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setting

time-homogeneous, discrete-time Markov chain

X ≡ {X(n), n = 0,1, . . . }

state space S := {0,1,2, . . .}

matrix of one-step transition probabilities

P ≡ (P(i, j), i, j ∈ S)

n-step transition probabilities

P (n)(i, j) ≡ Pr{X(m+ n) = j |X(m) = i}

P (n) ≡ (P (n)(i, j), i, j ∈ S) = Pn

assumption: P irreducible, aperiodic, (sub)stochastic
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strong ratio limit property

definition (Orey (1961)): X recurrent

X has strong ratio limit property (SRLP) if there exist positive

constants µ(i), i ∈ S, such that

lim
n→∞

P (n+m)(i, j)

P (n)(k, l)
=
µ(j)

µ(l)
, i, j, k, l ∈ S, m ∈ Z

definition (Pruitt (1965)): X recurrent or transient

X has SRLP if there exist positive constants ρ, µ(i), i ∈ S, and

f(i), i ∈ S, such that

lim
n→∞

P (n+m)(i, j)

P (n)(k, l)
= ρm

f(i)µ(j)

f(k)µ(l)
, i, j, k, l ∈ S, m ∈ Z

problems: (i) give conditions on P for SRLP

(ii) identify constants ρ, µ(i) and f(i)
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strong ratio limit property

SRLP: there exist positive constants ρ, µ(i) and f(i) such that

lim
n→∞

P (n+m)(i, j)

P (n)(k, l)
= ρm

f(i)µ(j)

f(k)µ(l)
, i, j, k, l ∈ S, m ∈ Z

SRLP prevails if and only if there exist positive constants ρ, µ(i)

and f(i), such that

lim
n→∞

P (n+1)(i, j)

P (n)(i, j)
= ρ, i, j ∈ S (1)

lim
n→∞

P (n)(i, j)

P (n)(i, l)
=
µ(j)

µ(l)
, i, j, l ∈ S (2)

lim
n→∞

P (n)(i, j)

P (n)(k, j)
=

f(i)

f(k)
, i, j, k ∈ S (3)
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intermezzo: R-recurrence, R-transience

theorem (Vere-Jones (1962)): the power series

Pij(z) ≡
∞
∑

n=0

P (n)(i, j)zn, i, j ∈ S

have common radius of convergence R, 1 ≤ R <∞, and converge

or diverge together

definition: P is R-transient if

Pij(R) <∞

and R-recurrent if

Pij(R) = ∞
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intermezzo: R-recurrence, R-transience

theorem (Kingman (1963)):

lim
n→∞

(

P (n)(i, j)
)1/n

=
1

R
, i, j ∈ S

hence, if

lim
n→∞

P (n+1)(i, j)

P (n)(i, j)
exists

then

lim
n→∞

P (n+1)(i, j)

P (n)(i, j)
=

1

R

so ρ in SRLP satisfies

ρ =
1

R

ρ is decay parameter
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strong ratio limit property

SRLP: there exist positive constants ρ, µ(i) and f(i) such that

lim
n→∞

P (n+m)(i, j)

P (n)(k, l)
= ρm

f(i)µ(j)

f(k)µ(l)
, i, j, k, l ∈ S, m ∈ Z

SRLP prevails if and only if

lim
n→∞

P (n+1)(i, j)

P (n)(i, j)
exists, i, j ∈ S (1)

and there exist positive constants µ(i) and f(i), such that

lim
n→∞

P (n)(i, j)

P (n)(i, l)
=
µ(j)

µ(l)
, i, j, l ∈ S (2)

lim
n→∞

P (n)(i, j)

P (n)(k, j)
=

f(i)

f(k)
, i, j, k ∈ S (3)
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strong ratio limit property

theorem (Pruitt (1965)): P (sub)stochastic and R-recurrent;

lim
n→∞

P (n+1)(0,0)

P (n)(0,0)
exists

⇐⇒ P has SRLP:

lim
n→∞

P (n+m)(i, j)

P (n)(k, l)
= ρm

f(i)µ(j)

f(k)µ(l)
, i, j, k, l ∈ S, m ∈ Z

where ρ = R−1 and, up to constant factors, µ is unique

ρ-invariant measure:
∑

i∈S

µ(i)P(i, j) = ρµ(j), j ∈ S

and f is unique ρ-harmonic function (or ρ-invariant vector):
∑

j∈S

P(i, j)f(j) = ρf(i), i ∈ S
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parenthetically

if P is strictly substochastic (coffin state ∂), ρ < 1 and µ a

ρ-invariant measure, that is,

∑

i∈S

µ(i)P(i, j) = ρµ(j), j ∈ S

then absorption at ∂ is certain and µ constitutes a (minimal)

quasistationary distribution, that is

Pµ(X(n) = j |T > n) = µj, j ∈ S

with T denoting the absorption time
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strong ratio limit property

theorem (Pruitt (1965)): P (sub)stochastic and R-recurrent;

P has SRLP ⇐⇒ lim
n→∞

P (n+1)(0,0)

P (n)(0,0)
exists

sufficient conditions for SRLP:

• P is R-recurrent and symmetrizable

(Pruitt (1965))

• P is R-recurrent and

P (n)(i, i) ≥ ε > 0 for some n and all i ∈ S

(extension of Kingman & Orey (1964))

problems: (i) can we do better if P is R-recurrent?

