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Gaussian processes on trees

Motivation

Spin glasses: What is the structure of ground states for (mean field)
spin glasses?

Extreme value theory: What are the extreme values and the
extremal process of dependent random processes?

Spatial branching processes: Describe the cloud of spatial
branching processes, in particular near their propagation front!

Reaction diffusion equations: Characterise convergence to
travelling wave solutions in certain non-linear pdes!
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Gaussian processes on trees

Gaussian processes labelled by trees

A time-homogeneous tree. Label
individuals at time t as
i1(t), . . . , in(t)(t).

Canonical tree-distance:
d(i`(t), ik(t)) ≡ time of most recent
common ancestor of i`(t) and ik(t)

For fixed time horizon t, define Gaussian
process, (x tk(s), k ≤ n(t), s ≤ t), with
covariance

Ex tk(r)x t` (s) = tA(t−1d(ik(r), i`(s)))

for A : [0, 1]→ [0, 1], increasing.
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Gaussian processes on trees

Examples

Binary tree, branching at integer times

A(x) = x : Branching random walk [Harris ’63]

A step function: Generalised Random Energy models (GREM)
[Gardner-Derrida ’82]

Special case A(x) = 0, x < 1, A(1) = 1: Random energy model
(REM), i.e. n(t) iid N (0, t) r.v.s

Supercritical Galton-Watson tree

A(x) = x : Branching Brownian motion (BBM) [Moyal ’62]

General A: variable speed BBM [Derrida-Spohn ’88, Fang-Zeitouni ’12]
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Gaussian processes on trees

Extreme value theory

In the class of models we have described, we are interested in three main
questions:

How big is M(t)/t ≡ maxk≤n(t) xk(t)/t, as t ↑ ∞?

Is there a rescaling ut(x), such that

P (M(t) ≤ ut(x))→ F (x)?

Is there a limiting extremal process, P, such that∑
k≤n(t)

δu−1
t (xk (t)) → P?
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Gaussian processes on trees

Reference: The REMs

If xk(t) are just n(t) iid Gaussian rv’s with variance t:

M(t)/t →
√

2 limt↑∞ t−1 ln n(t) ≡
√

2r

With ut(x) = t
√

2r − ln(rt)

2
√

2r
+ x√

r
+ ln(n(t)/En(t))√

2r
, where n(t)/En(t)→ RV ,

a.s.

P (M(t) ≤ ut(x))→ exp
(
− 1

4π e
−
√

2x
)

∑
k≤n(t)

δu−1
t (xk (t)) → PPP( 1

4π e
−
√

2xdx)

where PPP(µ) : Poisson Point Process with intensity µ.
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Gaussian processes on trees

Universality 1: the order of the maximum

Order of the maximum is function of the growth rate of n(t) and concave
hull Ā of the function A:

lim
t→∞

t−1M(t) =
√

2 lim
t→∞

t−1 ln n(t)

∫ 1

0

√
d

ds
Ā(s)ds

[B-Kurkova 01, for binary tree, Fang-Zeitouni 11, GW tree]

In particular, as long as A(s) ≤ s for all s ≤ 1, then Ā(s) = s, and the
order of the maximum is the same as in the REM.
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Branching Brownian motion

Branching Brownian motion

(BBM) is a classical object in probability, combining the standard models
of random motion and random genealogies into one: Each particle of the
Galton-Watson process performs Brownian motion independently of any
other. This produces an immersion of the Galton-Watson process in space.

Picture by Matt Roberts, Bath

BBM is the canonical model of a spatial branching process.
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BBM and F-KPP

The F-KPP equation

One of the simplest reaction-diffusion equations is the
Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

∂tv(x , t) =
1

2
∂2
xv(x , t) + v − v2

Fischer used this equation to model the evolution of biological
populations. It accounts for:

birth: v ,

death: −v2,

diffusive migration: ∂2
xv .
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BBM and F-KPP

F-KPP equation and BBM

Lemma (McKeane ’75, Ikeda, Nagasawa, Watanabe ’69)

Let f : R→ [0, 1] and {xk(t) : k ≤ n(t)} BBM.

u(t, x) = E

n(t)∏
k=1

f (x − xk(t))


Then v ≡ 1− u is the solution of the F-KPP equation with initial
condition v(0, x) = 1− f (x).
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BBM and F-KPP

