4−3p)
2(1−p)

 .

From this we can derive, for example, the exact probability of a

first-player win in the game: α(p) =
1
2

(
1+
√

p/(4−3p)−2p
)

1−p :

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6

p



Notice that if we had multiple Gibbs measures for the hard-core model on
D = Z, then we could conclude that there were multiple two-periodic
distributions for Ap,0.

This would contradict the ergodicity of Ap,0. However, this idea is useful
for some higher-dimensional models, using an analogous “dimension
reduction” idea which relates the game on a d-dimensional graph to the
hard-core model on an appropriate (d − 1)-dimensional graph.

This yields positive probability of a draw for some games in dimension
d ≥ 3. For this we extend the idea of a doubling graph.



Let G be directed graph. Suppose there is a partition (Sk : k ∈ Z) of the
vertex set V of G , and an integer m ≥ 2, such that the following
conditions hold:

(A1) For all x ∈ Sk , we have Out(x) ⊂ Sk+1 ∪ · · · ∪ Sk+m−1.

(A2) There is a graph automorphism φ of G that maps Sk to Sk+m for
every k, and such that Out(x) = In(φ(x)) for all x .

Then let Dk be the graph with vertex set Sk ∪ · · · ∪ Sk+m−1, with an
undirected edge (x , y) whenever (x , y) is a (directed) edge of V . Under
conditions (A1) and (A2), the graphs Dk , k ∈ Z are isomorphic to each
other; write D for a graph isomorphic to any of them.

Theorem
Suppose that the directed graph G satisfies (A1) and (A2). If there exist
multiple Gibbs measures for the hard-core model on D with activity λ,
then draws occur in the percolation game on G with p = 1/(1 + λ) with
positive probability.



(A1) For all x ∈ Sk , we have Out(x) ⊂ Sk+1 ∪ · · · ∪ Sk+m−1.

(A2) There is a graph automorphism φ of G that maps Sk to Sk+m for
every k, and such that Out(x) = In(φ(x)) for all x .

Example: Consider Zd with Out(x) = {x ± ei + ed : 1 ≤ i ≤ d − 1}.
Here |Out(x)| = 2(d − 1). Since any step preserves parity, it is natural to
restrict to the set of even sites Zd

even := {x ∈ Zd :
∑

xi is even}.

In two dimensions, the game is isomorphic to the original game on Z2.
For general d , conditions (A1) and (A2) hold with m = 2 if we set
Sk = {x ∈ Zd

even : xd = k} and φ(x) = x + 2ed .

To obtain the doubling graph, consider Dk = Sk ∪ Sk+1 with an edge
between x ∈ Sk and y ∈ Sk+1 whenever y ∈ Out(x). This gives a graph
isomorphic to the standard cubic lattice Zd−1.

If there exist multiple Gibbs distributions for the hard-core model on
Zd−1 with activity λ, then the percolation game on G with
p = 1/(1 + λ) has positive probability of a draw from any vertex.



Example: Zd with Out(x) = {x ± ei + ed : 1 ≤ i ≤ d − 1}. Here
|Out(x)| = 2(d − 1). We can take m = 2, φ(x) = x + 2ed , and obtain a
doubling graph D isomorphic to the standard cubic lattice Zd−1.

If there exist multiple Gibbs distributions for the hard-core model on
Zd−1 with activity λ, then the percolation game on G with
p = 1/(1 + λ) has positive probability of a draw from any vertex.

Example: Out(x) = {x ± e1 ± e2 · · · ± ed−1 + ed}, so |Out(x)| = 2d−1.
Taking m = 2 and φ(x) = x + 2ed , then D is the body-centred cubic
lattice in d − 1 dimensions.

Example: Out(x) =
{
x +

∑
i∈S ei : ∅ ⊂ S ⊂ {1, . . . , d}

}
. (A move

increments at least one, and not all, coordinates by 1.) Then
|Out(x)| = 2d − 2. With m = d and φ(x) = x + e1 + · · ·+ ed , the graph
D is (d − 1)-dimensional and d-partite. For d = 3 it is the triangular
lattice.

Other examples lead to the hexagonal lattice and the diamond cubic
graph.



Example: Zd with Out(x) = {x ± ei + ed : 1 ≤ i ≤ d − 1}. Here
|Out(x)| = 2(d − 1). We can take m = 2, φ(x) = x + 2ed , and obtain a
doubling graph D isomorphic to the standard cubic lattice Zd−1.

Example: Out(x) = {x ± e1 ± e2 · · · ± ed−1 + ed}, so |Out(x)| = 2d−1.
Taking m = 2 and φ(x) = x + 2ed , then D is the body-centred cubic
lattice in d − 1 dimensions.

Example: Out(x) =
{
x +

∑
i∈S ei : ∅ ⊂ S ⊂ {1, . . . , d}

}
. (A move

increments at least one, and not all, coordinates by 1.) Then
|Out(x)| = 2d − 2. With m = d and φ(x) = x + e1 + · · ·+ ed , the graph
D is (d − 1)-dimensional and d-partite. For d = 3 it is the triangular
lattice.

Non-example!!: standard oriented Zd for d ≥ 3, that is,
Out(x) = {x + e1, x + e2, . . . , x + ed}.



When D is any of these graphs (and in all dimensions for the lower two)
a contour argument can be used to show that there are multiple
hard-core Gibbs measures. Dobrushin (’65), Heilmann (’74), Runnels
(’75), Galvin + Kahn (’04).



Open questions

I

I How to prove existence of draws without link to hard-core model?
e.g. standard oriented Zd , d ≥ 3? or q > 0?

I How to prove non-existence of draws in two dimensions when there
is no similar two-type cellular automaton structure (e.g. certain
misère games).

I When draws are possible, is there monotonicity in p and q? (cf.
hard-core model)

I Extending the local weighting method to give ergodicity for a more
general class of two-dimensional PCA.



Games on undirected lattices

Two-player game on the undirected graph Zd with nearest-neighbour
edges.

Remove each vertex independently with some probability p.

A token starts from a given vertex v . A turn consists of moving the
token along an edge of the graph to a new vertex which has not been
visited before. A player that cannot move loses the game.

When does the game terminate with optimal play w.p.1, and when is
there positive probability of a draw?



Outcomes of the game on a square of side-length n = 50, with p = 0.15,
0.2 and 0.25 – the game is declared a draw if the token leaves the square.
Closed vertices are outlined in black. Wins for “even player” are blue and
wins for “odd player” are red. Draws are white.



The same for n = 400, with p = q = 0.05, 0.1, 0.15 and 0.2.





Some results in Basu, Holroyd, M. and Wästlund (2016), but mostly for
asymmetric cases where the closure probability is different for odd and
even sites.

Interesting connections to bootstrap percolation processes, and to
combinatorial questions involving maximum-size matchings.

Conjecture (for the symmetric case): perhaps draws occur for d ≥ 3 but
not for d = 2, as in directed case?



Games on Galton-Watson trees

I Probabilities of win/loss/draw can be expressed via generating
function recursions

I Interesting examples of continuous and discontinuous phase
transitions (compare cases of survival of a branching processes, and
existence of complete binary tree including the root within the
process).

I Relation to leaf-stripping processses (e.g. Karp-Sipser algorithm for
finding large matchings or independent sets in a graph).

I Relation to endogeny of recursive distributional equations, and to
local / non-local behaviour in optimisation problems. Games on
other locally tree-like “boards”, e.g. sparse random graphs.
(Erdős-Renyi, configuration model, ...).