(ii) what can be said if P is R-transient?
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strong ratio limit property

setting: P irreducible, aperiodic, (sub)stochastic (but not

necessarily R-recurrent)

theorem (Kesten (1995)): if for each n sufficiently large there

exists a constant ε ≡ ε(n) > 0 such that P (n)(i, i) ≥ ε for all i ∈ S
(= condition K) then

lim
n→∞

P (n+1)(i, j)

P (n)(i, j)
= ρ, i, j ∈ S

theorem (Handelman (1999)): assume condition K
SRLP ⇐⇒ there exist unique ρ-invariant measure µ and unique

ρ-harmonic function f , in which case

lim
n→∞

P (n)(i, j)

P (n)(i, l)
=
µ(j)

µ(l)
and lim

n→∞

P (n)(i, j)

P (n)(k, j)
=

f(i)

f(k)
, i, j, k, l ∈ S
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strong ratio limit property

Handelman (2002): “Your e-mail brought back painful memories

– struggling through the details of the arguments in the paper –

which I had put completely out of my mind.”
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strong ratio limit property

conclusion: condition K + existence of unique ρ-invariant mea-

sure and unique ρ-harmonic function ⇒ SRLP

remark: without condition K existence of unique ρ-invariant

measure and unique ρ-harmonic function is not necessary for

SRLP, so existence of

lim
n→∞

P (n+1)(i, j)

P (n)(i, j)
, i, j ∈ S

per se is not sufficient for Handelman’s conclusions

problem: find condition weaker (and more elegant) than con-

dition K for SRLP to prevail, assuming existence of a unique

ρ-invariant measure and unique ρ-harmonic function

approach: first look at birth-death chains, then try to generalize
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birth-death chains

setting:

P =

















r0 p0 0 0 · · ·

q1 r1 p1 0 · · ·

0 q2 r2 p2 · · ·
... ... ... ... . . .

















matrix of 1-step transition probabilities of birth-death chain X

on {0,1,2, . . . }

assumption: P irreducible, aperiodic, (sub)stochastic

recall: decay parameter

ρ=
1

R
≤ 1

with R = radius of convergence of
∞
∑

n=0

P (n)(i, j)zn
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birth-death chains

letting

piQi+1(x) = (x− ri)Qi(x)− qiQi−1(x), i > 0

p0Q1(x) = x− r0, Q0(x) = 1

and

π0 := 1, πi :=
p0 . . . pi−1

q1 . . . qi
, i > 0

we have (up to constant factors) unique ρ-harmonic function f
∑

j∈S

P(i, j)f(j) = ρf(i) ⇐⇒ f(i) = cQi(ρ)

and unique ρ-invariant measure µ
∑

j∈S

µ(j)P(j, i) = ρµ(i) ⇐⇒ µ(i) = cπiQi(ρ)

note: {Qi} orthogonal polynomial sequence with respect to

(unique) Borel measure ψ on (−1,1]
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birth-death chains

recall: for Markov chain condition K + existence of unique ρ-

invariant measure and unique ρ-harmonic function implies SRLP

birth-death chain has unique ρ-harmonic function f and ρ-invariant

measure µ, but we do not assume condition K

fact: P is symmetrizable so, by Pruitt’s (1965) result, P has

SRLP if P is R-recurrent

assumptions in what follows (wlog):

• P is stochastic and ρ = 1, so that f(i) = Qi(1) = 1

• P is transient
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birth-death chains (ρ = 1)

theorem (Papangelou (1967)): P has SRLP (involving µ and f)

⇐⇒ lim
n→∞

P (n+1)(0,0)

P (n)(0,0)
exists

results (vD & Schrijner (1995)):

lim
n→∞

P (n+1)(0,0)

P (n)(0,0)
exists ⇐⇒ lim

n→∞

∫ 0
−1(−x)

nψ(dx)
∫ 1
0 x

nψ(dx)
= 0

lim
n→∞

|Qn(−1)| = ∞ ⇒ lim
n→∞

∫ 0
−1(−x)

nψ(dx)
∫ 1
0 x

nψ(dx)
= 0

hence lim
n→∞

|Qn(−1)| = ∞ ⇒ SRLP

and under mild regularity conditions on ψ:

lim
n→∞

|Qn(−1)| = ∞ ⇐⇒ SRLP
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birth-death chains (ρ = 1)

result:

lim
n→∞

|Qn(−1)| = ∞ ⇒ SRLP

with Q(x) := (Q0(x), Q1(x), . . . ) we have PQ(x) = xQ(x), and

hence

P2Q(x) = x2Q(x)