Travelling waves

Theorem (KPP ’37,......, Bramson ’78)

The equation
1

2
ω′′ +

√
2ω′ − ω2 + ω = 0.

has a unique solution satisfying 0 < ω(x) < 1, ω(x)→ 0, as x → +∞,
and ω(x)→ 1, as x → −∞, up to translation.
For suitable initial conditions,

u(t, x + m(t))→ ω(x),

where m(t) =
√

2t − 3
2
√

2
ln t, where ω is one of the stationary solutions.
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BBM and F-KPP

Examples

Choosing suitable initial conditions, this theorem applies to

u(t, x) = P(maxk≤n(t) xk(t) ≤ x).

This gives Bramson’s celebrated result

lim
t→∞

P( max
k≤n(t)

xk(t)−m(t) ≤ x) = ω(x)

and

the Laplace functional u(t, x) = E exp(−
∑

k≤n(t) φ(xk(t)))
Allows to characterise the extremal process...
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The Lalley-Sellke representation

The derivative martingale

Lalley-Sellke, 1987: ω(x) is random shift of Gumbel-distribution

ω(x) = E
[
e−CZe−

√
2x
]

Z
(d)
= limt→∞ Z (t), where Z (t) is the derivative martingale,

Z (t) =
∑

k≤n(t)

{
√

2t − xk(t)}e−
√

2{
√

2t−xk (t)}
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The Lalley-Sellke representation

Description of the extremal process of BBM

Poisson Point Process: PZ =
∑

i∈N δpi ≡ PPP
(
CZe−

√
2xdx

)
Cluster process:

∆(t) ≡
∑
k

δxk (t)−maxj≤n(t) xj (t).

conditioned on the event
{

maxj≤n(t) xj(t) >
√

2t
}

converges in law to point process, ∆.
[Chauvin, Rouault ’90]

E ≡
∑
i ,j∈N

δ
pi+∆

(i)
j

, ∆(i) iid copies of ∆
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The Lalley-Sellke representation

The extremal process

Theorem (Arguin-B-Kistler [PTRF’13, Aidékon-Brunet-Berestycki-Shi [PTRF’13)

The point process Et ≡
∑n(t)

i=1 δxi (t)−m(t) → E .
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Extended convergence

Extended convergence

Can we find a way to encode simultaneously information on the
correlation structure of E?

Answer [B-Hartung ’14 ]:
Step 1: Turn the process into a two-dimensional one using its underlying
tree structure!

0.5 1.0 1.5 2.0 2.5

-3

-2

-1

0

1

2

3

Figure: Particles in space
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Extended convergence

Extended convergence

Can we find a way to encode simultaneously information on the
correlation structure of E?

Answer [Bovier-Hartung ’14 ]:
Step 1: Turn the process into a two-dimensional one using its underlying
tree structure!

Figure: Underlying branching structure

A. Bovier (IAM Bonn) Extremal Processes of Gaussian Processes Indexed by Trees Markov Processes, Mixing Times and Cutoff, Durham, 27.07.2017



Extended convergence

Embedding

Construct embedding γ : {1, . . . , n(t)} → R+ of the tree

|γ(ik(t))−γ(ij(t))| ∼ e−d(ik (t),ij (t))
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Extended convergence

Embedding

Let W (t) = number of branchings in [0, t].
(t1, . . . , tW (t)) corresponding time points.
Add extra vertices to the underlying Galton Watson tree:
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Extended convergence

Embedding of the GW tree

Label at each time ti the edges
starting from 0.
Leaf ik in GW-tree Tt

=̂multilabel uk(t)

γ(uk(t)) =

W (t)∑
j=1

ukj (t)e−tj
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Extended convergence

Extended convergence of the extremal process

Theorem (B-Hartung ’14, AAP)

The point process Et ≡
∑n(t)

k=1 δ(γ(ik (t)),xk (t)−m(t)) → Ẽ on R+ × R, where

Ẽ ≡
∑
i ,j

δ
(qi ,pi )+(0,∆

(i)
j )
,

with (qi , pi ) atoms of a Cox process on R+ × R with intensity measure

Z (du)× Ce−
√

2xdx, where Z (du) is some random measure and ∆
(i)
j as

before.
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Extended convergence

Extended convergence of the extremal process

Blue: PPP Red: cluster
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Extended convergence

The measure

Define for u ∈ R+,

Z (r , t, u) ≡
∑

k:γ(ik (r))≤u

{
√

2t − xk(t)}e−
√

2{
√

2t−xk (t)}

Lemma (B-Hartung ’14)

lim
r↑∞

lim
t↑∞

Z (r , t, u) ≡ Z (u)

exists almost surely. Moreover, 0 ≤ Z (u) ≤ Z and Z (u) is almost surely
non-atomic.

A. Bovier (IAM Bonn) Extremal Processes of Gaussian Processes Indexed by Trees Markov Processes, Mixing Times and Cutoff, Durham, 27.07.2017



Extended convergence

The measure

Define for u ∈ R+,

Z (r , t, u) ≡
∑

k:γ(ik (r))≤u

{
√

2t − xk(t)}e−
√

2{
√

2t−xk (t)}

Lemma (B-Hartung ’14)

lim
r↑∞

lim
t↑∞

Z (r , t, u) ≡ Z (u)

exists almost surely. Moreover, 0 ≤ Z (u) ≤ Z and Z (u) is almost surely
non-atomic.

A. Bovier (IAM Bonn) Extremal Processes of Gaussian Processes Indexed by Trees Markov Processes, Mixing Times and Cutoff, Durham, 27.07.2017



Extended convergence

Related Results

The 2-dim DGFF (Biskup and Louidor ’16)∑
1≤i ,j≤n

δ(i/n,j/n),X(i,j)−mn
⇒
∑
i∈N

∑
j∈N

δ
xi ,pi+∆

(i)
j

,

where (xi , pi ) are the atoms PPP on (0, 1]2 × R with random

intensity measure Z (dx)× e−
√

2udu, where Z (dx) is some random

measure on (0, 1]2. ∆
(i)
j are the atoms of some cluster process.
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Variable speed BBM

Variable speed BBM.....below the straight line...

Theorem (B-Hartung [EJP’14, ALEA’15])

Assume that A(x) < x ,∀x ∈ (0, 1), A′(0) = a2 < 1, A′(1) = b2 > 1.
Then ∃ C (b) and a r.v. Ya such that

P (M(t)− m̃(t) ≤ x)→ Ee−C(b)Yae−
√

2x

∑
k≤n(t) δxk (t)−m̃(t) → Ea,b =

∑
i ,j δpi+b∆

(i)
j

m̃(t) ≡
√

2t − 1
2
√

2
ln t.

pi : atoms of a PPP(C (b)Yae
−
√

2xdx),

Ya = lim
∑n(s)

i=1 e−s(1+a2)+
√

2xi (s)

∆: BBM conditioned on {maxk xk(t) ≥
√

2bt}.
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Variable speed BBM

Above the straight line

When the concave hull of A is above the straight line, everything changes.

If A is piecewise linear, it is quite easy to get the full picture:
Cascade of BBM processes.

If A is strictly concave, Fang and Zeitouni ’12 and Maillard and
Zeitouni ’13 have shown that the correct rescaling is

m(t) = Cσt − Dσt
1/3 − σ2(1) ln t + ft

(with explicit constants Cσ and Dσ), and |ft | bounded and

P [MT −m(t) ≤ x)→ ω(x/σ(0)).
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Universality

Universality

BBM prototype for extremal processes in many other models:

Branching random walk [Bramson ’78, Addario-Berry, Áıdékon ’13 (law of max),

Madaule ’13 (full extremal process),...]

Gaussian free field in d = 2 [Bolthausen, Deuschel, Giacomin ’01,

Bramson-Ding-Zeitouni ’13, Biskup-Louidor ’13, ’16 (full extremal process]

Cover times of random walks [Lawler ’9,3 Dembo-Peres-Rosen-Zeitouni ’06,

Belius-Kistler ’14 ....]

Spin glasses with log-correlated potentials [Fyodorov, Bouchaud ’08,Arguin,

Zindy ’12..]

Statistics of zeros of Riemann zeta-function [Fyodorov, Keating ’12, Arguin,

Belius, Fyodorov ’15, Arguin, Belius , Harper, ’16]
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Universality

Thank you for your attention!
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