while

Qn(1) = 1, |Qn(−1)| ≥ 1 and increasing

so Q(1) and Q(−1) are two distinct solutions of P2y = y, and

hence any solution of P2y = y, that is, any 1-harmonic function

for P2, is a linear combination of Q(1) and Q(−1)

result: the constant function is the only bounded 1-harmonic

function for P2 ⇒ P has SRLP
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birth-death chains (ρ = 1)

result: the constant function is the only bounded 1-harmonic

function for P2 ⇒ P has SRLP

recall: P (and hence P2) is transient

boundary theory: the constant function is the only bounded

1-harmonic function for P2 ⇐⇒ P2 has exactly one escape

route to infinity
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birth-death chains (ρ = 1)

summary: assume (wlog) P stochastic, transient and ρ = 1,

and define

piQi+1(x) = (x− ri)Qi(x)− qiQi−1(x), i > 0

p0Q1(x) = x− r0, Q0(x) = 1

(orthogonal polynomials w.r.t. measure ψ on (−1,1]), then

SRLP prevails ⇐⇒ lim
n→∞

P (n+1)(0,0)

P (n)(0,0)
exists

⇐⇒ lim
n→∞

∫ 0
−1(−x)

nψ(dx)
∫ 1
0 x

nψ(dx)
= 0

⇐ lim
n→∞

|Qn(−1)| = ∞ (conjecture: ⇐⇒)

⇐⇒ P2 has exactly one escape route to ∞
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asymptotic period

setting: Markov chain X ≡ {X(n), n = 0,1, . . . } on countable S

with irreducible, aperiodic, stochastic transition matrix P

let β(X) := # almost closed sets for X

(≈ # escape routes to infinity if X is transient)

X (m) ≡ {X(mn), n = 0,1, . . . } m-step chain

assumptions:

• X is transient and ρ= 1

• constant function is only bounded 1-harmonic function for X

(β(X) = 1)

definition: asymptotic period of X :

d(X) := sup{β(X (m)) |m ≥ 1} (1 ≤ d(X) ≤ ∞)

X is asymptotically aperiodic if d(X) = 1
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asymptotic period: birth-death chain

results: X is birth-death chain ⇒ d(X) = 1,2 or ∞

d(X) = 2 or d(X) = ∞ ⇐⇒ β(X (2)) = 2

hence

β(X (2)) = 1 ⇐⇒ X is asymptotically aperiodic

recall: β(X (2)) = 1 ⇒ X has SRLP (conjecture: ⇐⇒)

conclusion:

X is asymptotically aperiodic ⇒ X has SRLP

conjecture (valid under mild regularity conditions):

X is asymptotically aperiodic ⇐⇒ X has SRLP
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conclusions

setting: irreducible, aperiodic, (sub)stochastic Markov chain X

asymptotic period d(X)

1 ≤ d(X) = sup{β(X (m)) |m ≥ 1} ≤ ∞

birth-death setting:

• asymptotic aperiodicity of related birth-death process is

sufficient (and, under mild conditions, necessary) for SRLP

general setting, assuming existence of unique ρ-harmonic

function and ρ-invariant measure:

• asymptotic aperiodicity of two related Markov chains is not

sufficient, but conjectured to be necessary for SRLP
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generalization?

setting: Markov chain X on S = {0,1,2, . . .} with irreducible,

aperiodic, (sub)stochastic transition matrix P

assumption: P has unique ρ-invariant measure µ and unique

ρ-harmonic function f

let

µD := diag(µ(i), i ∈ S) and fD := diag(f(i), i ∈ S)

and define

Pµ :=
1

ρ
µ−1
D PTµD and Pf :=

1

ρ
f−1
D PfD

then Pµ and Pf are nonnegative and stochastic, hence matrices

of 1-step transition probabilities of Markov chains Xµ and Xf
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generalization?

Pµ :=
1

ρ
µ−1
D PTµD and Pf :=

1

ρ
f−1
D PfD

Pµ and Pf are matrices of 1-step transition probabilities of

(stochastic) Markov chains Xµ and Xf

also: Pµ and Pf are irreducible, aperiodic, ρ(Pµ) = ρ(Pf) = 1

furthermore:

Pµ and Pf have unique 1-harmonic function g(i) = 1

so that Xµ and Xf are simple

Pµ and Pf have unique 1-invariant measure ν(i) = µ(i)f(i)

P has SRLP ⇐⇒ Pµ and Pf have SRLP

and

Pµ = Pf ⇐⇒ P is symmetrizable
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generalization?

Pµ :=
1

ρ
µ−1
D PTµD and Pf :=

1

ρ
f−1
D PfD

Pµ and Pf are matrices of 1-step transition probabilities of

(stochastic) Markov chains Xµ and Xf

result: X satisfies condition K ⇒ Xµ and Xf asymptotically

aperiodic

but asymptotic aperiodicity of Xµ and Xf is not, in general,

sufficient for the SRLP since

X is R-recurrent ⇒ Xµ and Xf asymptotically aperiodic

while example exists of recurrent chain not satisfying the SRLP

conjecture: X has SRLP ⇒ Xµ and Xf are asymptotically

aperiodic
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